aasmcpu.pas 192 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. aasmbase,aasmtai,aasmsym,
  28. ogbase;
  29. const
  30. { "mov reg,reg" source operand number }
  31. O_MOV_SOURCE = 0;
  32. { "mov reg,reg" destination operand number }
  33. O_MOV_DEST = 1;
  34. { Operand types }
  35. OT_NONE = $00000000;
  36. { Bits 0..7: sizes }
  37. OT_BITS8 = $00000001;
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { x86_64 and FPU }
  41. //OT_BITS128 = $10000000; { 16 byte SSE }
  42. //OT_BITS256 = $20000000; { 32 byte AVX }
  43. //OT_BITS512 = $40000000; { 64 byte AVX512 }
  44. OT_BITS128 = $20000000; { 16 byte SSE }
  45. OT_BITS256 = $40000000; { 32 byte AVX }
  46. OT_BITS512 = $80000000; { 64 byte AVX512 }
  47. OT_VECTORMASK = $1000000000; { OPTIONAL VECTORMASK AVX512}
  48. OT_VECTORZERO = $2000000000; { OPTIONAL ZERO-FLAG AVX512}
  49. OT_VECTORBCST = $4000000000; { BROADCAST-MEM-FLAG AVX512}
  50. OT_VECTORSAE = $8000000000; { OPTIONAL SAE-FLAG AVX512}
  51. OT_VECTORER = $10000000000; { OPTIONAL ER-FLAG-FLAG AVX512}
  52. OT_BITSB32 = OT_BITS32 or OT_VECTORBCST;
  53. OT_BITSB64 = OT_BITS64 or OT_VECTORBCST;
  54. OT_VECTOR_EXT_MASK = OT_VECTORMASK or OT_VECTORZERO or OT_VECTORBCST;
  55. OT_BITS80 = $00000010; { FPU only }
  56. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  57. OT_NEAR = $00000040;
  58. OT_SHORT = $00000080;
  59. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  60. but this requires adjusting the opcode table }
  61. //OT_SIZE_MASK = $3000001F; { all the size attributes }
  62. OT_SIZE_MASK = $E000001F; { all the size attributes }
  63. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  64. { Bits 8..11: modifiers }
  65. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  66. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  67. OT_COLON = $00000400; { operand is followed by a colon }
  68. OT_MODIFIER_MASK = $00000F00;
  69. { Bits 12..15: type of operand }
  70. OT_REGISTER = $00001000;
  71. OT_IMMEDIATE = $00002000;
  72. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  73. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  74. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  75. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  76. { Bits 20..22, 24..26: register classes
  77. otf_* consts are not used alone, only to build other constants. }
  78. otf_reg_cdt = $00100000;
  79. otf_reg_gpr = $00200000;
  80. otf_reg_sreg = $00400000;
  81. otf_reg_k = $00800000;
  82. otf_reg_fpu = $01000000;
  83. otf_reg_mmx = $02000000;
  84. otf_reg_xmm = $04000000;
  85. otf_reg_ymm = $08000000;
  86. otf_reg_zmm = $10000000;
  87. otf_reg_extra_mask = $0F000000;
  88. { Bits 16..19: subclasses, meaning depends on classes field }
  89. otf_sub0 = $00010000;
  90. otf_sub1 = $00020000;
  91. otf_sub2 = $00040000;
  92. otf_sub3 = $00080000;
  93. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  94. //OT_REG_EXTRA_MASK = $0F000000;
  95. OT_REG_EXTRA_MASK = $1F000000;
  96. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_k or otf_reg_extra_mask;
  97. { register class 0: CRx, DRx and TRx }
  98. {$ifdef x86_64}
  99. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  100. {$else x86_64}
  101. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  102. {$endif x86_64}
  103. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  104. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  105. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  106. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  107. { register class 1: general-purpose registers }
  108. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  109. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  110. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  111. OT_REG16 = OT_REG_GPR or OT_BITS16;
  112. OT_REG32 = OT_REG_GPR or OT_BITS32;
  113. OT_REG64 = OT_REG_GPR or OT_BITS64;
  114. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  115. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  116. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  117. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  118. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  119. {$ifdef x86_64}
  120. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  121. {$endif x86_64}
  122. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  123. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  124. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  125. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  126. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  127. {$ifdef x86_64}
  128. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  129. {$endif x86_64}
  130. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  131. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  132. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  133. { register class 2: Segment registers }
  134. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  135. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  136. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  137. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  138. { register class 3: FPU registers }
  139. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  140. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  141. { register class 4: MMX (both reg and r/m) }
  142. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  143. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  144. { register class 5: XMM (both reg and r/m) }
  145. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  146. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  147. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  148. OT_XMEM32_M = OT_XMEM32 or OT_VECTORMASK;
  149. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  150. OT_XMEM64_M = OT_XMEM64 or OT_VECTORMASK;
  151. OT_XMMREG_M = OT_XMMREG or OT_VECTORMASK;
  152. OT_XMMREG_MZ = OT_XMMREG or OT_VECTORMASK or OT_VECTORZERO;
  153. OT_XMMRM_MZ = OT_XMMRM or OT_VECTORMASK or OT_VECTORZERO;
  154. OT_XMMREG_SAE = OT_XMMREG or OT_VECTORSAE;
  155. OT_XMMRM_SAE = OT_XMMRM or OT_VECTORSAE;
  156. OT_XMMREG_ER = OT_XMMREG or OT_VECTORER;
  157. OT_XMMRM_ER = OT_XMMRM or OT_VECTORER;
  158. { register class 5: YMM (both reg and r/m) }
  159. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  160. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  161. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  162. OT_YMEM32_M = OT_YMEM32 or OT_VECTORMASK;
  163. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  164. OT_YMEM64_M = OT_YMEM64 or OT_VECTORMASK;
  165. OT_YMMREG_M = OT_YMMREG or OT_VECTORMASK;
  166. OT_YMMREG_MZ = OT_YMMREG or OT_VECTORMASK or OT_VECTORZERO;
  167. OT_YMMRM_MZ = OT_YMMRM or OT_VECTORMASK or OT_VECTORZERO;
  168. OT_YMMREG_SAE = OT_YMMREG or OT_VECTORSAE;
  169. OT_YMMRM_SAE = OT_YMMRM or OT_VECTORSAE;
  170. OT_YMMREG_ER = OT_YMMREG or OT_VECTORER;
  171. OT_YMMRM_ER = OT_YMMRM or OT_VECTORER;
  172. { register class 5: ZMM (both reg and r/m) }
  173. OT_ZMMREG = OT_REGNORM or otf_reg_zmm;
  174. OT_ZMMRM = OT_REGMEM or otf_reg_zmm;
  175. OT_ZMEM32 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS32;
  176. OT_ZMEM32_M = OT_ZMEM32 or OT_VECTORMASK;
  177. OT_ZMEM64 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS64;
  178. OT_ZMEM64_M = OT_ZMEM64 or OT_VECTORMASK;
  179. OT_ZMMREG_M = OT_ZMMREG or OT_VECTORMASK;
  180. OT_ZMMREG_MZ = OT_ZMMREG or OT_VECTORMASK or OT_VECTORZERO;
  181. OT_ZMMRM_MZ = OT_ZMMRM or OT_VECTORMASK or OT_VECTORZERO;
  182. OT_ZMMREG_SAE = OT_ZMMREG or OT_VECTORSAE;
  183. OT_ZMMRM_SAE = OT_ZMMRM or OT_VECTORSAE;
  184. OT_ZMMREG_ER = OT_ZMMREG or OT_VECTORER;
  185. OT_ZMMRM_ER = OT_ZMMRM or OT_VECTORER;
  186. OT_KREG = OT_REGNORM or otf_reg_k;
  187. OT_KREG_M = OT_KREG or OT_VECTORMASK;
  188. { Vector-Memory operands }
  189. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64 or OT_ZMEM32 or OT_ZMEM64;
  190. { Memory operands }
  191. OT_MEM8 = OT_MEMORY or OT_BITS8;
  192. OT_MEM16 = OT_MEMORY or OT_BITS16;
  193. OT_MEM16_M = OT_MEM16 or OT_VECTORMASK;
  194. OT_MEM32 = OT_MEMORY or OT_BITS32;
  195. OT_MEM32_M = OT_MEMORY or OT_BITS32 or OT_VECTORMASK;
  196. OT_BMEM32 = OT_MEMORY or OT_BITS32 or OT_VECTORBCST;
  197. OT_BMEM32_SAE= OT_MEMORY or OT_BITS32 or OT_VECTORBCST or OT_VECTORSAE;
  198. OT_MEM64 = OT_MEMORY or OT_BITS64;
  199. OT_MEM64_M = OT_MEMORY or OT_BITS64 or OT_VECTORMASK;
  200. OT_BMEM64 = OT_MEMORY or OT_BITS64 or OT_VECTORBCST;
  201. OT_BMEM64_SAE= OT_MEMORY or OT_BITS64 or OT_VECTORBCST or OT_VECTORSAE;
  202. OT_MEM128 = OT_MEMORY or OT_BITS128;
  203. OT_MEM128_M = OT_MEMORY or OT_BITS128 or OT_VECTORMASK;
  204. OT_MEM256 = OT_MEMORY or OT_BITS256;
  205. OT_MEM256_M = OT_MEMORY or OT_BITS256 or OT_VECTORMASK;
  206. OT_MEM512 = OT_MEMORY or OT_BITS512;
  207. OT_MEM512_M = OT_MEMORY or OT_BITS512 or OT_VECTORMASK;
  208. OT_MEM80 = OT_MEMORY or OT_BITS80;
  209. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  210. { simple [address] offset }
  211. { Matches any type of r/m operand }
  212. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK;
  213. { Immediate operands }
  214. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  215. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  216. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  217. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  218. OT_ONENESS = otf_sub0; { special type of immediate operand }
  219. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  220. OTVE_VECTOR_SAE = 1 shl 8;
  221. OTVE_VECTOR_ER = 1 shl 9;
  222. OTVE_VECTOR_ZERO = 1 shl 10;
  223. OTVE_VECTOR_WRITEMASK = 1 shl 11;
  224. OTVE_VECTOR_BCST = 1 shl 12;
  225. OTVE_VECTOR_BCST2 = 0;
  226. OTVE_VECTOR_BCST4 = 1 shl 4;
  227. OTVE_VECTOR_BCST8 = 1 shl 5;
  228. OTVE_VECTOR_BCST16 = 3 shl 4;
  229. OTVE_VECTOR_RNSAE = OTVE_VECTOR_ER or 0;
  230. OTVE_VECTOR_RDSAE = OTVE_VECTOR_ER or 1 shl 6;
  231. OTVE_VECTOR_RUSAE = OTVE_VECTOR_ER or 1 shl 7;
  232. OTVE_VECTOR_RZSAE = OTVE_VECTOR_ER or 3 shl 6;
  233. OTVE_VECTOR_BCST_MASK = OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16;
  234. OTVE_VECTOR_ER_MASK = OTVE_VECTOR_RNSAE or OTVE_VECTOR_RDSAE or OTVE_VECTOR_RUSAE or OTVE_VECTOR_RZSAE;
  235. OTVE_VECTOR_MASK = OTVE_VECTOR_SAE or OTVE_VECTOR_ER or OTVE_VECTOR_ZERO or OTVE_VECTOR_WRITEMASK or OTVE_VECTOR_BCST;
  236. { Size of the instruction table converted by nasmconv.pas }
  237. {$if defined(x86_64)}
  238. instabentries = {$i x8664nop.inc}
  239. {$elseif defined(i386)}
  240. instabentries = {$i i386nop.inc}
  241. {$elseif defined(i8086)}
  242. instabentries = {$i i8086nop.inc}
  243. {$endif}
  244. maxinfolen = 10;
  245. type
  246. { What an instruction can change. Needed for optimizer and spilling code.
