genmath.inc 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206
  1. {
  2. This file is part of the Free Pascal run time library.
  3. Copyright (c) 1999-2007 by Several contributors
  4. Generic mathematical routines (on type real)
  5. See the file COPYING.FPC, included in this distribution,
  6. for details about the copyright.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  10. **********************************************************************}
  11. {*************************************************************************}
  12. { Credits }
  13. {*************************************************************************}
  14. { Copyright Abandoned, 1987, Fred Fish }
  15. { }
  16. { This previously copyrighted work has been placed into the }
  17. { public domain by the author (Fred Fish) and may be freely used }
  18. { for any purpose, private or commercial. I would appreciate }
  19. { it, as a courtesy, if this notice is left in all copies and }
  20. { derivative works. Thank you, and enjoy... }
  21. { }
  22. { The author makes no warranty of any kind with respect to this }
  23. { product and explicitly disclaims any implied warranties of }
  24. { merchantability or fitness for any particular purpose. }
  25. {-------------------------------------------------------------------------}
  26. { Copyright (c) 1992 Odent Jean Philippe }
  27. { }
  28. { The source can be modified as long as my name appears and some }
  29. { notes explaining the modifications done are included in the file. }
  30. {-------------------------------------------------------------------------}
  31. { Copyright (c) 1997 Carl Eric Codere }
  32. {-------------------------------------------------------------------------}
  33. {-------------------------------------------------------------------------
  34. Using functions from AMath/DAMath libraries, which are covered by the
  35. following license:
  36. (C) Copyright 2009-2013 Wolfgang Ehrhardt
  37. This software is provided 'as-is', without any express or implied warranty.
  38. In no event will the authors be held liable for any damages arising from
  39. the use of this software.
  40. Permission is granted to anyone to use this software for any purpose,
  41. including commercial applications, and to alter it and redistribute it
  42. freely, subject to the following restrictions:
  43. 1. The origin of this software must not be misrepresented; you must not
  44. claim that you wrote the original software. If you use this software in
  45. a product, an acknowledgment in the product documentation would be
  46. appreciated but is not required.
  47. 2. Altered source versions must be plainly marked as such, and must not be
  48. misrepresented as being the original software.
  49. 3. This notice may not be removed or altered from any source distribution.
  50. ----------------------------------------------------------------------------}
  51. type
  52. PReal = ^Real;
  53. { float64 definition is now in genmathh.inc,
  54. to ensure that float64 will always be in
  55. the system interface symbol table. }
  56. const
  57. PIO4 = 7.85398163397448309616E-1; { pi/4 }
  58. SQRT2 = 1.41421356237309504880; { sqrt(2) }
  59. LOG2E = 1.4426950408889634073599; { 1/log(2) }
  60. lossth = 1.073741824e9;
  61. MAXLOG = 8.8029691931113054295988E1; { log(2**127) }
  62. MINLOG = -8.872283911167299960540E1; { log(2**-128) }
  63. H2_54: double = 18014398509481984.0; {2^54}
  64. huge: double = 1e300;
  65. one: double = 1.0;
  66. zero: double = 0;
  67. {$if not defined(FPC_SYSTEM_HAS_SIN) or not defined(FPC_SYSTEM_HAS_COS)}
  68. const sincof : array[0..5] of Real = (
  69. 1.58962301576546568060E-10,
  70. -2.50507477628578072866E-8,
  71. 2.75573136213857245213E-6,
  72. -1.98412698295895385996E-4,
  73. 8.33333333332211858878E-3,
  74. -1.66666666666666307295E-1);
  75. coscof : array[0..5] of Real = (
  76. -1.13585365213876817300E-11,
  77. 2.08757008419747316778E-9,
  78. -2.75573141792967388112E-7,
  79. 2.48015872888517045348E-5,
  80. -1.38888888888730564116E-3,
  81. 4.16666666666665929218E-2);
  82. {$endif}
  83. {*
  84. -------------------------------------------------------------------------------
  85. Raises the exceptions specified by `flags'. Floating-point traps can be
  86. defined here if desired. It is currently not possible for such a trap
  87. to substitute a result value. If traps are not implemented, this routine
  88. should be simply `softfloat_exception_flags |= flags;'.
  89. -------------------------------------------------------------------------------
  90. *}
  91. procedure float_raise(i: TFPUException);
  92. begin
  93. float_raise([i]);
  94. end;
  95. procedure float_raise(i: TFPUExceptionMask);
  96. var
  97. pflags: ^TFPUExceptionMask;
  98. unmasked_flags: TFPUExceptionMask;
  99. Begin
  100. { taking address of threadvar produces somewhat more compact code }
  101. pflags := @softfloat_exception_flags;
  102. pflags^:=pflags^ + i;
  103. unmasked_flags := pflags^ - softfloat_exception_mask;
  104. { before we raise the exception, we mark it as handled,
  105. this behaviour is similiar to the hardware handler in SignalToRunerror }
  106. SysResetFPU;
  107. if (float_flag_invalid in unmasked_flags) then
  108. HandleError(207)
  109. else if (float_flag_divbyzero in unmasked_flags) then
  110. HandleError(208)
  111. else if (float_flag_overflow in unmasked_flags) then
  112. HandleError(205)
  113. else if (float_flag_underflow in unmasked_flags) then
  114. HandleError(206)
  115. else if (float_flag_inexact in unmasked_flags) then
  116. HandleError(207)
  117. else if (float_flag_denormal in unmasked_flags) then
  118. HandleError(216);
  119. end;
  120. { This function does nothing, but its argument is expected to be an expression
  121. which causes FPE when calculated. If exception is masked, it just returns true,
  122. allowing to use it in expressions. }
  123. function fpe_helper(x: valreal): boolean;
  124. begin
  125. result:=true;
  126. end;
  127. {$ifdef SUPPORT_DOUBLE}
  128. {$ifndef FPC_HAS_FLOAT64HIGH}
  129. {$define FPC_HAS_FLOAT64HIGH}
  130. function float64high(d: double): longint; inline;
  131. begin
  132. result:=float64(d).high;
  133. end;
  134. procedure float64sethigh(var d: double; l: longint); inline;
  135. begin
  136. float64(d).high:=l;
  137. end;
  138. {$endif FPC_HAS_FLOAT64HIGH}
  139. {$ifndef FPC_HAS_FLOAT64LOW}
  140. {$define FPC_HAS_FLOAT64LOW}
  141. function float64low(d: double): longint; inline;
  142. begin
  143. result:=float64(d).low;
  144. end;
  145. procedure float64setlow(var d: double; l: longint); inline;
  146. begin
  147. float64(d).low:=l;
  148. end;
  149. {$endif FPC_HAS_FLOAT64LOW}
  150. {$endif SUPPORT_DOUBLE}
  151. {$ifndef FPC_SYSTEM_HAS_TRUNC}
  152. {$ifdef SUPPORT_DOUBLE}
  153. { based on softfloat float64_to_int64_round_to_zero }
  154. function fpc_trunc_real(d : valreal) : int64; compilerproc;
  155. var
  156. aExp, shiftCount : smallint;
  157. aSig : int64;
  158. z : int64;
  159. a: float64;
  160. begin
  161. a:=float64(d);
  162. aSig:=(int64(a.high and $000fffff) shl 32) or longword(a.low);
  163. aExp:=(a.high shr 20) and $7FF;
  164. if aExp<>0 then
  165. aSig:=aSig or $0010000000000000;
  166. shiftCount:= aExp-$433;
  167. if 0<=shiftCount then
  168. begin
  169. if aExp>=$43e then
  170. begin
  171. if (a.high<>longint($C3E00000)) or (a.low<>0) then
  172. begin
  173. fpe_helper(zero/zero);
  174. if (longint(a.high)>=0) or ((aExp=$7FF) and
  175. (aSig<>$0010000000000000 )) then
  176. begin
  177. result:=$7FFFFFFFFFFFFFFF;
  178. exit;
  179. end;
  180. end;
  181. result:=$8000000000000000;
  182. exit;
  183. end;
  184. z:=aSig shl shiftCount;
  185. end
  186. else
  187. begin
  188. if aExp<$3fe then
  189. begin
  190. result:=0;
  191. exit;
  192. end;
  193. z:=aSig shr -shiftCount;
  194. {
  195. if (aSig shl (shiftCount and 63))<>0 then
  196. float_exception_flags |= float_flag_inexact;
  197. }
  198. end;
  199. if longint(a.high)<0 then
  200. z:=-z;
  201. result:=z;
  202. end;
  203. {$else SUPPORT_DOUBLE}
  204. { based on softfloat float32_to_int64_round_to_zero }
  205. Function fpc_trunc_real( d: valreal ): int64; compilerproc;
  206. Var
  207. a : float32;
  208. aExp, shiftCount : smallint;
  209. aSig : longint;
  210. aSig64, z : int64;
  211. Begin
  212. a := float32(d);
  213. aSig := a and $007FFFFF;
  214. aExp := (a shr 23) and $FF;
  215. shiftCount := aExp - $BE;
  216. if ( 0 <= shiftCount ) then
  217. Begin
  218. if ( a <> Float32($DF000000) ) then
  219. Begin