  247. Note: The order of this enumeration is should not be changed! }
  248. TInsChange = (Ch_None,
  249. {Read from a register}
  250. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  251. {write from a register}
  252. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  253. {read and write from/to a register}
  254. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  255. {modify the contents of a register with the purpose of using
  256. this changed content afterwards (add/sub/..., but e.g. not rep
  257. or movsd)}
  258. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  259. {read individual flag bits from the flags register}
  260. Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
  261. {write individual flag bits to the flags register}
  262. Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
  263. {set individual flag bits to 0 in the flags register}
  264. Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
  265. {set individual flag bits to 1 in the flags register}
  266. Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
  267. {write an undefined value to individual flag bits in the flags register}
  268. Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
  269. {read and write flag bits}
  270. Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
  271. {more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
  272. Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
  273. {instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
  274. Ch_RFLAGScc,
  275. {read/write/read+write the entire flags/eflags/rflags register}
  276. Ch_RFlags, Ch_WFlags, Ch_RWFlags,
  277. Ch_FPU,
  278. Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
  279. Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
  280. Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
  281. Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
  282. { instruction doesn't read it's input register, in case both parameters
  283. are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
  284. Ch_NoReadIfEqualRegs,
  285. Ch_RMemEDI,Ch_WMemEDI,
  286. Ch_All,
  287. { x86_64 registers }
  288. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  289. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  290. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  291. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  292. );
  293. TInsProp = packed record
  294. Ch : set of TInsChange;
  295. end;
  296. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  297. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  298. msiMultiple64, msiMultiple128, msiMultiple256, msiMultiple512,
  299. msiMemRegSize, msiMemRegx16y32, msiMemRegx16y32z64, msiMemRegx32y64, msiMemRegx32y64z128, msiMemRegx64y128, msiMemRegx64y128z256,
  300. msiMemRegx64y256, msiMemRegx64y256z512,
  301. msiMem8, msiMem16, msiMem32, msiBMem32, msiMem64, msiBMem64, msiMem128, msiMem256, msiMem512,
  302. msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64,
  303. msiVMemMultiple, msiVMemRegSize,
  304. msiMemRegConst128,msiMemRegConst256,msiMemRegConst512);
  305. TMemRefSizeInfoBCST = (msbUnknown, msbBCST32, msbBCST64, msbMultiple);
  306. TMemRefSizeInfoBCSTType = (btUnknown, bt1to2, bt1to4, bt1to8, bt1to16);
  307. TEVEXTupleState = (etsUnknown, etsIsTuple, etsNotTuple);
  308. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  309. TInsTabMemRefSizeInfoRec = record
  310. MemRefSize : TMemRefSizeInfo;
  311. MemRefSizeBCST : TMemRefSizeInfoBCST;
  312. BCSTXMMMultiplicator : byte;
  313. ExistsSSEAVX : boolean;
  314. ConstSize : TConstSizeInfo;
  315. BCSTTypes : Set of TMemRefSizeInfoBCSTType;
  316. end;
  317. const
  318. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  319. msiMultiple16, msiMultiple32,
  320. msiMultiple64, msiMultiple128,
  321. msiMultiple256, msiMultiple512,
  322. msiVMemMultiple];
  323. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  324. msiZMem32, msiZMem64,
  325. msiVMemMultiple, msiVMemRegSize];
  326. InsProp : array[tasmop] of TInsProp =
  327. {$if defined(x86_64)}
  328. {$i x8664pro.inc}
  329. {$elseif defined(i386)}
  330. {$i i386prop.inc}
  331. {$elseif defined(i8086)}
  332. {$i i8086prop.inc}
  333. {$endif}
  334. type
  335. TOperandOrder = (op_intel,op_att);
  336. {Instruction flags }
  337. tinsflag = (
  338. { please keep these in order and in sync with IF_SMASK }
  339. IF_SM, { size match first two operands }
  340. IF_SM2,
  341. IF_SB, { unsized operands can't be non-byte }
  342. IF_SW, { unsized operands can't be non-word }
  343. IF_SD, { unsized operands can't be nondword }
  344. { unsized argument spec }
  345. { please keep these in order and in sync with IF_ARMASK }
  346. IF_AR0, { SB, SW, SD applies to argument 0 }
  347. IF_AR1, { SB, SW, SD applies to argument 1 }
  348. IF_AR2, { SB, SW, SD applies to argument 2 }
  349. IF_PRIV, { it's a privileged instruction }
  350. IF_SMM, { it's only valid in SMM }
  351. IF_PROT, { it's protected mode only }
  352. IF_NOX86_64, { removed instruction in x86_64 }
  353. IF_UNDOC, { it's an undocumented instruction }
  354. IF_FPU, { it's an FPU instruction }
  355. IF_MMX, { it's an MMX instruction }
  356. { it's a 3DNow! instruction }
  357. IF_3DNOW,
  358. { it's a SSE (KNI, MMX2) instruction }
  359. IF_SSE,
  360. { SSE2 instructions }
  361. IF_SSE2,
  362. { SSE3 instructions }
  363. IF_SSE3,
  364. { SSE64 instructions }
  365. IF_SSE64,
  366. { SVM instructions }
  367. IF_SVM,
  368. { SSE4 instructions }
  369. IF_SSE4,
  370. IF_SSSE3,
  371. IF_SSE41,
  372. IF_SSE42,
  373. IF_AVX,
  374. IF_AVX2,
  375. IF_AVX512,
  376. IF_BMI1,
  377. IF_BMI2,
  378. IF_16BITONLY,
  379. IF_FMA,
  380. IF_FMA4,
  381. IF_TSX,
  382. IF_RAND,
  383. IF_XSAVE,
  384. IF_PREFETCHWT1,
  385. { mask for processor level }
  386. { please keep these in order and in sync with IF_PLEVEL }
  387. IF_8086, { 8086 instruction }
  388. IF_186, { 186+ instruction }
  389. IF_286, { 286+ instruction }
  390. IF_386, { 386+ instruction }
  391. IF_486, { 486+ instruction }
  392. IF_PENT, { Pentium instruction }
  393. IF_P6, { P6 instruction }
  394. IF_KATMAI, { Katmai instructions }
  395. IF_WILLAMETTE, { Willamette instructions }
  396. IF_PRESCOTT, { Prescott instructions }
  397. IF_X86_64,
  398. IF_SANDYBRIDGE, { Sandybridge-specific instruction }
  399. IF_NEC, { NEC V20/V30 instruction }
  400. { the following are not strictly part of the processor level, because
  401. they are never used standalone, but always in combination with a
  402. separate processor level flag. Therefore, they use bits outside of
  403. IF_PLEVEL, otherwise they would mess up the processor level they're
  404. used in combination with.