  220. fpe_helper( zero/zero );
  221. if ( (longint(a)>=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
  222. Begin
  223. result:=$7fffffffffffffff;
  224. exit;
  225. end;
  226. End;
  227. result:=$8000000000000000;
  228. exit;
  229. End
  230. else
  231. if ( aExp <= $7E ) then
  232. Begin
  233. result := 0;
  234. exit;
  235. End;
  236. aSig64 := int64( aSig or $00800000 ) shl 40;
  237. z := aSig64 shr ( - shiftCount );
  238. if ( longint(a)<0 ) then z := - z;
  239. result := z;
  240. End;
  241. {$endif SUPPORT_DOUBLE}
  242. {$endif not FPC_SYSTEM_HAS_TRUNC}
  243. {$ifndef FPC_SYSTEM_HAS_INT}
  244. {$ifdef SUPPORT_DOUBLE}
  245. { straight Pascal translation of the code for __trunc() in }
  246. { the file sysdeps/libm-ieee754/s_trunc.c of glibc (JM) }
  247. function fpc_int_real(d: ValReal): ValReal;compilerproc;
  248. var
  249. i0, j0: longint;
  250. i1: cardinal;
  251. sx: longint;
  252. f64 : float64;
  253. begin
  254. f64:=float64(d);
  255. i0 := f64.high;
  256. i1 := cardinal(f64.low);
  257. sx := i0 and $80000000;
  258. j0 := ((i0 shr 20) and $7ff) - $3ff;
  259. if (j0 < 20) then
  260. begin
  261. if (j0 < 0) then
  262. begin
  263. { the magnitude of the number is < 1 so the result is +-0. }
  264. f64.high := sx;
  265. f64.low := 0;
  266. end
  267. else
  268. begin
  269. f64.high := sx or (i0 and not($fffff shr j0));
  270. f64.low := 0;
  271. end
  272. end
  273. else if (j0 > 51) then
  274. begin
  275. if (j0 = $400) then
  276. { d is inf or NaN }
  277. exit(d + d); { don't know why they do this (JM) }
  278. end
  279. else
  280. begin
  281. f64.high := i0;
  282. f64.low := longint(i1 and not(cardinal($ffffffff) shr (j0 - 20)));
  283. end;
  284. result:=double(f64);
  285. end;
  286. {$else SUPPORT_DOUBLE}
  287. function fpc_int_real(d : ValReal) : ValReal;compilerproc;
  288. begin
  289. { this will be correct since real = single in the case of }
  290. { the motorola version of the compiler... }
  291. result:=ValReal(trunc(d));
  292. end;
  293. {$endif SUPPORT_DOUBLE}
  294. {$endif not FPC_SYSTEM_HAS_INT}
  295. {$ifndef FPC_SYSTEM_HAS_ABS}
  296. function fpc_abs_real(d : ValReal) : ValReal;compilerproc;
  297. begin
  298. if (d<0.0) then
  299. result := -d
  300. else
  301. result := d ;
  302. end;
  303. {$endif not FPC_SYSTEM_HAS_ABS}
  304. {$ifndef SYSTEM_HAS_FREXP}
  305. procedure frexp(X: Real; out Mantissa: Real; out Exponent: longint);
  306. {* frexp() extracts the exponent from x. It returns an integer *}
  307. {* power of two to expnt and the significand between 0.5 and 1 *}
  308. {* to y. Thus x = y * 2**expn. *}
  309. begin
  310. exponent:=0;
  311. if (abs(x)<0.5) then
  312. While (abs(x)<0.5) do
  313. begin
  314. x := x*2;
  315. Dec(exponent);
  316. end
  317. else
  318. While (abs(x)>1) do
  319. begin
  320. x := x/2;
  321. Inc(exponent);
  322. end;
  323. Mantissa := x;
  324. end;
  325. {$endif not SYSTEM_HAS_FREXP}
  326. {$ifndef SYSTEM_HAS_LDEXP}
  327. {$ifdef SUPPORT_DOUBLE}
  328. { ldexpd function adapted from DAMath library (C) Copyright 2013 Wolfgang Ehrhardt }
  329. function ldexp( x: Real; N: Integer):Real;
  330. {* ldexp() multiplies x by 2**n. *}
  331. var
  332. i: integer;
  333. begin
  334. i := (float64high(x) and $7ff00000) shr 20;
  335. {if +-INF, NaN, 0 or if e=0 return d}
  336. if (i=$7FF) or (N=0) or (x=0.0) then
  337. ldexp := x
  338. else if i=0 then {Denormal: result = d*2^54*2^(e-54)}
  339. ldexp := ldexp(x*H2_54, N-54)
  340. else
  341. begin
  342. N := N+i;
  343. if N>$7FE then { overflow }
  344. begin
  345. if x>0.0 then
  346. ldexp := 2.0*huge
  347. else
  348. ldexp := (-2.0)*huge;
  349. end
  350. else if N<1 then
  351. begin
  352. {underflow or denormal}
  353. if N<-53 then
  354. ldexp := 0.0
  355. else
  356. begin
  357. {Denormal: result = d*2^(e+54)/2^54}
  358. inc(N,54);
  359. float64sethigh(x,(float64high(x) and $800FFFFF) or (longint(N) shl 20));
  360. ldexp := x/H2_54;
  361. end;
  362. end
  363. else
  364. begin
  365. float64sethigh(x,(float64high(x) and $800FFFFF) or (longint(N) shl 20));
  366. ldexp := x;
  367. end;
  368. end;
  369. end;
  370. {$else SUPPORT_DOUBLE}
  371. function ldexp( x: Real; N: Integer):Real;
  372. {* ldexp() multiplies x by 2**n. *}
  373. var r : Real;
  374. begin
  375. R := 1;
  376. if N>0 then
  377. while N>0 do
  378. begin
  379. R:=R*2;
  380. Dec(N);
  381. end
  382. else
  383. while N<0 do
  384. begin
  385. R:=R/2;
  386. Inc(N);
  387. end;
  388. ldexp := x * R;
  389. end;
  390. {$endif SUPPORT_DOUBLE}
  391. {$endif not SYSTEM_HAS_LDEXP}
  392. function floord(x: double): double; inline;
  393. begin
  394. result := int(x);
  395. if result>x then
  396. result := result - 1.0;
  397. end;
  398. {*
  399. * ====================================================
  400. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  401. *
  402. * Developed at SunPro, a Sun Microsystems, Inc. business.
  403. * Permission to use, copy, modify, and distribute this
  404. * software is freely granted, provided that this notice
  405. * is preserved.
  406. * ====================================================
  407. *
  408. * Pascal port of this routine comes from DAMath library
  409. * (C) Copyright 2013 Wolfgang Ehrhardt
  410. *
  411. * k_rem_pio2 return the last three bits of N with y = x - N*pi/2
  412. * so that |y| < pi/2.
  413. *
  414. * The method is to compute the integer (mod 8) and fraction parts of
  415. * (2/pi)*x without doing the full multiplication. In general we
  416. * skip the part of the product that are known to be a huge integer
  417. * (more accurately, = 0 mod 8 ). Thus the number of operations are
  418. * independent of the exponent of the input.
  419. *
  420. * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  421. *
  422. * Input parameters:
  423. * x[] The input value (must be positive) is broken into nx
  424. * pieces of 24-bit integers in double precision format.
  425. * x[i] will be the i-th 24 bit of x. The scaled exponent
  426. * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  427. * match x's up to 24 bits.
  428. *
  429. * Example of breaking a double positive z into x[0]+x[1]+x[2]:
  430. * e0 = ilogb(z)-23
  431. * z = scalbn(z,-e0)
  432. * for i = 0,1,2
  433. * x[i] = floor(z)
  434. * z = (z-x[i])*2**24
  435. *
  436. *
  437. * y[] output result in an array of double precision numbers.
  438. * The dimension of y[] is:
  439. * 24-bit precision 1
  440. * 53-bit precision 2
  441. * 64-bit precision 2
  442. * 113-bit precision 3
  443. * The actual value is the sum of them. Thus for 113-bit
  444. * precison, one may have to do something like:
  445. *
  446. * long double t,w,r_head, r_tail;
  447. * t = (long double)y[2] + (long double)y[1];
  448. * w = (long double)y[0];
  449. * r_head = t+w;
  450. * r_tail = w - (r_head - t);
  451. *
  452. * e0 The exponent of x[0]. Must be <= 16360 or you need to
  453. * expand the ipio2 table.
  454. *
  455. * nx dimension of x[]
  456. *
  457. * prec an integer indicating the precision:
  458. * 0 24 bits (single)
  459. * 1 53 bits (double)
  460. * 2 64 bits (extended)
  461. * 3 113 bits (quad)
  462. *
  463. * Here is the description of some local variables:
  464. *
  465. * jk jk+1 is the initial number of terms of ipio2[] needed
  466. * in the computation. The recommended value is 2,3,4,
  467. * 6 for single, double, extended,and quad.
  468. *
  469. * jz local integer variable indicating the number of
  470. * terms of ipio2[] used.
  471. *
  472. * jx nx - 1
  473. *
  474. * jv index for pointing to the suitable ipio2[] for the
  475. * computation. In general, we want
  476. * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
  477. * is an integer. Thus
  478. * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
  479. * Hence jv = max(0,(e0-3)/24).
  480. *
  481. * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
  482. *
  483. * q[] double array with integral value, representing the
  484. * 24-bits chunk of the product of x and 2/pi.
  485. *
  486. * q0 the corresponding exponent of q[0]. Note that the
  487. * exponent for q[i] would be q0-24*i.
  488. *
  489. * PIo2[] double precision array, obtained by cutting pi/2
  490. * into 24 bits chunks.
  491. *
  492. * f[] ipio2[] in floating point
  493. *
  494. * iq[] integer array by breaking up q[] in 24-bits chunk.
  495. *
  496. * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
  497. *
  498. * ih integer. If >0 it indicates q[] is >= 0.5, hence
  499. * it also indicates the *sign* of the result.
  500. *}
  501. {PIo2[] double array, obtained by cutting pi/2 into 24 bits chunks.}
  502. const
  503. PIo2chunked: array[0..7] of double = (
  504. 1.57079625129699707031e+00, { 0x3FF921FB, 0x40000000 }
  505. 7.54978941586159635335e-08, { 0x3E74442D, 0x00000000 }
  506. 5.39030252995776476554e-15, { 0x3CF84698, 0x80000000 }
  507. 3.28200341580791294123e-22, { 0x3B78CC51, 0x60000000 }
  508. 1.27065575308067607349e-29, { 0x39F01B83, 0x80000000 }
  509. 1.22933308981111328932e-36, { 0x387A2520, 0x40000000 }
  510. 2.73370053816464559624e-44, { 0x36E38222, 0x80000000 }
  511. 2.16741683877804819444e-51 { 0x3569F31D, 0x00000000 }
  512. );
  513. {Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi }
  514. ipio2: array[0..65] of longint = (
  515. $A2F983, $6E4E44, $1529FC, $2757D1, $F534DD, $C0DB62,
  516. $95993C, $439041, $FE5163, $ABDEBB, $C561B7, $246E3A,
  517. $424DD2, $E00649, $2EEA09, $D1921C, $FE1DEB, $1CB129,
  518. $A73EE8, $8235F5, $2EBB44, $84E99C, $7026B4, $5F7E41,
  519. $3991D6, $398353, $39F49C, $845F8B, $BDF928, $3B1FF8,
  520. $97FFDE, $05980F, $EF2F11, $8B5A0A, $6D1F6D, $367ECF,
  521. $27CB09, $B74F46, $3F669E, $5FEA2D, $7527BA, $C7EBE5,
  522. $F17B3D, $0739F7, $8A5292, $EA6BFB, $5FB11F, $8D5D08,
  523. $560330, $46FC7B, $6BABF0, $CFBC20, $9AF436, $1DA9E3,
  524. $91615E, $E61B08, $659985, $5F14A0, $68408D, $FFD880,
  525. $4D7327, $310606, $1556CA, $73A8C9, $60E27B, $C08C6B);
  526. init_jk: array[0..3] of integer = (2,3,4,6); {initial value for jk}
  527. two24: double = 16777216.0; {2^24}
  528. twon24: double = 5.9604644775390625e-08; {1/2^24}
  529. type
  530. TDA02 = array[0..2] of double; { 3 elements is enough for float128 }
  531. function k_rem_pio2(const x: TDA02; out y: TDA02; e0, nx, prec: integer): sizeint;
  532. var
  533. i,ih,j,jz,jx,jv,jp,jk,carry,k,n,q0: longint;
  534. t: longint;
  535. iq: array[0..19] of longint;
  536. f,fq,q: array[0..19] of double;
  537. z,fw: double;
  538. begin
  539. {initialize jk}
  540. jk := init_jk[prec];
  541. jp := jk;
  542. {determine jx,jv,q0, note that 3>q0}
  543. jx := nx-1;
  544. jv := (e0-3) div 24; if jv<0 then jv := 0;
  545. q0 := e0-24*(jv+1);
  546. {set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk]}
  547. j := jv-jx;
  548. for i:=0 to jx+jk do
  549. begin
  550. if j<0 then f[i] := 0.0 else f[i] := ipio2[j];
  551. inc(j);
  552. end;
  553. {compute q[0],q[1],...q[jk]}
  554. for i:=0 to jk do
  555. begin
  556. fw := 0.0;
  557. for j:=0 to jx do
  558. fw := fw + x[j]*f[jx+i-j];
  559. q[i] := fw;
  560. end;
  561. jz := jk;
  562. repeat
  563. {distill q[] into iq[] reversingly}
  564. i := 0;
  565. z := q[jz];
  566. for j:=jz downto 1 do
  567. begin
  568. fw := trunc(twon24*z);
  569. iq[i] := trunc(z-two24*fw);
  570. z := q[j-1]+fw;
  571. inc(i);
  572. end;
  573. {compute n}
  574. z := ldexp(z,q0); {actual value of z}
  575. z := z - 8.0*floord(z*0.125); {trim off integer >= 8}
  576. n := trunc(z);
  577. z := z - n;
  578. ih := 0;
  579. if q0>0 then
  580. begin
  581. {need iq[jz-1] to determine n}
  582. t := (iq[jz-1] shr (24-q0));
  583. inc(n,t);
  584. dec(iq[jz-1], t shl (24-q0));
  585. ih := iq[jz-1] shr (23-q0);
  586. end
  587. else if q0=0 then
  588. ih := iq[jz-1] shr 23
  589. else if z>=0.5 then
  590. ih := 2;
  591. if ih>0 then {q > 0.5}
  592. begin
  593. inc(n);
  594. carry := 0;
  595. for i:=0 to jz-1 do
  596. begin
  597. {compute 1-q}
  598. t := iq[i];
  599. if carry=0 then
  600. begin
  601. if t<>0 then
  602. begin
  603. carry := 1;
  604. iq[i] := $1000000 - t;
  605. end
  606. end
  607. else
  608. iq[i] := $ffffff - t;
  609. end;
  610. if q0>0 then
  611. begin
  612. {rare case: chance is 1 in 12}
  613. case q0 of
  614. 1: iq[jz-1] := iq[jz-1] and $7fffff;
  615. 2: iq[jz-1] := iq[jz-1] and $3fffff;
  616. end;
  617. end;
  618. if ih=2 then
  619. begin
  620. z := 1.0 - z;
  621. if carry<>0 then
  622. z := z - ldexp(1.0,q0);
  623. end;
  624. end;
  625. {check if recomputation is needed}
  626. if z<>0.0 then
  627. break;
  628. t := 0;
  629. for i:=jz-1 downto jk do
  630. t := t or iq[i];
  631. if t<>0 then
  632. break;
  633. {need recomputation}
  634. k := 1;
  635. while iq[jk-k]=0 do {k = no. of terms needed}
  636. inc(k);
  637. for i:=jz+1 to jz+k do
  638. begin
  639. {add q[jz+1] to q[jz+k]}
  640. f[jx+i] := ipio2[jv+i];
  641. fw := 0.0;
  642. for j:=0 to jx do
  643. fw := fw + x[j]*f[jx+i-j];
  644. q[i] := fw;
  645. end;
  646. inc(jz,k);
  647. until False;
  648. {chop off zero terms}
  649. if z=0.0 then
  650. begin
  651. repeat
  652. dec(jz);
  653. dec(q0,24);
  654. until iq[jz]<>0;
  655. end
  656. else
  657. begin
  658. {break z into 24-bit if necessary}
  659. z := ldexp(z,-q0);
  660. if z>=two24 then
  661. begin
  662. fw := trunc(twon24*z);
  663. iq[jz] := trunc(z-two24*fw);
  664. inc(jz);
  665. inc(q0,24);
  666. iq[jz] := trunc(fw);
  667. end
  668. else
  669. iq[jz] := trunc(z);
  670. end;
  671. {convert integer "bit" chunk to floating-point value}
  672. fw := ldexp(1.0,q0);
  673. for i:=jz downto 0 do
  674. begin
  675. q[i] := fw*iq[i];
  676. fw := fw*twon24;
  677. end;
  678. {compute PIo2[0,...,jp]*q[jz,...,0]}
  679. for i:=jz downto 0 do
  680. begin
  681. fw :=0.0;
  682. k := 0;
  683. while (k<=jp) and (k<=jz-i) do
  684. begin
  685. fw := fw + double(PIo2chunked[k])*(q[i+k]);
  686. inc(k);
  687. end;
  688. fq[jz-i] := fw;
  689. end;
  690. {compress fq[] into y[]}
  691. case prec of
  692. 0:
  693. begin
  694. fw := 0.0;
  695. for i:=jz downto 0 do
  696. fw := fw + fq[i];
  697. if ih=0 then
  698. y[0] := fw
  699. else
  700. y[0] := -fw;
  701. end;
  702. 1, 2:
  703. begin
  704. fw := 0.0;
  705. for i:=jz downto 0 do
  706. fw := fw + fq[i];
  707. if ih=0 then
  708. y[0] := fw
  709. else
  710. y[0] := -fw;
  711. fw := fq[0]-fw;
  712. for i:=1 to jz do
  713. fw := fw + fq[i];
  714. if ih=0 then
  715. y[1] := fw
  716. else
  717. y[1] := -fw;
  718. end;
  719. 3:
  720. begin
  721. {painful}
  722. for i:=jz downto 1 do
  723. begin
  724. fw := fq[i-1]+fq[i];
  725. fq[i] := fq[i]+(fq[i-1]-fw);
  726. fq[i-1]:= fw;
  727. end;
  728. for i:=jz downto 2 do
  729. begin
  730. fw := fq[i-1]+fq[i];
  731. fq[i] := fq[i]+(fq[i-1]-fw);
  732. fq[i-1]:= fw;
  733. end;
  734. fw := 0.0;
  735. for i:=jz downto 2 do
  736. fw := fw + fq[i];
  737. if ih=0 then
  738. begin
  739. y[0] := fq[0];
  740. y[1] := fq[1];
  741. y[2] := fw;
  742. end
  743. else
  744. begin
  745. y[0] := -fq[0];
  746. y[1] := -fq[1];
  747. y[2] := -fw;
  748. end;
  749. end;
  750. end;
  751. k_rem_pio2 := n and 7;
  752. end;
  753. { Argument reduction of x: z = x - n*Pi/2, |z| <= Pi/4, result = n mod 8.}
  754. { Uses Payne/Hanek if |x| >= lossth, Cody/Waite otherwise}
  755. function rem_pio2(x: double; out z: double): sizeint;
  756. const
  757. tol: double = 2.384185791015625E-7; {lossth*eps_d}
  758. DP1 = double(7.85398125648498535156E-1);
  759. DP2 = double(3.77489470793079817668E-8);
  760. DP3 = double(2.69515142907905952645E-15);
  761. var
  762. i,e0,nx: longint;
  763. y: double;
  764. tx,ty: TDA02;
  765. begin
  766. y := abs(x);
  767. if (y < PIO4) then
  768. begin
  769. z := x;
  770. result := 0;
  771. exit;
  772. end
  773. else if (y < lossth) then
  774. begin
  775. y := floord(x/PIO4);
  776. i := trunc(y - 16.0*floord(y*0.0625));
  777. if odd(i) then
  778. begin
  779. inc(i);
  780. y := y + 1.0;
  781. end;
  782. z := ((x - y * DP1) - y * DP2) - y * DP3;
  783. result := (i shr 1) and 7;
  784. {If x is near a multiple of Pi/2, the C/W relative error may be large.}
  785. {In this case redo the calculation with the Payne/Hanek algorithm. }