  405. The following combinations are currently used:
  406. [IF_AMD, IF_P6],
  407. [IF_CYRIX, IF_486],
  408. [IF_CYRIX, IF_PENT],
  409. [IF_CYRIX, IF_P6] }
  410. IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
  411. IF_AMD, { AMD-specific instruction }
  412. { added flags }
  413. IF_PRE, { it's a prefix instruction }
  414. IF_PASS2, { if the instruction can change in a second pass }
  415. IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
  416. IF_IMM3, { immediate operand is a triad (must be in range [0..7]) }
  417. { avx512 flags }
  418. IF_BCST2,
  419. IF_BCST4,
  420. IF_BCST8,
  421. IF_BCST16,
  422. IF_T2, { disp8 - tuple - 2 }
  423. IF_T4, { disp8 - tuple - 4 }
  424. IF_T8, { disp8 - tuple - 8 }
  425. IF_T1S, { disp8 - tuple - 1 scalar }
  426. IF_T1F32,
  427. IF_T1F64,
  428. IF_TMDDUP,
  429. IF_TFV, { disp8 - tuple - full vector }
  430. IF_TFVM, { disp8 - tuple - full vector memory }
  431. IF_TQVM,
  432. IF_TMEM128,
  433. IF_THV,
  434. IF_THVM,
  435. IF_TOVM
  436. );
  437. tinsflags=set of tinsflag;
  438. const
  439. IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
  440. IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
  441. IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
  442. IF_TUPLEMASK=[IF_T2..IF_TOVM]; { mask for AVX512 disp8-tuples }
  443. type
  444. tinsentry=packed record
  445. opcode : tasmop;
  446. ops : byte;
  447. //optypes : array[0..max_operands-1] of longint;
  448. optypes : array[0..max_operands-1] of int64; //TG
  449. code : array[0..maxinfolen] of char;
  450. flags : tinsflags;
  451. end;
  452. pinsentry=^tinsentry;
  453. { alignment for operator }
  454. tai_align = class(tai_align_abstract)
  455. reg : tregister;
  456. constructor create(b:byte);override;
  457. constructor create_op(b: byte; _op: byte);override;
  458. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  459. end;
  460. { taicpu }
  461. taicpu = class(tai_cpu_abstract_sym)
  462. opsize : topsize;
  463. constructor op_none(op : tasmop);
  464. constructor op_none(op : tasmop;_size : topsize);
  465. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  466. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  467. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  468. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  469. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  470. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  471. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  472. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  473. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  474. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  475. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  476. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  477. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  478. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  479. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  480. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  481. constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
  482. { this is for Jmp instructions }
  483. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  484. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  485. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  486. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  487. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  488. procedure changeopsize(siz:topsize);
  489. function GetString:string;
  490. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  491. Early versions of the UnixWare assembler had a bug where some fpu instructions
  492. were reversed and GAS still keeps this "feature" for compatibility.
  493. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  494. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  495. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  496. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  497. when generating output for other assemblers, the opcodes must be fixed before writing them.
  498. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  499. because in case of smartlinking assembler is generated twice so at the second run wrong
  500. assembler is generated.
  501. }
  502. function FixNonCommutativeOpcodes: tasmop;
  503. private
  504. FOperandOrder : TOperandOrder;
  505. procedure init(_size : topsize); { this need to be called by all constructor }
  506. public
  507. { the next will reset all instructions that can change in pass 2 }
  508. procedure ResetPass1;override;
  509. procedure ResetPass2;override;
  510. function CheckIfValid:boolean;
  511. function Pass1(objdata:TObjData):longint;override;
  512. procedure Pass2(objdata:TObjData);override;
  513. procedure SetOperandOrder(order:TOperandOrder);
  514. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  515. { register spilling code }
  516. function spilling_get_operation_type(opnr: longint): topertype;override;
  517. {$ifdef i8086}
  518. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  519. {$endif i8086}
  520. property OperandOrder : TOperandOrder read FOperandOrder;
  521. private
  522. { next fields are filled in pass1, so pass2 is faster }
  523. insentry : PInsEntry;
  524. insoffset : longint;
  525. LastInsOffset : longint; { need to be public to be reset }
  526. inssize : shortint;
  527. EVEXTupleState: TEVEXTupleState; { AVX512 disp8*N }
  528. {$ifdef x86_64}
  529. rex : byte;
  530. {$endif x86_64}
  531. function InsEnd:longint;
  532. procedure create_ot(objdata:TObjData);
  533. function Matches(p:PInsEntry):boolean;
  534. function calcsize(p:PInsEntry):shortint;
  535. procedure gencode(objdata:TObjData);
  536. function NeedAddrPrefix(opidx:byte):boolean;
  537. function NeedAddrPrefix:boolean;
  538. procedure write0x66prefix(objdata:TObjData);
  539. procedure write0x67prefix(objdata:TObjData);
  540. procedure Swapoperands;
  541. function FindInsentry(objdata:TObjData):boolean;
  542. function CheckUseEVEX: boolean;
  543. procedure CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  544. end;
  545. function is_64_bit_ref(const ref:treference):boolean;
  546. function is_32_bit_ref(const ref:treference):boolean;
  547. function is_16_bit_ref(const ref:treference):boolean;
  548. function get_ref_address_size(const ref:treference):byte;
  549. function get_default_segment_of_ref(const ref:treference):tregister;
  550. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  551. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  552. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  553. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  554. procedure InitAsm;
  555. procedure DoneAsm;
  556. {*****************************************************************************
  557. External Symbol Chain
  558. used for agx86nsm and agx86int
  559. *****************************************************************************}
  560. type
  561. PExternChain = ^TExternChain;
  562. TExternChain = Record
  563. psym : pshortstring;
  564. is_defined : boolean;
  565. next : PExternChain;
  566. end;
  567. const
  568. FEC : PExternChain = nil;
  569. procedure AddSymbol(symname : string; defined : boolean);
  570. procedure FreeExternChainList;
  571. implementation
  572. uses
  573. cutils,
  574. globals,
  575. systems,
  576. itcpugas,
  577. cpuinfo;
  578. procedure AddSymbol(symname : string; defined : boolean);
  579. var
  580. EC : PExternChain;
  581. begin
  582. EC:=FEC;
  583. while assigned(EC) do
  584. begin
  585. if EC^.psym^=symname then
  586. begin
  587. if defined then
  588. EC^.is_defined:=true;
  589. exit;
  590. end;
  591. EC:=EC^.next;
  592. end;
  593. New(EC);
  594. EC^.next:=FEC;
  595. FEC:=EC;
  596. FEC^.psym:=stringdup(symname);
  597. FEC^.is_defined := defined;
  598. end;
  599. procedure FreeExternChainList;
  600. var
  601. EC : PExternChain;
  602. begin
  603. EC:=FEC;
  604. while assigned(EC) do
  605. begin
  606. FEC:=EC^.next;
  607. stringdispose(EC^.psym);
  608. Dispose(EC);
  609. EC:=FEC;
  610. end;
  611. end;
  612. {*****************************************************************************
  613. Instruction table
  614. *****************************************************************************}
  615. type
  616. TInsTabCache=array[TasmOp] of longint;
  617. PInsTabCache=^TInsTabCache;
  618. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  619. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  620. const
  621. {$if defined(x86_64)}
  622. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  623. {$elseif defined(i386)}
  624. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  625. {$elseif defined(i8086)}
  626. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  627. {$endif}
  628. var
  629. InsTabCache : PInsTabCache;
  630. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  631. const
  632. {$if defined(x86_64)}
  633. { Intel style operands ! }
  634. //TG opsize_2_type:array[0..2,topsize] of longint=(
  635. opsize_2_type:array[0..2,topsize] of int64=(
  636. (OT_NONE,
  637. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  638. OT_BITS16,OT_BITS32,OT_BITS64,
  639. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  640. OT_BITS64,
  641. OT_NEAR,OT_FAR,OT_SHORT,
  642. OT_NONE,
  643. OT_BITS128,
  644. OT_BITS256,
  645. OT_BITS512
  646. ),
  647. (OT_NONE,
  648. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  649. OT_BITS16,OT_BITS32,OT_BITS64,
  650. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  651. OT_BITS64,
  652. OT_NEAR,OT_FAR,OT_SHORT,
  653. OT_NONE,
  654. OT_BITS128,
  655. OT_BITS256,
  656. OT_BITS512
  657. ),
  658. (OT_NONE,
  659. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  660. OT_BITS16,OT_BITS32,OT_BITS64,
  661. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  662. OT_BITS64,