  786. if abs(z) > tol then
  787. exit;
  788. end;
  789. z := abs(x);
  790. e0 := (float64high(z) shr 20)-1046;
  791. if (e0 = ($7ff-1046)) then { z is Inf or NaN }
  792. begin
  793. z := x - x;
  794. result:=0;
  795. exit;
  796. end;
  797. float64sethigh(z,float64high(z) - (e0 shl 20));
  798. tx[0] := trunc(z);
  799. z := (z-tx[0])*two24;
  800. tx[1] := trunc(z);
  801. tx[2] := (z-tx[1])*two24;
  802. nx := 3;
  803. while (tx[nx-1]=0.0) do dec(nx); { skip zero terms }
  804. result := k_rem_pio2(tx,ty,e0,nx,2);
  805. if (x<0) then
  806. begin
  807. result := (-result) and 7;
  808. z := -ty[0] - ty[1];
  809. end
  810. else
  811. z := ty[0] + ty[1];
  812. end;
  813. {$ifndef FPC_SYSTEM_HAS_SQR}
  814. function fpc_sqr_real(d : ValReal) : ValReal;compilerproc;{$ifdef MATHINLINE}inline;{$endif}
  815. begin
  816. result := d*d;
  817. end;
  818. {$endif}
  819. {$ifndef FPC_SYSTEM_HAS_SQRT}
  820. function fpc_sqrt_real(d:ValReal):ValReal;compilerproc;
  821. {*****************************************************************}
  822. { Square root }
  823. {*****************************************************************}
  824. { }
  825. { SYNOPSIS: }
  826. { }
  827. { double x, y, sqrt(); }
  828. { }
  829. { y = sqrt( x ); }
  830. { }
  831. { DESCRIPTION: }
  832. { }
  833. { Returns the square root of x. }
  834. { }
  835. { Range reduction involves isolating the power of two of the }
  836. { argument and using a polynomial approximation to obtain }
  837. { a rough value for the square root. Then Heron's iteration }
  838. { is used three times to converge to an accurate value. }
  839. {*****************************************************************}
  840. var e : Longint;
  841. w,z : Real;
  842. begin
  843. if( d <= 0.0 ) then
  844. begin
  845. if d < 0.0 then
  846. result:=zero/zero
  847. else
  848. result := 0.0;
  849. end
  850. else
  851. begin
  852. w := d;
  853. { separate exponent and significand }
  854. frexp( d, z, e );
  855. { approximate square root of number between 0.5 and 1 }
  856. { relative error of approximation = 7.47e-3 }
  857. d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
  858. { adjust for odd powers of 2 }
  859. if odd(e) then
  860. d := d*SQRT2;
  861. { re-insert exponent }
  862. d := ldexp( d, (e div 2) );
  863. { Newton iterations: }
  864. d := 0.5*(d + w/d);
  865. d := 0.5*(d + w/d);
  866. d := 0.5*(d + w/d);
  867. d := 0.5*(d + w/d);
  868. d := 0.5*(d + w/d);
  869. d := 0.5*(d + w/d);
  870. result := d;
  871. end;
  872. end;
  873. {$endif}
  874. {$ifndef FPC_SYSTEM_HAS_EXP}
  875. {$ifdef SUPPORT_DOUBLE}
  876. {
  877. This code was translated from uclib code, the original code
  878. had the following copyright notice:
  879. *
  880. * ====================================================
  881. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  882. *
  883. * Developed at SunPro, a Sun Microsystems, Inc. business.
  884. * Permission to use, copy, modify, and distribute this
  885. * software is freely granted, provided that this notice
  886. * is preserved.
  887. * ====================================================
  888. *}
  889. {*
  890. * Returns the exponential of x.
  891. *
  892. * Method
  893. * 1. Argument reduction:
  894. * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
  895. * Given x, find r and integer k such that
  896. *
  897. * x = k*ln2 + r, |r| <= 0.5*ln2.
  898. *
  899. * Here r will be represented as r = hi-lo for better
  900. * accuracy.
  901. *
  902. * 2. Approximation of exp(r) by a special rational function on
  903. * the interval [0,0.34658]:
  904. * Write
  905. * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
  906. * We use a special Reme algorithm on [0,0.34658] to generate
  907. * a polynomial of degree 5 to approximate R. The maximum error
  908. * of this polynomial approximation is bounded by 2**-59. In
  909. * other words,
  910. * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
  911. * (where z=r*r, and the values of P1 to P5 are listed below)
  912. * and
  913. * | 5 | -59
  914. * | 2.0+P1*z+...+P5*z - R(z) | <= 2
  915. * | |
  916. * The computation of exp(r) thus becomes
  917. * 2*r
  918. * exp(r) = 1 + -------
  919. * R - r
  920. * r*R1(r)
  921. * = 1 + r + ----------- (for better accuracy)
  922. * 2 - R1(r)
  923. * where
  924. 2 4 10
  925. * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
  926. *
  927. * 3. Scale back to obtain exp(x):
  928. * From step 1, we have
  929. * exp(x) = 2^k * exp(r)
  930. *
  931. * Special cases:
  932. * exp(INF) is INF, exp(NaN) is NaN;
  933. * exp(-INF) is 0, and
  934. * for finite argument, only exp(0)=1 is exact.
  935. *
  936. * Accuracy:
  937. * according to an error analysis, the error is always less than
  938. * 1 ulp (unit in the last place).
  939. *
  940. * Misc. info.
  941. * For IEEE double
  942. * if x > 7.09782712893383973096e+02 then exp(x) overflow
  943. * if x < -7.45133219101941108420e+02 then exp(x) underflow
  944. *
  945. * Constants:
  946. * The hexadecimal values are the intended ones for the following
  947. * constants. The decimal values may be used, provided that the
  948. * compiler will convert from decimal to binary accurately enough
  949. * to produce the hexadecimal values shown.
  950. *
  951. }
  952. function fpc_exp_real(d: ValReal):ValReal;compilerproc;
  953. const
  954. halF : array[0..1] of double = (0.5,-0.5);
  955. twom1000: double = 9.33263618503218878990e-302; { 2**-1000=0x01700000,0}
  956. o_threshold: double = 7.09782712893383973096e+02; { 0x40862E42, 0xFEFA39EF }
  957. u_threshold: double = -7.45133219101941108420e+02; { 0xc0874910, 0xD52D3051 }
  958. ln2HI : array[0..1] of double = ( 6.93147180369123816490e-01, { 0x3fe62e42, 0xfee00000 }
  959. -6.93147180369123816490e-01); { 0xbfe62e42, 0xfee00000 }
  960. ln2LO : array[0..1] of double = (1.90821492927058770002e-10, { 0x3dea39ef, 0x35793c76 }
  961. -1.90821492927058770002e-10); { 0xbdea39ef, 0x35793c76 }
  962. invln2: double = 1.44269504088896338700e+00; { 0x3ff71547, 0x652b82fe }
  963. P1: double = 1.66666666666666019037e-01; { 0x3FC55555, 0x5555553E }
  964. P2: double = -2.77777777770155933842e-03; { 0xBF66C16C, 0x16BEBD93 }
  965. P3: double = 6.61375632143793436117e-05; { 0x3F11566A, 0xAF25DE2C }
  966. P4: double = -1.65339022054652515390e-06; { 0xBEBBBD41, 0xC5D26BF1 }
  967. P5: double = 4.13813679705723846039e-08; { 0x3E663769, 0x72BEA4D0 }
  968. var
  969. c,hi,lo,t,y : double;
  970. k,xsb : longint;
  971. hx,hy,lx : dword;
  972. begin
  973. hi:=0.0;
  974. lo:=0.0;
  975. k:=0;
  976. hx:=float64high(d);
  977. xsb := (hx shr 31) and 1; { sign bit of d }
  978. hx := hx and $7fffffff; { high word of |d| }
  979. { filter out non-finite argument }
  980. if hx >= $40862E42 then
  981. begin { if |d|>=709.78... }
  982. if hx >= $7ff00000 then
  983. begin
  984. lx:=float64low(d);
  985. if ((hx and $fffff) or lx)<>0 then
  986. begin
  987. result:=d+d; { NaN }
  988. exit;
  989. end
  990. else
  991. begin
  992. if xsb=0 then
  993. result:=d
  994. else
  995. result:=0.0; { exp(+-inf)=(inf,0) }
  996. exit;
  997. end;
  998. end;
  999. if d > o_threshold then begin
  1000. result:=huge*huge; { overflow }
  1001. exit;
  1002. end;
  1003. if d < u_threshold then begin
  1004. result:=twom1000*twom1000; { underflow }
  1005. exit;
  1006. end;
  1007. end;
  1008. { argument reduction }
  1009. if hx > $3fd62e42 then
  1010. begin { if |d| > 0.5 ln2 }
  1011. if hx < $3FF0A2B2 then { and |d| < 1.5 ln2 }
  1012. begin
  1013. hi := d-ln2HI[xsb];
  1014. lo:=ln2LO[xsb];
  1015. k := 1-xsb-xsb;
  1016. end