  663. OT_NEAR,OT_FAR,OT_SHORT,
  664. OT_NONE,
  665. OT_BITS128,
  666. OT_BITS256,
  667. OT_BITS512
  668. )
  669. );
  670. reg_ot_table : array[tregisterindex] of longint = (
  671. {$i r8664ot.inc}
  672. );
  673. {$elseif defined(i386)}
  674. { Intel style operands ! }
  675. opsize_2_type:array[0..2,topsize] of int64=(
  676. (OT_NONE,
  677. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  678. OT_BITS16,OT_BITS32,OT_BITS64,
  679. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  680. OT_BITS64,
  681. OT_NEAR,OT_FAR,OT_SHORT,
  682. OT_NONE,
  683. OT_BITS128,
  684. OT_BITS256,
  685. OT_BITS512
  686. ),
  687. (OT_NONE,
  688. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  689. OT_BITS16,OT_BITS32,OT_BITS64,
  690. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  691. OT_BITS64,
  692. OT_NEAR,OT_FAR,OT_SHORT,
  693. OT_NONE,
  694. OT_BITS128,
  695. OT_BITS256,
  696. OT_BITS512
  697. ),
  698. (OT_NONE,
  699. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  700. OT_BITS16,OT_BITS32,OT_BITS64,
  701. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  702. OT_BITS64,
  703. OT_NEAR,OT_FAR,OT_SHORT,
  704. OT_NONE,
  705. OT_BITS128,
  706. OT_BITS256,
  707. OT_BITS512
  708. )
  709. );
  710. reg_ot_table : array[tregisterindex] of longint = (
  711. {$i r386ot.inc}
  712. );
  713. {$elseif defined(i8086)}
  714. { Intel style operands ! }
  715. opsize_2_type:array[0..2,topsize] of int64=(
  716. (OT_NONE,
  717. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  718. OT_BITS16,OT_BITS32,OT_BITS64,
  719. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  720. OT_BITS64,
  721. OT_NEAR,OT_FAR,OT_SHORT,
  722. OT_NONE,
  723. OT_BITS128,
  724. OT_BITS256,
  725. OT_BITS512
  726. ),
  727. (OT_NONE,
  728. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  729. OT_BITS16,OT_BITS32,OT_BITS64,
  730. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  731. OT_BITS64,
  732. OT_NEAR,OT_FAR,OT_SHORT,
  733. OT_NONE,
  734. OT_BITS128,
  735. OT_BITS256,
  736. OT_BITS512
  737. ),
  738. (OT_NONE,
  739. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  740. OT_BITS16,OT_BITS32,OT_BITS64,
  741. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  742. OT_BITS64,
  743. OT_NEAR,OT_FAR,OT_SHORT,
  744. OT_NONE,
  745. OT_BITS128,
  746. OT_BITS256,
  747. OT_BITS512
  748. )
  749. );
  750. reg_ot_table : array[tregisterindex] of longint = (
  751. {$i r8086ot.inc}
  752. );
  753. {$endif}
  754. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  755. begin
  756. result := InsTabMemRefSizeInfoCache^[aAsmop];
  757. end;
  758. { Operation type for spilling code }
  759. type
  760. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  761. var
  762. operation_type_table : ^toperation_type_table;
  763. {****************************************************************************
  764. TAI_ALIGN
  765. ****************************************************************************}
  766. constructor tai_align.create(b: byte);
  767. begin
  768. inherited create(b);
  769. reg:=NR_ECX;
  770. end;
  771. constructor tai_align.create_op(b: byte; _op: byte);
  772. begin
  773. inherited create_op(b,_op);
  774. reg:=NR_NO;
  775. end;
  776. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  777. const
  778. { Updated according to
  779. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  780. and
  781. Intel 64 and IA-32 Architectures Software Developer’s Manual
  782. Volume 2B: Instruction Set Reference, N-Z, January 2015
  783. }
  784. alignarray_cmovcpus:array[0..10] of string[11]=(
  785. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  786. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  787. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  788. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  789. #$0F#$1F#$80#$00#$00#$00#$00,
  790. #$66#$0F#$1F#$44#$00#$00,
  791. #$0F#$1F#$44#$00#$00,
  792. #$0F#$1F#$40#$00,
  793. #$0F#$1F#$00,
  794. #$66#$90,
  795. #$90);
  796. {$ifdef i8086}
  797. alignarray:array[0..5] of string[8]=(
  798. #$90#$90#$90#$90#$90#$90#$90,
  799. #$90#$90#$90#$90#$90#$90,
  800. #$90#$90#$90#$90,
  801. #$90#$90#$90,
  802. #$90#$90,
  803. #$90);
  804. {$else i8086}
  805. alignarray:array[0..5] of string[8]=(
  806. #$8D#$B4#$26#$00#$00#$00#$00,
  807. #$8D#$B6#$00#$00#$00#$00,
  808. #$8D#$74#$26#$00,
  809. #$8D#$76#$00,
  810. #$89#$F6,
  811. #$90);
  812. {$endif i8086}
  813. var
  814. bufptr : pchar;
  815. j : longint;
  816. localsize: byte;
  817. begin
  818. inherited calculatefillbuf(buf,executable);
  819. if not(use_op) and executable then
  820. begin
  821. bufptr:=pchar(@buf);
  822. { fillsize may still be used afterwards, so don't modify }
  823. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  824. localsize:=fillsize;
  825. while (localsize>0) do
  826. begin
  827. {$ifndef i8086}
  828. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  829. begin
  830. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  831. if (localsize>=length(alignarray_cmovcpus[j])) then
  832. break;
  833. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  834. inc(bufptr,length(alignarray_cmovcpus[j]));
  835. dec(localsize,length(alignarray_cmovcpus[j]));
  836. end
  837. else
  838. {$endif not i8086}
  839. begin
  840. for j:=low(alignarray) to high(alignarray) do
  841. if (localsize>=length(alignarray[j])) then
  842. break;
  843. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  844. inc(bufptr,length(alignarray[j]));
  845. dec(localsize,length(alignarray[j]));
  846. end
  847. end;
  848. end;
  849. calculatefillbuf:=pchar(@buf);
  850. end;
  851. {*****************************************************************************
  852. Taicpu Constructors
  853. *****************************************************************************}
  854. procedure taicpu.changeopsize(siz:topsize);
  855. begin
  856. opsize:=siz;
  857. end;
  858. procedure taicpu.init(_size : topsize);
  859. begin
  860. { default order is att }
  861. FOperandOrder:=op_att;
  862. segprefix:=NR_NO;
  863. opsize:=_size;
  864. insentry:=nil;
  865. LastInsOffset:=-1;
  866. InsOffset:=0;
  867. InsSize:=0;
  868. EVEXTupleState := etsUnknown;
  869. end;
  870. constructor taicpu.op_none(op : tasmop);
  871. begin
  872. inherited create(op);
  873. init(S_NO);
  874. end;
  875. constructor taicpu.op_none(op : tasmop;_size : topsize);
  876. begin
  877. inherited create(op);
  878. init(_size);
  879. end;
  880. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  881. begin
  882. inherited create(op);
  883. init(_size);
  884. ops:=1;
  885. loadreg(0,_op1);
  886. end;
  887. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  888. begin
  889. inherited create(op);
  890. init(_size);
  891. ops:=1;
  892. loadconst(0,_op1);
  893. end;
  894. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  895. begin
  896. inherited create(op);
  897. init(_size);
  898. ops:=1;
  899. loadref(0,_op1);
  900. end;
  901. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  902. begin
  903. inherited create(op);
  904. init(_size);
  905. ops:=2;
  906. loadreg(0,_op1);
  907. loadreg(1,_op2);
  908. end;
  909. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  910. begin
  911. inherited create(op);
  912. init(_size);
  913. ops:=2;
  914. loadreg(0,_op1);
  915. loadconst(1,_op2);
  916. end;
  917. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  918. begin
  919. inherited create(op);
  920. init(_size);
  921. ops:=2;
  922. loadreg(0,_op1);
  923. loadref(1,_op2);
  924. end;
  925. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  926. begin
  927. inherited create(op);
  928. init(_size);
  929. ops:=2;
  930. loadconst(0,_op1);
  931. loadreg(1,_op2);
  932. end;
  933. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  934. begin
  935. inherited create(op);
  936. init(_size);
  937. ops:=2;
  938. loadconst(0,_op1);
  939. loadconst(1,_op2);
  940. end;
  941. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  942. begin
  943. inherited create(op);
  944. init(_size);
  945. ops:=2;
  946. loadconst(0,_op1);
  947. loadref(1,_op2);
  948. end;
  949. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  950. begin
  951. inherited create(op);
  952. init(_size);
  953. ops:=2;
  954. loadref(0,_op1);
  955. loadreg(1,_op2);
  956. end;
  957. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  958. begin
  959. inherited create(op);
  960. init(_size);
  961. ops:=3;
  962. loadreg(0,_op1);
  963. loadreg(1,_op2);
  964. loadreg(2,_op3);
  965. end;
  966. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  967. begin
  968. inherited create(op);
  969. init(_size);
  970. ops:=3;
  971. loadconst(0,_op1);
  972. loadreg(1,_op2);
  973. loadreg(2,_op3);
  974. end;
  975. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  976. begin
  977. inherited create(op);
  978. init(_size);
  979. ops:=3;
  980. loadref(0,_op1);
  981. loadreg(1,_op2);
  982. loadreg(2,_op3);
  983. end;
  984. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  985. begin
  986. inherited create(op);
  987. init(_size);
  988. ops:=3;
  989. loadconst(0,_op1);
  990. loadref(1,_op2);
  991. loadreg(2,_op3);
  992. end;
  993. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  994. begin
  995. inherited create(op);
  996. init(_size);
  997. ops:=3;
  998. loadconst(0,_op1);
  999. loadreg(1,_op2);
  1000. loadref(2,_op3);
  1001. end;
  1002. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  1003. begin
  1004. inherited create(op);
  1005. init(_size);
  1006. ops:=3;
  1007. loadreg(0,_op1);
  1008. loadreg(1,_op2);
  1009. loadref(2,_op3);
  1010. end;
  1011. constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
  1012. begin
  1013. inherited create(op);
  1014. init(_size);
  1015. ops:=4;
  1016. loadconst(0,_op1);
  1017. loadreg(1,_op2);
  1018. loadreg(2,_op3);
  1019. loadreg(3,_op4);
  1020. end;
  1021. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  1022. begin
  1023. inherited create(op);
  1024. init(_size);
  1025. condition:=cond;
  1026. ops:=1;
  1027. loadsymbol(0,_op1,0);
  1028. end;
  1029. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  1030. begin
  1031. inherited create(op);
  1032. init(_size);
  1033. ops:=1;
  1034. loadsymbol(0,_op1,0);
  1035. end;
  1036. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  1037. begin
  1038. inherited create(op);
  1039. init(_size);
  1040. ops:=1;
  1041. loadsymbol(0,_op1,_op1ofs);
  1042. end;
  1043. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  1044. begin
  1045. inherited create(op);
  1046. init(_size);
  1047. ops:=2;
  1048. loadsymbol(0,_op1,_op1ofs);
  1049. loadreg(1,_op2);
  1050. end;
  1051. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  1052. begin
  1053. inherited create(op);
  1054. init(_size);
  1055. ops:=2;
  1056. loadsymbol(0,_op1,_op1ofs);
  1057. loadref(1,_op2);
  1058. end;
  1059. function taicpu.GetString:string;
  1060. var
  1061. i : longint;
  1062. s : string;
  1063. regnr: string;
  1064. addsize : boolean;
  1065. begin
  1066. s:='['+std_op2str[opcode];
  1067. for i:=0 to ops-1 do
  1068. begin
  1069. with oper[i]^ do
  1070. begin
  1071. if i=0 then
  1072. s:=s+' '
  1073. else
  1074. s:=s+',';
  1075. { type }
  1076. addsize:=false;
  1077. regnr := '';
  1078. if getregtype(reg) = R_MMREGISTER then
  1079. str(getsupreg(reg),regnr);
  1080. if (ot and OT_XMMREG)=OT_XMMREG then
  1081. s:=s+'xmmreg' + regnr
  1082. else
  1083. if (ot and OT_YMMREG)=OT_YMMREG then
  1084. s:=s+'ymmreg' + regnr
  1085. else
  1086. if (ot and OT_ZMMREG)=OT_ZMMREG then
  1087. s:=s+'zmmreg' + regnr
  1088. else
  1089. if (ot and OT_REG_EXTRA_MASK)=OT_MMXREG then
  1090. s:=s+'mmxreg'
  1091. else
  1092. if (ot and OT_REG_EXTRA_MASK)=OT_FPUREG then
  1093. s:=s+'fpureg'
  1094. else
  1095. if (ot and OT_REGISTER)=OT_REGISTER then
  1096. begin
  1097. s:=s+'reg';
  1098. addsize:=true;
  1099. end
  1100. else
  1101. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  1102. begin
  1103. s:=s+'imm';
  1104. addsize:=true;
  1105. end
  1106. else
  1107. if (ot and OT_MEMORY)=OT_MEMORY then
  1108. begin
  1109. s:=s+'mem';
  1110. addsize:=true;
  1111. end
  1112. else
  1113. s:=s+'???';
  1114. { size }
  1115. if addsize then
  1116. begin
  1117. if (ot and OT_BITS8)<>0 then
  1118. s:=s+'8'
  1119. else
  1120. if (ot and OT_BITS16)<>0 then
  1121. s:=s+'16'
  1122. else
  1123. if (ot and OT_BITS32)<>0 then
  1124. s:=s+'32'
  1125. else
  1126. if (ot and OT_BITS64)<>0 then
  1127. s:=s+'64'
  1128. else
  1129. if (ot and OT_BITS128)<>0 then
  1130. s:=s+'128'
  1131. else
  1132. if (ot and OT_BITS256)<>0 then
  1133. s:=s+'256'
  1134. else
  1135. if (ot and OT_BITS512)<>0 then
  1136. s:=s+'512'
  1137. else
  1138. s:=s+'??';
  1139. { signed }
  1140. if (ot and OT_SIGNED)<>0 then
  1141. s:=s+'s';
  1142. end;
  1143. if vopext <> 0 then
  1144. begin
  1145. str(vopext and $07, regnr);
  1146. if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  1147. s := s + ' {k' + regnr + '}';
  1148. if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then
  1149. s := s + ' {z}';
  1150. if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  1151. s := s + ' {sae}';
  1152. if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  1153. case vopext and OTVE_VECTOR_BCST_MASK of
  1154. OTVE_VECTOR_BCST2: s := s + ' {1to2}';
  1155. OTVE_VECTOR_BCST4: s := s + ' {1to4}';
  1156. OTVE_VECTOR_BCST8: s := s + ' {1to8}';
  1157. OTVE_VECTOR_BCST16: s := s + ' {1to16}';
  1158. end;
  1159. if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  1160. case vopext and OTVE_VECTOR_ER_MASK of
  1161. OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}';
  1162. OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}';
  1163. OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}';
  1164. OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}';
  1165. end;
  1166. end;
  1167. end;
  1168. end;
  1169. GetString:=s+']';
  1170. end;
  1171. procedure taicpu.Swapoperands;
  1172. var
  1173. p : POper;
  1174. begin
  1175. { Fix the operands which are in AT&T style and we need them in Intel style }
  1176. case ops of
  1177. 0,1:
  1178. ;
  1179. 2 : begin
  1180. { 0,1 -> 1,0 }
  1181. p:=oper[0];
  1182. oper[0]:=oper[1];
  1183. oper[1]:=p;
  1184. end;
  1185. 3 : begin
  1186. { 0,1,2 -> 2,1,0 }
  1187. p:=oper[0];
  1188. oper[0]:=oper[2];
  1189. oper[2]:=p;
  1190. end;
  1191. 4 : begin
  1192. { 0,1,2,3 -> 3,2,1,0 }
  1193. p:=oper[0];
  1194. oper[0]:=oper[3];
  1195. oper[3]:=p;
  1196. p:=oper[1];
  1197. oper[1]:=oper[2];
  1198. oper[2]:=p;
  1199. end;
  1200. else
  1201. internalerror(201108141);
  1202. end;
  1203. end;
  1204. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1205. begin
  1206. if FOperandOrder<>order then
  1207. begin
  1208. Swapoperands;
  1209. FOperandOrder:=order;
  1210. end;
  1211. end;
  1212. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1213. begin
  1214. result:=opcode;
  1215. { we need ATT order }
  1216. SetOperandOrder(op_att);
  1217. if (
  1218. (ops=2) and
  1219. (oper[0]^.typ=top_reg) and
  1220. (oper[1]^.typ=top_reg) and
  1221. { if the first is ST and the second is also a register
  1222. it is necessarily ST1 .. ST7 }
  1223. ((oper[0]^.reg=NR_ST) or
  1224. (oper[0]^.reg=NR_ST0))
  1225. ) or
  1226. { ((ops=1) and
  1227. (oper[0]^.typ=top_reg) and
  1228. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1229. (ops=0) then
  1230. begin
  1231. if opcode=A_FSUBR then
  1232. result:=A_FSUB
  1233. else if opcode=A_FSUB then
  1234. result:=A_FSUBR
  1235. else if opcode=A_FDIVR then
  1236. result:=A_FDIV
  1237. else if opcode=A_FDIV then
  1238. result:=A_FDIVR
  1239. else if opcode=A_FSUBRP then
  1240. result:=A_FSUBP
  1241. else if opcode=A_FSUBP then
  1242. result:=A_FSUBRP
  1243. else if opcode=A_FDIVRP then
  1244. result:=A_FDIVP
  1245. else if opcode=A_FDIVP then
  1246. result:=A_FDIVRP;
  1247. end;
  1248. if (
  1249. (ops=1) and
  1250. (oper[0]^.typ=top_reg) and
  1251. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1252. (oper[0]^.reg<>NR_ST)
  1253. ) then
  1254. begin
  1255. if opcode=A_FSUBRP then
  1256. result:=A_FSUBP
  1257. else if opcode=A_FSUBP then
  1258. result:=A_FSUBRP
  1259. else if opcode=A_FDIVRP then
  1260. result:=A_FDIVP
  1261. else if opcode=A_FDIVP then
  1262. result:=A_FDIVRP;
  1263. end;
  1264. end;
  1265. {*****************************************************************************
  1266. Assembler
  1267. *****************************************************************************}
  1268. type
  1269. ea = packed record
  1270. sib_present : boolean;
  1271. bytes : byte;
  1272. size : byte;
  1273. modrm : byte;
  1274. sib : byte;
  1275. {$ifdef x86_64}
  1276. rex : byte;
  1277. {$endif x86_64}
  1278. end;
  1279. procedure taicpu.create_ot(objdata:TObjData);
  1280. {
  1281. this function will also fix some other fields which only needs to be once
  1282. }
  1283. var
  1284. i,l,relsize : longint;
  1285. currsym : TObjSymbol;
  1286. begin
  1287. if ops=0 then
  1288. exit;
  1289. { update oper[].ot field }
  1290. for i:=0 to ops-1 do
  1291. with oper[i]^ do
  1292. begin
  1293. case typ of
  1294. top_reg :
  1295. begin
  1296. ot:=reg_ot_table[findreg_by_number(reg)];
  1297. end;
  1298. top_ref :
  1299. begin
  1300. if (ref^.refaddr=addr_no)
  1301. {$ifdef i386}
  1302. or (
  1303. (ref^.refaddr in [addr_pic]) and
  1304. (ref^.base<>NR_NO)
  1305. )
  1306. {$endif i386}
  1307. {$ifdef x86_64}
  1308. or (
  1309. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1310. (ref^.base<>NR_NO)
  1311. )
  1312. {$endif x86_64}
  1313. then
  1314. begin
  1315. { create ot field }
  1316. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1317. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1318. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1319. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1320. ) then
  1321. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1322. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1323. (reg_ot_table[findreg_by_number(ref^.index)])
  1324. else if (ref^.base = NR_NO) and
  1325. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1326. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1327. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1328. ) then
  1329. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1330. ot := (OT_REG_GPR) or
  1331. (reg_ot_table[findreg_by_number(ref^.index)])
  1332. else if (ot and OT_SIZE_MASK)=0 then
  1333. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1334. else
  1335. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1336. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1337. ot:=ot or OT_MEM_OFFS;
  1338. { fix scalefactor }
  1339. if (ref^.index=NR_NO) then
  1340. ref^.scalefactor:=0
  1341. else
  1342. if (ref^.scalefactor=0) then
  1343. ref^.scalefactor:=1;
  1344. end
  1345. else
  1346. begin
  1347. { Jumps use a relative offset which can be 8bit,
  1348. for other opcodes we always need to generate the full
  1349. 32bit address }
  1350. if assigned(objdata) and
  1351. is_jmp then
  1352. begin
  1353. currsym:=objdata.symbolref(ref^.symbol);
  1354. l:=ref^.offset;
  1355. {$push}
  1356. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1357. if assigned(currsym) then
  1358. inc(l,currsym.address);
  1359. {$pop}
  1360. { when it is a forward jump we need to compensate the
  1361. offset of the instruction since the previous time,
  1362. because the symbol address is then still using the
  1363. 'old-style' addressing.