  1017. else
  1018. begin
  1019. k := trunc(invln2*d+halF[xsb]);
  1020. t := k;
  1021. hi := d - t*ln2HI[0]; { t*ln2HI is exact here }
  1022. lo := t*ln2LO[0];
  1023. end;
  1024. d := hi - lo;
  1025. end
  1026. else if hx < $3e300000 then
  1027. begin { when |d|<2**-28 }
  1028. if huge+d>one then
  1029. begin
  1030. result:=one+d;{ trigger inexact }
  1031. exit;
  1032. end;
  1033. end
  1034. else
  1035. k := 0;
  1036. { d is now in primary range }
  1037. t:=d*d;
  1038. c:=d - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  1039. if k=0 then
  1040. begin
  1041. result:=one-((d*c)/(c-2.0)-d);
  1042. exit;
  1043. end
  1044. else
  1045. y := one-((lo-(d*c)/(2.0-c))-hi);
  1046. if k >= -1021 then
  1047. begin
  1048. hy:=float64high(y);
  1049. float64sethigh(y,longint(hy)+(k shl 20)); { add k to y's exponent }
  1050. result:=y;
  1051. end
  1052. else
  1053. begin
  1054. hy:=float64high(y);
  1055. float64sethigh(y,longint(hy)+((k+1000) shl 20)); { add k to y's exponent }
  1056. result:=y*twom1000;
  1057. end;
  1058. end;
  1059. {$else SUPPORT_DOUBLE}
  1060. function fpc_exp_real(d: ValReal):ValReal;compilerproc;
  1061. {*****************************************************************}
  1062. { Exponential Function }
  1063. {*****************************************************************}
  1064. { }
  1065. { SYNOPSIS: }
  1066. { }
  1067. { double x, y, exp(); }
  1068. { }
  1069. { y = exp( x ); }
  1070. { }
  1071. { DESCRIPTION: }
  1072. { }
  1073. { Returns e (2.71828...) raised to the x power. }
  1074. { }
  1075. { Range reduction is accomplished by separating the argument }
  1076. { into an integer k and fraction f such that }
  1077. { }
  1078. { x k f }
  1079. { e = 2 e. }
  1080. { }
  1081. { A Pade' form of degree 2/3 is used to approximate exp(f)- 1 }
  1082. { in the basic range [-0.5 ln 2, 0.5 ln 2]. }
  1083. {*****************************************************************}
  1084. const P : array[0..2] of Real = (
  1085. 1.26183092834458542160E-4,
  1086. 3.02996887658430129200E-2,
  1087. 1.00000000000000000000E0);
  1088. Q : array[0..3] of Real = (
  1089. 3.00227947279887615146E-6,
  1090. 2.52453653553222894311E-3,
  1091. 2.27266044198352679519E-1,
  1092. 2.00000000000000000005E0);
  1093. C1 = 6.9335937500000000000E-1;
  1094. C2 = 2.1219444005469058277E-4;
  1095. var n : Integer;
  1096. px, qx, xx : Real;
  1097. begin
  1098. if( d > MAXLOG) then
  1099. float_raise(float_flag_overflow)
  1100. else
  1101. if( d < MINLOG ) then
  1102. begin
  1103. float_raise(float_flag_underflow);
  1104. result:=0; { Result if underflow masked }
  1105. end
  1106. else
  1107. begin
  1108. { Express e**x = e**g 2**n }
  1109. { = e**g e**( n loge(2) ) }
  1110. { = e**( g + n loge(2) ) }
  1111. px := d * LOG2E;
  1112. qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
  1113. n := Trunc(qx);
  1114. d := d - qx * C1;
  1115. d := d + qx * C2;
  1116. { rational approximation for exponential }
  1117. { of the fractional part: }
  1118. { e**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) ) }
  1119. xx := d * d;
  1120. px := d * ((P[0] * xx + P[1]) * xx + P[2]);
  1121. d := px/( (((Q[0] * xx + Q[1]) * xx + Q[2]) * xx + Q[3]) - px );
  1122. d := 2 * d + 1.0;
  1123. d := ldexp( d, n );
  1124. result := d;
  1125. end;
  1126. end;
  1127. {$endif SUPPORT_DOUBLE}
  1128. {$endif}
  1129. {$ifndef FPC_SYSTEM_HAS_ROUND}
  1130. function fpc_round_real(d : ValReal) : int64;compilerproc;
  1131. var
  1132. tmp: double;
  1133. j0: longint;
  1134. hx: longword;
  1135. sx: longint;
  1136. const
  1137. H2_52: array[0..1] of double = (
  1138. 4.50359962737049600000e+15,
  1139. -4.50359962737049600000e+15
  1140. );
  1141. Begin
  1142. { This basically calculates trunc((d+2**52)-2**52) }
  1143. hx:=float64high(d);
  1144. j0:=((hx shr 20) and $7ff) - $3ff;
  1145. sx:=hx shr 31;
  1146. hx:=(hx and $fffff) or $100000;
  1147. if j0>=52 then { No fraction bits, already integer }
  1148. begin
  1149. if j0>=63 then { Overflow, let trunc() raise an exception }
  1150. exit(trunc(d)) { and/or return +/-MaxInt64 if it's masked }
  1151. else
  1152. result:=((int64(hx) shl 32) or dword(float64low(d))) shl (j0-52);
  1153. end
  1154. else
  1155. begin
  1156. { Rounding happens here. It is important that the expression is not
  1157. optimized by selecting a larger type to store 'tmp'. }
  1158. tmp:=H2_52[sx]+d;
  1159. d:=tmp-H2_52[sx];
  1160. hx:=float64high(d);
  1161. j0:=((hx shr 20) and $7ff)-$3ff;
  1162. hx:=(hx and $fffff) or $100000;
  1163. if j0<=20 then
  1164. begin
  1165. if j0<0 then
  1166. exit(0)
  1167. else { more than 32 fraction bits, low dword discarded }
  1168. result:=hx shr (20-j0);
  1169. end
  1170. else
  1171. result:=(int64(hx) shl (j0-20)) or (float64low(d) shr (52-j0));
  1172. end;
  1173. if sx<>0 then
  1174. result:=-result;
  1175. end;
  1176. {$endif FPC_SYSTEM_HAS_ROUND}
  1177. {$ifndef FPC_SYSTEM_HAS_LN}
  1178. function fpc_ln_real(d:ValReal):ValReal;compilerproc;
  1179. {
  1180. This code was translated from uclib code, the original code
  1181. had the following copyright notice:
  1182. *
  1183. * ====================================================
  1184. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  1185. *
  1186. * Developed at SunPro, a Sun Microsystems, Inc. business.
  1187. * Permission to use, copy, modify, and distribute this
  1188. * software is freely granted, provided that this notice
  1189. * is preserved.
  1190. * ====================================================
  1191. *}
  1192. {*****************************************************************}
  1193. { Natural Logarithm }
  1194. {*****************************************************************}
  1195. {*
  1196. * SYNOPSIS:
  1197. *
  1198. * double x, y, log();
  1199. *
  1200. * y = ln( x );
  1201. *
  1202. * DESCRIPTION:
  1203. *
  1204. * Returns the base e (2.718...) logarithm of x.
  1205. *
  1206. * Method :
  1207. * 1. Argument Reduction: find k and f such that
  1208. * x = 2^k * (1+f),
  1209. * where sqrt(2)/2 < 1+f < sqrt(2) .
  1210. *
  1211. * 2. Approximation of log(1+f).
  1212. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  1213. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  1214. * = 2s + s*R
  1215. * We use a special Reme algorithm on [0,0.1716] to generate
  1216. * a polynomial of degree 14 to approximate R The maximum error
  1217. * of this polynomial approximation is bounded by 2**-58.45. In
  1218. * other words,
  1219. * 2 4 6 8 10 12 14
  1220. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  1221. * (the values of Lg1 to Lg7 are listed in the program)
  1222. * and
  1223. * | 2 14 | -58.45
  1224. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  1225. * | |
  1226. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  1227. * In order to guarantee error in log below 1ulp, we compute log
  1228. * by
  1229. * log(1+f) = f - s*(f - R) (if f is not too large)
  1230. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  1231. *
  1232. * 3. Finally, log(x) = k*ln2 + log(1+f).
  1233. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  1234. * Here ln2 is split into two floating point number:
  1235. * ln2_hi + ln2_lo,
  1236. * where n*ln2_hi is always exact for |n| < 2000.
  1237. *
  1238. * Special cases:
  1239. * log(x) is NaN with signal if x < 0 (including -INF) ;
  1240. * log(+INF) is +INF; log(0) is -INF with signal;
  1241. * log(NaN) is that NaN with no signal.
  1242. *
  1243. * Accuracy:
  1244. * according to an error analysis, the error is always less than
  1245. * 1 ulp (unit in the last place).
  1246. *}
  1247. const
  1248. ln2_hi: double = 6.93147180369123816490e-01; { 3fe62e42 fee00000 }
  1249. ln2_lo: double = 1.90821492927058770002e-10; { 3dea39ef 35793c76 }
  1250. two54: double = 1.80143985094819840000e+16; { 43500000 00000000 }
  1251. Lg1: double = 6.666666666666735130e-01; { 3FE55555 55555593 }
  1252. Lg2: double = 3.999999999940941908e-01; { 3FD99999 9997FA04 }
  1253. Lg3: double = 2.857142874366239149e-01; { 3FD24924 94229359 }
  1254. Lg4: double = 2.222219843214978396e-01; { 3FCC71C5 1D8E78AF }
  1255. Lg5: double = 1.818357216161805012e-01; { 3FC74664 96CB03DE }
  1256. Lg6: double = 1.531383769920937332e-01; { 3FC39A09 D078C69F }
  1257. Lg7: double = 1.479819860511658591e-01; { 3FC2F112 DF3E5244 }
  1258. var
  1259. hfsq,f,s,z,R,w,t1,t2,dk: double;
  1260. k,hx,i,j: longint;
  1261. lx: longword;
  1262. {$push}
  1263. { if we have to check manually fpu exceptions, then force the exit statements here to
  1264. throw one }
  1265. {$CHECKFPUEXCEPTIONS+}
  1266. { turn off fastmath as it converts zero/zero into 1 and thus not raising an exception }
  1267. {$OPTIMIZATION NOFASTMATH}
  1268. begin
  1269. hx := float64high(d);
  1270. lx := float64low(d);
  1271. k := 0;
  1272. if (hx < $00100000) then { x < 2**-1022 }
  1273. begin
  1274. if (((hx and $7fffffff) or longint(lx))=0) then
  1275. exit(-two54/zero); { log(+-0)=-inf }
  1276. if (hx<0) then
  1277. exit(zero/zero); { log(-#) = NaN }
  1278. dec(k, 54); d := d * two54; { subnormal number, scale up x }
  1279. hx := float64high(d);
  1280. end;
  1281. if (hx >= $7ff00000) then
  1282. exit(d+d);
  1283. {$pop}
  1284. inc(k, (hx shr 20)-1023);
  1285. hx := hx and $000fffff;
  1286. i := (hx + $95f64) and $100000;
  1287. float64sethigh(d,hx or (i xor $3ff00000)); { normalize x or x/2 }
  1288. inc(k, (i shr 20));
  1289. f := d-1.0;
  1290. if (($000fffff and (2+hx))<3) then { |f| < 2**-20 }
  1291. begin
  1292. if (f=zero) then
  1293. begin
  1294. if (k=0) then
  1295. exit(zero)
  1296. else
  1297. begin
  1298. dk := k;
  1299. exit(dk*ln2_hi+dk*ln2_lo);
  1300. end;
  1301. end;
  1302. R := f*f*(0.5-0.33333333333333333*f);
  1303. if (k=0) then
  1304. exit(f-R)
  1305. else
  1306. begin
  1307. dk := k;
  1308. exit(dk*ln2_hi-((R-dk*ln2_lo)-f));
  1309. end;
  1310. end;
  1311. s := f/(2.0+f);
  1312. dk := k;
  1313. z := s*s;
  1314. i := hx-$6147a;
  1315. w := z*z;
  1316. j := $6b851-hx;
  1317. t1 := w*(Lg2+w*(Lg4+w*Lg6));
  1318. t2 := z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  1319. i := i or j;
  1320. R := t2+t1;
  1321. if (i>0) then
  1322. begin
  1323. hfsq := 0.5*f*f;
  1324. if (k=0) then
  1325. result := f-(hfsq-s*(hfsq+R))
  1326. else
  1327. result := dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  1328. end
  1329. else
  1330. begin
  1331. if (k=0) then
  1332. result := f-s*(f-R)
  1333. else
  1334. result := dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
  1335. end;
  1336. end;
  1337. {$endif}
  1338. {$ifndef FPC_SYSTEM_HAS_SIN}
  1339. function fpc_Sin_real(d:ValReal):ValReal;compilerproc;
  1340. {*****************************************************************}
  1341. { Circular Sine }
  1342. {*****************************************************************}
  1343. { }
  1344. { SYNOPSIS: }
  1345. { }
  1346. { double x, y, sin(); }
  1347. { }
  1348. { y = sin( x ); }
  1349. { }
  1350. { DESCRIPTION: }
  1351. { }
  1352. { Range reduction is into intervals of pi/4. The reduction }
  1353. { error is nearly eliminated by contriving an extended }
  1354. { precision modular arithmetic. }
  1355. { }
  1356. { Two polynomial approximating functions are employed. }
  1357. { Between 0 and pi/4 the sine is approximated by }
  1358. { x + x**3 P(x**2). }
  1359. { Between pi/4 and pi/2 the cosine is represented as }
  1360. { 1 - x**2 Q(x**2). }
  1361. {*****************************************************************}
  1362. var z, zz : Real;
  1363. j : sizeint;
  1364. begin
  1365. { This seemingly useless condition ensures that sin(-0.0)=-0.0 }
  1366. if (d=0.0) then
  1367. exit(d);
  1368. j := rem_pio2(d,z);
  1369. zz := z * z;
  1370. if j and 1<>0 then { j and 3 = 1 or j and 3 = 3 }
  1371. result := 1.0 - zz * 0.5 + zz * zz * (((((coscof[0] * zz + coscof[1]) * zz + coscof[2]) * zz + coscof[3]) * zz + coscof[4]) * zz + coscof[5])
  1372. else
  1373. result := z + zz * z * (((((sincof[0] * zz + sincof[1]) * zz + sincof[2]) * zz + sincof[3]) * zz + sincof[4]) * zz + sincof[5]);
  1374. if j and 2<>0 then { j and 3 = 2 or j and 3 = 3 }
  1375. result := -result;
  1376. end;
  1377. {$endif}
  1378. {$ifndef FPC_SYSTEM_HAS_COS}
  1379. function fpc_Cos_real(d:ValReal):ValReal;compilerproc;
  1380. {*****************************************************************}
  1381. { Circular cosine }
  1382. {*****************************************************************}
  1383. { }
  1384. { Circular cosine }
  1385. { }
  1386. { SYNOPSIS: }
  1387. { }
  1388. { double x, y, cos(); }
  1389. { }
  1390. { y = cos( x ); }
  1391. { }
  1392. { DESCRIPTION: }
  1393. { }
  1394. { Range reduction is into intervals of pi/4. The reduction }
  1395. { error is nearly eliminated by contriving an extended }
  1396. { precision modular arithmetic. }
  1397. { }
  1398. { Two polynomial approximating functions are employed. }
  1399. { Between 0 and pi/4 the cosine is approximated by }
  1400. { 1 - x**2 Q(x**2). }
  1401. { Between pi/4 and pi/2 the sine is represented as }
  1402. { x + x**3 P(x**2). }
  1403. {*****************************************************************}
  1404. var y, z, zz : Real;
  1405. j : sizeint;
  1406. begin
  1407. j := rem_pio2(d,z);
  1408. zz := z * z;
  1409. if j and 1<>0 then { j and 3 = 1 or j and 3 = 3 }
  1410. result := z + zz * z * (((((sincof[0] * zz + sincof[1]) * zz + sincof[2]) * zz + sincof[3]) * zz + sincof[4]) * zz + sincof[5])
  1411. else
  1412. result := 1.0 - zz * 0.5 + zz * zz * (((((coscof[0] * zz + coscof[1]) * zz + coscof[2]) * zz + coscof[3]) * zz + coscof[4]) * zz + coscof[5]);
  1413. if (j+1) and 2<>0 then { j and 3 = 1 or j and 3 = 2 }
  1414. result := -result;
  1415. end;
  1416. {$endif}
  1417. {$ifndef FPC_SYSTEM_HAS_ARCTAN}
  1418. function fpc_ArcTan_real(d:ValReal):ValReal;compilerproc;
  1419. {
  1420. This code was translated from uclibc code, the original code
  1421. had the following copyright notice:
  1422. *
  1423. * ====================================================
  1424. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  1425. *
  1426. * Developed at SunPro, a Sun Microsystems, Inc. business.
  1427. * Permission to use, copy, modify, and distribute this
  1428. * software is freely granted, provided that this notice
  1429. * is preserved.