  1364. For backwards jumps this is not required because the
  1365. address of the symbol is already adjusted to the
  1366. new offset }
  1367. if (l>InsOffset) and (LastInsOffset<>-1) then
  1368. inc(l,InsOffset-LastInsOffset);
  1369. { instruction size will then always become 2 (PFV) }
  1370. relsize:=(InsOffset+2)-l;
  1371. if (relsize>=-128) and (relsize<=127) and
  1372. (
  1373. not assigned(currsym) or
  1374. (currsym.objsection=objdata.currobjsec)
  1375. ) then
  1376. ot:=OT_IMM8 or OT_SHORT
  1377. else
  1378. {$ifdef i8086}
  1379. ot:=OT_IMM16 or OT_NEAR;
  1380. {$else i8086}
  1381. ot:=OT_IMM32 or OT_NEAR;
  1382. {$endif i8086}
  1383. end
  1384. else
  1385. {$ifdef i8086}
  1386. if opsize=S_FAR then
  1387. ot:=OT_IMM16 or OT_FAR
  1388. else
  1389. ot:=OT_IMM16 or OT_NEAR;
  1390. {$else i8086}
  1391. ot:=OT_IMM32 or OT_NEAR;
  1392. {$endif i8086}
  1393. end;
  1394. end;
  1395. top_local :
  1396. begin
  1397. if (ot and OT_SIZE_MASK)=0 then
  1398. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1399. else
  1400. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1401. end;
  1402. top_const :
  1403. begin
  1404. // if opcode is a SSE or AVX-instruction then we need a
  1405. // special handling (opsize can different from const-size)
  1406. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1407. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1408. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1409. begin
  1410. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1411. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1412. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1413. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1414. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1415. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1416. end;
  1417. end
  1418. else
  1419. begin
  1420. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1421. { further, allow AAD and AAM with imm. operand }
  1422. if (opsize=S_NO) and not((i in [1,2,3])
  1423. {$ifndef x86_64}
  1424. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1425. {$endif x86_64}
  1426. ) then
  1427. message(asmr_e_invalid_opcode_and_operand);
  1428. if
  1429. {$ifdef i8086}
  1430. (longint(val)>=-128) and (val<=127) then
  1431. {$else i8086}
  1432. (opsize<>S_W) and
  1433. (aint(val)>=-128) and (val<=127) then
  1434. {$endif not i8086}
  1435. ot:=OT_IMM8 or OT_SIGNED
  1436. else
  1437. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1438. if (val=1) and (i=1) then
  1439. ot := ot or OT_ONENESS;
  1440. end;
  1441. end;
  1442. top_none :
  1443. begin
  1444. { generated when there was an error in the
  1445. assembler reader. It never happends when generating
  1446. assembler }
  1447. end;
  1448. else
  1449. internalerror(200402266);
  1450. end;
  1451. end;
  1452. end;
  1453. function taicpu.InsEnd:longint;
  1454. begin
  1455. InsEnd:=InsOffset+InsSize;
  1456. end;
  1457. function taicpu.Matches(p:PInsEntry):boolean;
  1458. { * IF_SM stands for Size Match: any operand whose size is not
  1459. * explicitly specified by the template is `really' intended to be
  1460. * the same size as the first size-specified operand.
  1461. * Non-specification is tolerated in the input instruction, but
  1462. * _wrong_ specification is not.
  1463. *
  1464. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1465. * three-operand instructions such as SHLD: it implies that the
  1466. * first two operands must match in size, but that the third is
  1467. * required to be _unspecified_.
  1468. *
  1469. * IF_SB invokes Size Byte: operands with unspecified size in the
  1470. * template are really bytes, and so no non-byte specification in
  1471. * the input instruction will be tolerated. IF_SW similarly invokes
  1472. * Size Word, and IF_SD invokes Size Doubleword.
  1473. *
  1474. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1475. * that any operand with unspecified size in the template is
  1476. * required to have unspecified size in the instruction too...)
  1477. }
  1478. var
  1479. insot,
  1480. currot: int64;
  1481. i,j,asize,oprs : longint;
  1482. insflags:tinsflags;
  1483. vopext: int64;
  1484. siz : array[0..max_operands-1] of longint;
  1485. begin
  1486. result:=false;
  1487. { Check the opcode and operands }
  1488. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1489. exit;
  1490. {$ifdef i8086}
  1491. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1492. cpu is earlier than 386. There's another entry, later in the table for
  1493. i8086, which simulates it with i8086 instructions:
  1494. JNcc short +3
  1495. JMP near target }
  1496. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1497. (IF_386 in p^.flags) then
  1498. exit;
  1499. {$endif i8086}
  1500. for i:=0 to p^.ops-1 do
  1501. begin
  1502. insot:=p^.optypes[i];
  1503. currot:=oper[i]^.ot;
  1504. { Check the operand flags }
  1505. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1506. exit;
  1507. { Check if the passed operand size matches with one of
  1508. the supported operand sizes }
  1509. if ((insot and OT_SIZE_MASK)<>0) and
  1510. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1511. exit;
  1512. { "far" matches only with "far" }
  1513. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1514. exit;
  1515. end;
  1516. { Check operand sizes }
  1517. insflags:=p^.flags;
  1518. if (insflags*IF_SMASK)<>[] then
  1519. begin
  1520. { as default an untyped size can get all the sizes, this is different
  1521. from nasm, but else we need to do a lot checking which opcodes want
  1522. size or not with the automatic size generation }
  1523. asize:=-1;
  1524. if IF_SB in insflags then
  1525. asize:=OT_BITS8
  1526. else if IF_SW in insflags then
  1527. asize:=OT_BITS16
  1528. else if IF_SD in insflags then
  1529. asize:=OT_BITS32;
  1530. if insflags*IF_ARMASK<>[] then
  1531. begin
  1532. siz[0]:=-1;
  1533. siz[1]:=-1;
  1534. siz[2]:=-1;
  1535. if IF_AR0 in insflags then
  1536. siz[0]:=asize
  1537. else if IF_AR1 in insflags then
  1538. siz[1]:=asize
  1539. else if IF_AR2 in insflags then
  1540. siz[2]:=asize
  1541. else
  1542. internalerror(2017092101);
  1543. end
  1544. else
  1545. begin
  1546. siz[0]:=asize;
  1547. siz[1]:=asize;
  1548. siz[2]:=asize;
  1549. end;
  1550. if insflags*[IF_SM,IF_SM2]<>[] then
  1551. begin
  1552. if IF_SM2 in insflags then
  1553. oprs:=2
  1554. else
  1555. oprs:=p^.ops;
  1556. for i:=0 to oprs-1 do
  1557. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1558. begin
  1559. for j:=0 to oprs-1 do
  1560. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1561. break;
  1562. end;
  1563. end
  1564. else
  1565. oprs:=2;
  1566. { Check operand sizes }
  1567. for i:=0 to p^.ops-1 do
  1568. begin
  1569. insot:=p^.optypes[i];
  1570. currot:=oper[i]^.ot;
  1571. if ((insot and OT_SIZE_MASK)=0) and
  1572. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1573. { Immediates can always include smaller size }
  1574. ((currot and OT_IMMEDIATE)=0) and
  1575. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1576. exit;
  1577. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1578. exit;
  1579. end;
  1580. end;
  1581. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1582. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1583. begin
  1584. for i:=0 to p^.ops-1 do
  1585. begin
  1586. insot:=p^.optypes[i];
  1587. if ((insot and (OT_XMMRM or OT_REG_EXTRA_MASK)) = OT_XMMRM) OR
  1588. ((insot and (OT_YMMRM or OT_REG_EXTRA_MASK)) = OT_YMMRM) OR
  1589. ((insot and (OT_ZMMRM or OT_REG_EXTRA_MASK)) = OT_ZMMRM) then