  1430. * ====================================================
  1431. *}
  1432. {********************************************************************}
  1433. { Inverse circular tangent (arctangent) }
  1434. {********************************************************************}
  1435. { }
  1436. { SYNOPSIS: }
  1437. { }
  1438. { double x, y, atan(); }
  1439. { }
  1440. { y = atan( x ); }
  1441. { }
  1442. { DESCRIPTION: }
  1443. { }
  1444. { Returns radian angle between -pi/2 and +pi/2 whose tangent }
  1445. { is x. }
  1446. { }
  1447. { Method }
  1448. { 1. Reduce x to positive by atan(x) = -atan(-x). }
  1449. { 2. According to the integer k=4t+0.25 chopped, t=x, the argument }
  1450. { is further reduced to one of the following intervals and the }
  1451. { arctangent of t is evaluated by the corresponding formula: }
  1452. { }
  1453. { [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) }
  1454. { [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) }
  1455. { [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) }
  1456. { [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) }
  1457. { [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) }
  1458. {********************************************************************}
  1459. const
  1460. atanhi: array [0..3] of double = (
  1461. 4.63647609000806093515e-01, { atan(0.5)hi 0x3FDDAC67, 0x0561BB4F }
  1462. 7.85398163397448278999e-01, { atan(1.0)hi 0x3FE921FB, 0x54442D18 }
  1463. 9.82793723247329054082e-01, { atan(1.5)hi 0x3FEF730B, 0xD281F69B }
  1464. 1.57079632679489655800e+00 { atan(inf)hi 0x3FF921FB, 0x54442D18 }
  1465. );
  1466. atanlo: array [0..3] of double = (
  1467. 2.26987774529616870924e-17, { atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 }
  1468. 3.06161699786838301793e-17, { atan(1.0)lo 0x3C81A626, 0x33145C07 }
  1469. 1.39033110312309984516e-17, { atan(1.5)lo 0x3C700788, 0x7AF0CBBD }
  1470. 6.12323399573676603587e-17 { atan(inf)lo 0x3C91A626, 0x33145C07 }
  1471. );
  1472. aT: array[0..10] of double = (
  1473. 3.33333333333329318027e-01, { 0x3FD55555, 0x5555550D }
  1474. -1.99999999998764832476e-01, { 0xBFC99999, 0x9998EBC4 }
  1475. 1.42857142725034663711e-01, { 0x3FC24924, 0x920083FF }
  1476. -1.11111104054623557880e-01, { 0xBFBC71C6, 0xFE231671 }
  1477. 9.09088713343650656196e-02, { 0x3FB745CD, 0xC54C206E }
  1478. -7.69187620504482999495e-02, { 0xBFB3B0F2, 0xAF749A6D }
  1479. 6.66107313738753120669e-02, { 0x3FB10D66, 0xA0D03D51 }
  1480. -5.83357013379057348645e-02, { 0xBFADDE2D, 0x52DEFD9A }
  1481. 4.97687799461593236017e-02, { 0x3FA97B4B, 0x24760DEB }
  1482. -3.65315727442169155270e-02, { 0xBFA2B444, 0x2C6A6C2F }
  1483. 1.62858201153657823623e-02 { 0x3F90AD3A, 0xE322DA11 }
  1484. );
  1485. var
  1486. w,s1,s2,z: double;
  1487. ix,hx,id: longint;
  1488. low: longword;
  1489. begin
  1490. hx:=float64high(d);
  1491. ix := hx and $7fffffff;
  1492. if (ix>=$44100000) then { if |x| >= 2^66 }
  1493. begin
  1494. low:=float64low(d);
  1495. if (ix > $7ff00000) or ((ix = $7ff00000) and (low<>0)) then
  1496. exit(d+d); { NaN }
  1497. if (hx>0) then
  1498. exit(atanhi[3]+atanlo[3])
  1499. else
  1500. exit(-atanhi[3]-atanlo[3]);
  1501. end;
  1502. if (ix < $3fdc0000) then { |x| < 0.4375 }
  1503. begin
  1504. if (ix < $3e200000) then { |x| < 2^-29 }
  1505. begin
  1506. if (huge+d>one) then exit(d); { raise inexact }
  1507. end;
  1508. id := -1;
  1509. end
  1510. else
  1511. begin
  1512. d := abs(d);
  1513. if (ix < $3ff30000) then { |x| < 1.1875 }
  1514. begin
  1515. if (ix < $3fe60000) then { 7/16 <=|x|<11/16 }
  1516. begin
  1517. id := 0; d := (2.0*d-one)/(2.0+d);
  1518. end
  1519. else { 11/16<=|x|< 19/16 }
  1520. begin
  1521. id := 1; d := (d-one)/(d+one);
  1522. end
  1523. end
  1524. else
  1525. begin
  1526. if (ix < $40038000) then { |x| < 2.4375 }
  1527. begin
  1528. id := 2; d := (d-1.5)/(one+1.5*d);
  1529. end
  1530. else { 2.4375 <= |x| < 2^66 }
  1531. begin
  1532. id := 3; d := -1.0/d;
  1533. end;
  1534. end;
  1535. end;
  1536. { end of argument reduction }
  1537. z := d*d;
  1538. w := z*z;
  1539. { break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly }
  1540. s1 := z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
  1541. s2 := w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
  1542. if (id<0) then
  1543. result := d - d*(s1+s2)
  1544. else
  1545. begin
  1546. z := atanhi[id] - ((d*(s1+s2) - atanlo[id]) - d);
  1547. if hx<0 then
  1548. result := -z
  1549. else
  1550. result := z;
  1551. end;
  1552. end;
  1553. {$endif}
  1554. {$ifndef FPC_SYSTEM_HAS_FRAC}
  1555. {$push}
  1556. {$ifndef VER3_2}
  1557. { if we have to check manually fpu exceptions, then force the result assignment statement here to
  1558. throw one }
  1559. {$CHECKFPUEXCEPTIONS+}
  1560. { turn off fastmath as it converts zero/zero into 0 and thus not raising an exception }
  1561. {$OPTIMIZATION NOFASTMATH}
  1562. {$endif VER3_2}
  1563. function fpc_frac_real(d : ValReal) : ValReal;compilerproc;
  1564. begin
  1565. { Nan or +/-Inf }
  1566. if (float64high(d) and $7ff00000)=$7ff00000 then
  1567. { return NaN }
  1568. {$ifdef VER3_2}
  1569. { fix bootstrapping with 3.2 on arm-linux }
  1570. result := (d-d)/0.0
  1571. {$else VER3_2}
  1572. result := zero/zero
  1573. {$endif VER3_2}
  1574. else
  1575. result := d - Int(d);
  1576. end;
  1577. {$pop}
  1578. {$endif}
  1579. {$ifdef FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
  1580. {$ifndef FPC_SYSTEM_HAS_QWORD_TO_DOUBLE}
  1581. function fpc_qword_to_double(q : qword): double; compilerproc;
  1582. begin
  1583. result:=dword(q and $ffffffff)+dword(q shr 32)*double(4294967296.0);
  1584. end;
  1585. {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1586. {$ifndef FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1587. function fpc_int64_to_double(i : int64): double; compilerproc;
  1588. begin
  1589. result:=dword(i and $ffffffff)+longint(i shr 32)*double(4294967296.0);
  1590. end;
  1591. {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1592. {$endif FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
  1593. {$ifdef SUPPORT_DOUBLE}
  1594. {****************************************************************************
  1595. Helper routines to support old TP styled reals
  1596. ****************************************************************************}
  1597. {$ifndef FPC_SYSTEM_HAS_REAL2DOUBLE}
  1598. function real2double(r : real48) : double;
  1599. var
  1600. res : array[0..7] of byte;
  1601. exponent : word;
  1602. begin
  1603. { check for zero }
  1604. if r[0]=0 then
  1605. begin
  1606. real2double:=0.0;
  1607. exit;
  1608. end;
  1609. { copy mantissa }
  1610. res[0]:=0;
  1611. res[1]:=r[1] shl 5;
  1612. res[2]:=(r[1] shr 3) or (r[2] shl 5);
  1613. res[3]:=(r[2] shr 3) or (r[3] shl 5);
  1614. res[4]:=(r[3] shr 3) or (r[4] shl 5);
  1615. res[5]:=(r[4] shr 3) or (r[5] and $7f) shl 5;
  1616. res[6]:=(r[5] and $7f) shr 3;
  1617. { copy exponent }
  1618. { correct exponent: }
  1619. exponent:=(word(r[0])+(1023-129));
  1620. res[6]:=res[6] or ((exponent and $f) shl 4);
  1621. res[7]:=exponent shr 4;
  1622. { set sign }
  1623. res[7]:=res[7] or (r[5] and $80);
  1624. real2double:=double(res);
  1625. end;
  1626. {$endif FPC_SYSTEM_HAS_REAL2DOUBLE}
  1627. {$endif SUPPORT_DOUBLE}
  1628. {$ifdef SUPPORT_EXTENDED}
  1629. { fast 10^n routine }
  1630. function FPower10(val: Extended; Power: Longint): Extended;
  1631. const
  1632. pow32 : array[0..31] of extended =
  1633. (
  1634. 1e0,1e1,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,
  1635. 1e11,1e12,1e13,1e14,1e15,1e16,1e17,1e18,1e19,1e20,
  1636. 1e21,1e22,1e23,1e24,1e25,1e26,1e27,1e28,1e29,1e30,
  1637. 1e31
  1638. );
  1639. pow512 : array[0..15] of extended =
  1640. (
  1641. 1,1e32,1e64,1e96,1e128,1e160,1e192,1e224,
  1642. 1e256,1e288,1e320,1e352,1e384,1e416,1e448,
  1643. 1e480
  1644. );
  1645. pow4096 : array[0..9] of extended =
  1646. (1,1e512,1e1024,1e1536,
  1647. 1e2048,1e2560,1e3072,1e3584,
  1648. 1e4096,1e4608
  1649. );
  1650. negpow32 : array[0..31] of extended =
  1651. (
  1652. 1e-0,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8,1e-9,1e-10,
  1653. 1e-11,1e-12,1e-13,1e-14,1e-15,1e-16,1e-17,1e-18,1e-19,1e-20,
  1654. 1e-21,1e-22,1e-23,1e-24,1e-25,1e-26,1e-27,1e-28,1e-29,1e-30,
  1655. 1e-31
  1656. );
  1657. negpow512 : array[0..15] of extended =
  1658. (
  1659. 0,1e-32,1e-64,1e-96,1e-128,1e-160,1e-192,1e-224,
  1660. 1e-256,1e-288,1e-320,1e-352,1e-384,1e-416,1e-448,
  1661. 1e-480
  1662. );
  1663. negpow4096 : array[0..9] of extended =
  1664. (
  1665. 0,1e-512,1e-1024,1e-1536,
  1666. 1e-2048,1e-2560,1e-3072,1e-3584,
  1667. 1e-4096,1e-4608
  1668. );
  1669. begin
  1670. if Power<0 then
  1671. begin
  1672. Power:=-Power;
  1673. result:=val*negpow32[Power and $1f];
  1674. power:=power shr 5;
  1675. if power<>0 then
  1676. begin