  1590. begin
  1591. if (insot and OT_SIZE_MASK) = 0 then
  1592. begin
  1593. case insot and (OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
  1594. OT_XMMRM: insot := insot or OT_BITS128;
  1595. OT_YMMRM: insot := insot or OT_BITS256;
  1596. OT_ZMMRM: insot := insot or OT_BITS512;
  1597. end;
  1598. end;
  1599. end;
  1600. currot:=oper[i]^.ot;
  1601. { Check the operand flags }
  1602. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1603. exit;
  1604. { Check if the passed operand size matches with one of
  1605. the supported operand sizes }
  1606. if ((insot and OT_SIZE_MASK)<>0) and
  1607. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1608. exit;
  1609. end;
  1610. end;
  1611. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1612. begin
  1613. for i:=0 to p^.ops-1 do
  1614. begin
  1615. // check vectoroperand-extention e.g. {k1} {z}
  1616. vopext := 0;
  1617. if (oper[i]^.vopext and OTVE_VECTOR_WRITEMASK) = OTVE_VECTOR_WRITEMASK then
  1618. begin
  1619. vopext := vopext or OT_VECTORMASK;
  1620. if (oper[i]^.vopext and OTVE_VECTOR_ZERO) = OTVE_VECTOR_ZERO then
  1621. vopext := vopext or OT_VECTORZERO;
  1622. end;
  1623. if (oper[i]^.vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST then
  1624. begin
  1625. vopext := vopext or OT_VECTORBCST;
  1626. if (InsTabMemRefSizeInfoCache^[opcode].BCSTTypes <> []) then
  1627. begin
  1628. // any opcodes needs a special handling
  1629. // default broadcast calculation is
  1630. // bmem32
  1631. // xmmreg: {1to4}
  1632. // ymmreg: {1to8}
  1633. // zmmreg: {1to16}
  1634. // bmem64
  1635. // xmmreg: {1to2}
  1636. // ymmreg: {1to4}
  1637. // zmmreg: {1to8}
  1638. // in any opcodes not exists a mmregister
  1639. // e.g. vfpclasspd k1, [RAX] {1to8}, 0
  1640. // =>> check flags
  1641. case oper[i]^.vopext and (OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16) of
  1642. OTVE_VECTOR_BCST2: if not(IF_BCST2 in p^.flags) then exit;
  1643. OTVE_VECTOR_BCST4: if not(IF_BCST4 in p^.flags) then exit;
  1644. OTVE_VECTOR_BCST8: if not(IF_BCST8 in p^.flags) then exit;
  1645. OTVE_VECTOR_BCST16: if not(IF_BCST16 in p^.flags) then exit;
  1646. else exit; //TG TODO errormsg
  1647. end;
  1648. end;
  1649. end;
  1650. if (oper[i]^.vopext and OTVE_VECTOR_ER) = OTVE_VECTOR_ER then
  1651. vopext := vopext or OT_VECTORER;
  1652. if (oper[i]^.vopext and OTVE_VECTOR_SAE) = OTVE_VECTOR_SAE then
  1653. vopext := vopext or OT_VECTORSAE;
  1654. if p^.optypes[i] and vopext <> vopext then
  1655. exit;
  1656. end;
  1657. end;
  1658. result:=true;
  1659. end;
  1660. procedure taicpu.ResetPass1;
  1661. begin
  1662. { we need to reset everything here, because the choosen insentry
  1663. can be invalid for a new situation where the previously optimized
  1664. insentry is not correct }
  1665. InsEntry:=nil;
  1666. InsSize:=0;
  1667. LastInsOffset:=-1;
  1668. end;
  1669. procedure taicpu.ResetPass2;
  1670. begin
  1671. { we are here in a second pass, check if the instruction can be optimized }
  1672. if assigned(InsEntry) and
  1673. (IF_PASS2 in InsEntry^.flags) then
  1674. begin
  1675. InsEntry:=nil;
  1676. InsSize:=0;
  1677. end;
  1678. LastInsOffset:=-1;
  1679. end;
  1680. function taicpu.CheckIfValid:boolean;
  1681. begin
  1682. result:=FindInsEntry(nil);
  1683. end;
  1684. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1685. var
  1686. i : longint;
  1687. //TG TODO delete
  1688. p: pInsentry;
  1689. begin
  1690. result:=false;
  1691. { Things which may only be done once, not when a second pass is done to
  1692. optimize }
  1693. //TG TODO delete
  1694. p := Insentry;
  1695. if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
  1696. begin
  1697. current_filepos:=fileinfo;
  1698. { We need intel style operands }
  1699. SetOperandOrder(op_intel);
  1700. { create the .ot fields }
  1701. create_ot(objdata);
  1702. { set the file postion }
  1703. end
  1704. else
  1705. begin
  1706. { we've already an insentry so it's valid }
  1707. result:=true;
  1708. exit;
  1709. end;
  1710. { Lookup opcode in the table }
  1711. InsSize:=-1;
  1712. i:=instabcache^[opcode];
  1713. if i=-1 then
  1714. begin
  1715. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1716. exit;
  1717. end;
  1718. insentry:=@instab[i];
  1719. while (insentry^.opcode=opcode) do
  1720. begin
  1721. if matches(insentry) then
  1722. begin
  1723. result:=true;
  1724. exit;
  1725. end;
  1726. inc(insentry);
  1727. end;
  1728. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1729. { No instruction found, set insentry to nil and inssize to -1 }
  1730. insentry:=nil;
  1731. inssize:=-1;
  1732. end;
  1733. function taicpu.CheckUseEVEX: boolean;
  1734. var
  1735. i: integer;
  1736. begin
  1737. result := false;
  1738. for i := 0 to ops - 1 do
  1739. begin
  1740. if (oper[i]^.typ=top_reg) and
  1741. (getregtype(oper[i]^.reg) = R_MMREGISTER) then
  1742. if getsupreg(oper[i]^.reg)>=16 then
  1743. result := true;
  1744. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  1745. result := true;
  1746. end;
  1747. end;
  1748. procedure taicpu.CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  1749. var
  1750. i: integer;
  1751. tuplesize: integer;
  1752. memsize: integer;
  1753. begin
  1754. if EVEXTupleState = etsUnknown then
  1755. begin
  1756. EVEXTupleState := etsNotTuple;
  1757. if aInsEntry^.Flags * IF_TUPLEMASK <> [] then
  1758. begin
  1759. tuplesize := 0;
  1760. if IF_TFV in aInsEntry^.Flags then
  1761. begin
  1762. for i := 0 to aInsEntry^.ops - 1 do
  1763. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1764. begin
  1765. tuplesize := 4;
  1766. break;
  1767. end
  1768. else if (aInsEntry^.optypes[i] and OT_BMEM64 = OT_BMEM64) then
  1769. begin
  1770. tuplesize := 8;
  1771. break;
  1772. end
  1773. else if (aInsEntry^.optypes[i] and OT_MEMORY = OT_MEMORY) then
  1774. begin
  1775. if aIsVector512 then tuplesize := 64
  1776. else if aIsVector256 then tuplesize := 32
  1777. else tuplesize := 16;
  1778. break;
  1779. end
  1780. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1781. begin
  1782. if aIsVector512 then tuplesize := 64
  1783. else if aIsVector256 then tuplesize := 32
  1784. else tuplesize := 16;
  1785. break;
  1786. end;
  1787. end
  1788. else if IF_THV in aInsEntry^.Flags then
  1789. begin
  1790. for i := 0 to aInsEntry^.ops - 1 do
  1791. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1792. begin
  1793. tuplesize := 4;
  1794. break;
  1795. end
  1796. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1797. begin
  1798. if aIsVector512 then tuplesize := 32
  1799. else if aIsVector256 then tuplesize := 16
  1800. else tuplesize := 8;
  1801. break;
  1802. end
  1803. end
  1804. else if IF_TFVM in aInsEntry^.Flags then
  1805. begin
  1806. if aIsVector512 then tuplesize := 64
  1807. else if aIsVector256 then tuplesize := 32
  1808. else tuplesize := 16;
  1809. end
  1810. else
  1811. begin
  1812. memsize := 0;
  1813. for i := 0 to aInsEntry^.ops - 1 do
  1814. begin
  1815. if aInsEntry^.optypes[i] and (OT_REGNORM or OT_MEMORY) = OT_REGMEM then
  1816. begin
  1817. case aInsEntry^.optypes[i] and (OT_BITS32 or OT_BITS64) of
  1818. OT_BITS32: begin
  1819. memsize := 32;
  1820. break;
  1821. end;
  1822. OT_BITS64: begin
  1823. memsize := 64;
  1824. break;
  1825. end;
  1826. end;
  1827. end
  1828. else
  1829. case aInsEntry^.optypes[i] and (OT_MEM8 or OT_MEM16 or OT_MEM32 or OT_MEM64) of
  1830. OT_MEM8: begin
  1831. memsize := 8;
  1832. break;
  1833. end;
  1834. OT_MEM16: begin
  1835. memsize := 16;