  1677. result:=result*negpow512[Power and $f];
  1678. power:=power shr 4;
  1679. if power<>0 then
  1680. begin
  1681. if power<=9 then
  1682. result:=result*negpow4096[Power]
  1683. else
  1684. result:=1.0/0.0;
  1685. end;
  1686. end;
  1687. end
  1688. else
  1689. begin
  1690. result:=val*pow32[Power and $1f];
  1691. power:=power shr 5;
  1692. if power<>0 then
  1693. begin
  1694. result:=result*pow512[Power and $f];
  1695. power:=power shr 4;
  1696. if power<>0 then
  1697. begin
  1698. if power<=9 then
  1699. result:=result*pow4096[Power]
  1700. else
  1701. result:=1.0/0.0;
  1702. end;
  1703. end;
  1704. end;
  1705. end;
  1706. {$endif SUPPORT_EXTENDED}
  1707. {$if defined(SUPPORT_EXTENDED) or defined(FPC_SOFT_FPUX80)}
  1708. function TExtended80Rec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1709. begin
  1710. if IncludeHiddenbit then
  1711. Result:=Frac
  1712. else
  1713. Result:=Frac and $7fffffffffffffff;
  1714. end;
  1715. function TExtended80Rec.Fraction : Extended;
  1716. begin
  1717. {$ifdef SUPPORT_EXTENDED}
  1718. Result:=system.frac(Value);
  1719. {$else}
  1720. Result:=Frac / Double (1 shl 63) / 2.0;
  1721. {$endif}
  1722. end;
  1723. function TExtended80Rec.Exponent : Longint;
  1724. var
  1725. E: QWord;
  1726. begin
  1727. Result := 0;
  1728. E := GetExp;
  1729. if (0<E) and (E<2*Bias+1) then
  1730. Result:=Exp-Bias
  1731. else if (Exp=0) and (Frac<>0) then
  1732. Result:=-(Bias-1);
  1733. end;
  1734. function TExtended80Rec.GetExp : QWord;
  1735. begin
  1736. Result:=_Exp and $7fff;
  1737. end;
  1738. procedure TExtended80Rec.SetExp(e : QWord);
  1739. begin
  1740. _Exp:=(_Exp and $8000) or (e and $7fff);
  1741. end;
  1742. function TExtended80Rec.GetSign : Boolean;
  1743. begin
  1744. Result:=(_Exp and $8000)<>0;
  1745. end;
  1746. procedure TExtended80Rec.SetSign(s : Boolean);
  1747. begin
  1748. _Exp:=(_Exp and $7ffff) or (ord(s) shl 15);
  1749. end;
  1750. {
  1751. Based on information taken from http://en.wikipedia.org/wiki/Extended_precision#x86_Extended_Precision_Format
  1752. }
  1753. function TExtended80Rec.SpecialType : TFloatSpecial;
  1754. const
  1755. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1756. begin
  1757. case Exp of
  1758. 0:
  1759. begin
  1760. if Mantissa=0 then
  1761. begin
  1762. if Sign then
  1763. Result:=fsNZero
  1764. else
  1765. Result:=fsZero
  1766. end
  1767. else
  1768. Result:=Denormal[Sign];
  1769. end;
  1770. $7fff:
  1771. case (Frac shr 62) and 3 of
  1772. 0,1:
  1773. Result:=fsInvalidOp;
  1774. 2:
  1775. begin
  1776. if (Frac and $3fffffffffffffff)=0 then
  1777. begin
  1778. if Sign then
  1779. Result:=fsNInf
  1780. else
  1781. Result:=fsInf;
  1782. end
  1783. else
  1784. Result:=fsNaN;
  1785. end;
  1786. 3:
  1787. Result:=fsNaN;
  1788. end
  1789. else
  1790. begin
  1791. if (Frac and $8000000000000000)=0 then
  1792. Result:=fsInvalidOp
  1793. else
  1794. begin
  1795. if Sign then
  1796. Result:=fsNegative
  1797. else
  1798. Result:=fsPositive;
  1799. end;
  1800. end;
  1801. end;
  1802. end;
  1803. procedure TExtended80Rec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  1804. begin
  1805. {$ifdef SUPPORT_EXTENDED}
  1806. Value := 0.0;
  1807. {$else SUPPORT_EXTENDED}
  1808. FillChar(Value, SizeOf(Value),0);
  1809. {$endif SUPPORT_EXTENDED}
  1810. if (_Mantissa=0) and (_Exponent=0) then
  1811. SetExp(0)
  1812. else
  1813. SetExp(_Exponent + Bias);
  1814. SetSign(_Sign);
  1815. Frac := _Mantissa;
  1816. end;
  1817. {$endif SUPPORT_EXTENDED or FPC_SOFT_FPUX80}
  1818. {$ifdef SUPPORT_DOUBLE}
  1819. function TDoubleRec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1820. begin
  1821. Result:=(Data and $fffffffffffff);
  1822. if (Result=0) and (GetExp=0) then Exit;
  1823. if IncludeHiddenBit then Result := Result or $10000000000000; //add the hidden bit
  1824. end;
  1825. function TDoubleRec.Fraction : ValReal;
  1826. begin
  1827. Result:=system.frac(Value);
  1828. end;
  1829. function TDoubleRec.Exponent : Longint;
  1830. var
  1831. E: QWord;
  1832. begin
  1833. Result := 0;
  1834. E := GetExp;
  1835. if (0<E) and (E<2*Bias+1) then
  1836. Result:=Exp-Bias
  1837. else if (Exp=0) and (Frac<>0) then
  1838. Result:=-(Bias-1);
  1839. end;
  1840. function TDoubleRec.GetExp : QWord;
  1841. begin
  1842. Result:=(Data and $7ff0000000000000) shr 52;
  1843. end;
  1844. procedure TDoubleRec.SetExp(e : QWord);
  1845. begin
  1846. Data:=(Data and $800fffffffffffff) or ((e and $7ff) shl 52);
  1847. end;
  1848. function TDoubleRec.GetSign : Boolean;
  1849. begin
  1850. Result:=(Data and $8000000000000000)<>0;
  1851. end;
  1852. procedure TDoubleRec.SetSign(s : Boolean);
  1853. begin
  1854. Data:=(Data and $7fffffffffffffff) or (QWord(ord(s)) shl 63);
  1855. end;
  1856. function TDoubleRec.GetFrac : QWord;
  1857. begin
  1858. Result := Data and $fffffffffffff;
  1859. end;
  1860. procedure TDoubleRec.SetFrac(e : QWord);
  1861. begin
  1862. Data:=(Data and $fff0000000000000) or (e and $fffffffffffff);
  1863. end;
  1864. {
  1865. Based on information taken from http://en.wikipedia.org/wiki/Double_precision#x86_Extended_Precision_Format
  1866. }
  1867. function TDoubleRec.SpecialType : TFloatSpecial;
  1868. const
  1869. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1870. begin
  1871. case Exp of
  1872. 0:
  1873. begin
  1874. if Mantissa=0 then
  1875. begin
  1876. if Sign then
  1877. Result:=fsNZero
  1878. else
  1879. Result:=fsZero
  1880. end
  1881. else
  1882. Result:=Denormal[Sign];
  1883. end;
  1884. $7ff:
  1885. if Mantissa=0 then
  1886. begin
  1887. if Sign then
  1888. Result:=fsNInf
  1889. else
  1890. Result:=fsInf;
  1891. end
  1892. else
  1893. Result:=fsNaN;
  1894. else
  1895. begin
  1896. if Sign then
  1897. Result:=fsNegative
  1898. else
  1899. Result:=fsPositive;
  1900. end;
  1901. end;
  1902. end;
  1903. procedure TDoubleRec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  1904. begin
  1905. Value := 0.0;
  1906. SetSign(_Sign);
  1907. if (_Mantissa=0) and (_Exponent=0) then
  1908. Exit //SetExp(0)
  1909. else
  1910. SetExp(_Exponent + Bias);
  1911. SetFrac(_Mantissa and $fffffffffffff); //clear top bit
  1912. end;
  1913. {$endif SUPPORT_DOUBLE}
  1914. {$ifdef SUPPORT_SINGLE}
  1915. function TSingleRec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1916. begin
  1917. Result:=(Data and $7fffff);
  1918. if (Result=0) and (GetExp=0) then Exit;
  1919. if IncludeHiddenBit then Result:=Result or $800000; //add the hidden bit
  1920. end;
  1921. function TSingleRec.Fraction : ValReal;
  1922. begin
  1923. Result:=system.frac(Value);
  1924. end;
  1925. function TSingleRec.Exponent : Longint;
  1926. var
  1927. E: QWord;
  1928. begin
  1929. Result := 0;
  1930. E := GetExp;
  1931. if (0<E) and (E<2*Bias+1) then
  1932. Result:=Exp-Bias
  1933. else if (Exp=0) and (Frac<>0) then
  1934. Result:=-(Bias-1);
  1935. end;
  1936. function TSingleRec.GetExp : QWord;
  1937. begin
  1938. Result:=(Data and $7f800000) shr 23;
  1939. end;
  1940. procedure TSingleRec.SetExp(e : QWord);
  1941. begin
  1942. Data:=(Data and $807fffff) or ((e and $ff) shl 23);
  1943. end;
  1944. function TSingleRec.GetSign : Boolean;
  1945. begin
  1946. Result:=(Data and $80000000)<>0;
  1947. end;
  1948. procedure TSingleRec.SetSign(s : Boolean);
  1949. begin
  1950. Data:=(Data and $7fffffff) or (DWord(ord(s)) shl 31);
  1951. end;
  1952. function TSingleRec.GetFrac : QWord;
  1953. begin
  1954. Result:=Data and $7fffff;
  1955. end;
  1956. procedure TSingleRec.SetFrac(e : QWord);
  1957. begin
  1958. Data:=(Data and $ff800000) or (e and $7fffff);
  1959. end;
  1960. {
  1961. Based on information taken from http://en.wikipedia.org/wiki/Single_precision#x86_Extended_Precision_Format
  1962. }
  1963. function TSingleRec.SpecialType : TFloatSpecial;
  1964. const
  1965. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1966. begin
  1967. case Exp of
  1968. 0:
  1969. begin
  1970. if Mantissa=0 then
  1971. begin
  1972. if Sign then
  1973. Result:=fsNZero
  1974. else
  1975. Result:=fsZero
  1976. end
  1977. else
  1978. Result:=Denormal[Sign];
  1979. end;
  1980. $ff:
  1981. if Mantissa=0 then
  1982. begin
  1983. if Sign then
  1984. Result:=fsNInf
  1985. else
  1986. Result:=fsInf;
  1987. end
  1988. else
  1989. Result:=fsNaN;
  1990. else
  1991. begin
  1992. if Sign then
  1993. Result:=fsNegative
  1994. else
  1995. Result:=fsPositive;
  1996. end;
  1997. end;
  1998. end;
  1999. procedure TSingleRec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  2000. begin
  2001. Value := 0.0;
  2002. SetSign(_Sign);
  2003. if (_Mantissa=0) and (_Exponent=0) then
  2004. Exit //SetExp(0)
  2005. else
  2006. SetExp(_Exponent + Bias);
  2007. SetFrac(_Mantissa and $7fffff); //clear top bit
  2008. end;
  2009. {$endif SUPPORT_SINGLE}