  1836. break;
  1837. end;
  1838. OT_MEM32: begin
  1839. memsize := 32;
  1840. break;
  1841. end;
  1842. OT_MEM64: //if aIsEVEXW1 then
  1843. begin
  1844. memsize := 64;
  1845. break;
  1846. end;
  1847. end;
  1848. end;
  1849. if IF_T1S in aInsEntry^.Flags then
  1850. begin
  1851. case memsize of
  1852. 8: tuplesize := 1;
  1853. 16: tuplesize := 2;
  1854. else if aIsEVEXW1 then tuplesize := 8
  1855. else tuplesize := 4;
  1856. end;
  1857. end
  1858. else if IF_T1F32 in aInsEntry^.Flags then tuplesize := 4
  1859. else if IF_T1F64 in aInsEntry^.Flags then tuplesize := 8
  1860. else if IF_T2 in aInsEntry^.Flags then
  1861. begin
  1862. case aIsEVEXW1 of
  1863. false: tuplesize := 8;
  1864. else if aIsVector256 or aIsVector512 then tuplesize := 16;
  1865. end;
  1866. end
  1867. else if IF_T4 in aInsEntry^.Flags then
  1868. begin
  1869. case aIsEVEXW1 of
  1870. false: if aIsVector256 or aIsVector512 then tuplesize := 16;
  1871. else if aIsVector512 then tuplesize := 32;
  1872. end;
  1873. end
  1874. else if IF_T8 in aInsEntry^.Flags then
  1875. begin
  1876. case aIsEVEXW1 of
  1877. false: if aIsVector512 then tuplesize := 32;
  1878. end;
  1879. end
  1880. else if IF_THVM in aInsEntry^.Flags then
  1881. begin
  1882. tuplesize := 8; // default 128bit-vectorlength
  1883. if aIsVector256 then tuplesize := 16
  1884. else if aIsVector512 then tuplesize := 32;
  1885. end
  1886. else if IF_TQVM in aInsEntry^.Flags then
  1887. begin
  1888. tuplesize := 4; // default 128bit-vectorlength
  1889. if aIsVector256 then tuplesize := 8
  1890. else if aIsVector512 then tuplesize := 16;
  1891. end
  1892. else if IF_TOVM in aInsEntry^.Flags then
  1893. begin
  1894. tuplesize := 2; // default 128bit-vectorlength
  1895. if aIsVector256 then tuplesize := 4
  1896. else if aIsVector512 then tuplesize := 8;
  1897. end
  1898. else if IF_TMEM128 in aInsEntry^.Flags then tuplesize := 16
  1899. else if IF_TMDDUP in aInsEntry^.Flags then
  1900. begin
  1901. tuplesize := 8; // default 128bit-vectorlength
  1902. if aIsVector256 then tuplesize := 32
  1903. else if aIsVector512 then tuplesize := 64;
  1904. end;
  1905. end;;
  1906. if tuplesize > 0 then
  1907. begin
  1908. if aInput.typ = top_ref then
  1909. begin
  1910. if (aInput.ref^.offset <> 0) and
  1911. ((aInput.ref^.offset mod tuplesize) = 0) and
  1912. (abs(aInput.ref^.offset) div tuplesize <= 127) then
  1913. begin
  1914. aInput.ref^.offset := aInput.ref^.offset div tuplesize;
  1915. EVEXTupleState := etsIsTuple;
  1916. end;
  1917. end;
  1918. end;
  1919. end;
  1920. end;
  1921. end;
  1922. function taicpu.Pass1(objdata:TObjData):longint;
  1923. begin
  1924. Pass1:=0;
  1925. { Save the old offset and set the new offset }
  1926. InsOffset:=ObjData.CurrObjSec.Size;
  1927. { Error? }
  1928. if (Insentry=nil) and (InsSize=-1) then
  1929. exit;
  1930. { set the file postion }
  1931. current_filepos:=fileinfo;
  1932. { Get InsEntry }
  1933. if FindInsEntry(ObjData) then
  1934. begin
  1935. { Calculate instruction size }
  1936. InsSize:=calcsize(insentry);
  1937. if segprefix<>NR_NO then
  1938. inc(InsSize);
  1939. if NeedAddrPrefix then
  1940. inc(InsSize);
  1941. { Fix opsize if size if forced }
  1942. if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
  1943. begin
  1944. if insentry^.flags*IF_ARMASK=[] then
  1945. begin
  1946. if IF_SB in insentry^.flags then
  1947. begin
  1948. if opsize=S_NO then
  1949. opsize:=S_B;
  1950. end
  1951. else if IF_SW in insentry^.flags then
  1952. begin
  1953. if opsize=S_NO then
  1954. opsize:=S_W;
  1955. end
  1956. else if IF_SD in insentry^.flags then
  1957. begin
  1958. if opsize=S_NO then
  1959. opsize:=S_L;
  1960. end;
  1961. end;
  1962. end;
  1963. LastInsOffset:=InsOffset;
  1964. Pass1:=InsSize;
  1965. exit;
  1966. end;
  1967. LastInsOffset:=-1;
  1968. end;
  1969. const
  1970. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1971. // es cs ss ds fs gs
  1972. $26, $2E, $36, $3E, $64, $65
  1973. );
  1974. procedure taicpu.Pass2(objdata:TObjData);
  1975. begin
  1976. { error in pass1 ? }
  1977. if insentry=nil then
  1978. exit;
  1979. current_filepos:=fileinfo;
  1980. { Segment override }
  1981. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1982. begin
  1983. {$ifdef i8086}
  1984. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  1985. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  1986. Message(asmw_e_instruction_not_supported_by_cpu);
  1987. {$endif i8086}
  1988. objdata.writebytes(segprefixes[segprefix],1);
  1989. { fix the offset for GenNode }
  1990. inc(InsOffset);
  1991. end
  1992. else if segprefix<>NR_NO then
  1993. InternalError(201001071);
  1994. { Address size prefix? }
  1995. if NeedAddrPrefix then
  1996. begin
  1997. write0x67prefix(objdata);
  1998. { fix the offset for GenNode }
  1999. inc(InsOffset);
  2000. end;
  2001. { Generate the instruction }
  2002. GenCode(objdata);
  2003. end;
  2004. function is_64_bit_ref(const ref:treference):boolean;
  2005. begin
  2006. {$if defined(x86_64)}
  2007. result:=not is_32_bit_ref(ref);
  2008. {$elseif defined(i386) or defined(i8086)}
  2009. result:=false;
  2010. {$endif}
  2011. end;
  2012. function is_32_bit_ref(const ref:treference):boolean;
  2013. begin
  2014. {$if defined(x86_64)}
  2015. result:=(ref.refaddr=addr_no) and
  2016. (ref.base<>NR_RIP) and
  2017. (
  2018. ((ref.index<>NR_NO) and (getsubreg(ref.index)=R_SUBD)) or
  2019. ((ref.base<>NR_NO) and (getsubreg(ref.base)=R_SUBD))
  2020. );
  2021. {$elseif defined(i386) or defined(i8086)}
  2022. result:=not is_16_bit_ref(ref);
  2023. {$endif}
  2024. end;
  2025. function is_16_bit_ref(const ref:treference):boolean;
  2026. var
  2027. ir,br : Tregister;
  2028. isub,bsub : tsubregister;
  2029. begin
  2030. if (ref.index<>NR_NO) and (getregtype(ref.index)=R_MMREGISTER) then
  2031. exit(false);
  2032. ir:=ref.index;
  2033. br:=ref.base;
  2034. isub:=getsubreg(ir);
  2035. bsub:=getsubreg(br);
  2036. { it's a direct address }
  2037. if (br=NR_NO) and (ir=NR_NO) then
  2038. begin
  2039. {$ifdef i8086}
  2040. result:=true;
  2041. {$else i8086}
  2042. result:=false;
  2043. {$endif}
  2044. end
  2045. else
  2046. { it's an indirection }
  2047. begin
  2048. result := ((ir<>NR_NO) and (isub=R_SUBW)) or
  2049. ((br<>NR_NO) and (bsub=R_SUBW));
  2050. end;
  2051. end;
  2052. function get_ref_address_size(const ref:treference):byte;
  2053. begin
  2054. if is_64_bit_ref(ref) then
  2055. result:=64
  2056. else if is_32_bit_ref(ref) then
  2057. result:=32
  2058. else if is_16_bit_ref(ref) then
  2059. result:=16
  2060. else
  2061. internalerror(2017101601);
  2062. end;
  2063. function get_default_segment_of_ref(const ref:treference):tregister;
  2064. begin
  2065. { for 16-bit registers, we allow base and index to be swapped, that's
  2066. why we also we check whether ref.index=NR_BP. For 32-bit registers,
  2067. however, index=NR_EBP is encoded differently than base=NR_EBP and has
  2068. a different default segment. }
  2069. if (ref.base=NR_BP) or (ref.index=NR_BP) or
  2070. (ref.base=NR_EBP) or (ref.base=NR_ESP)
  2071. {$ifdef x86_64}
  2072. or (ref.base=NR_RBP) or (ref.base=NR_RSP)
  2073. {$endif x86_64}
  2074. then
  2075. result:=NR_SS
  2076. else
  2077. result:=NR_DS;
  2078. end;
  2079. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  2080. var
  2081. ss_equals_ds: boolean;
  2082. tmpreg: TRegister;
  2083. begin
  2084. {$ifdef x86_64}
  2085. { x86_64 in long mode ignores all segment base, limit and access rights
  2086. checks for the DS, ES and SS registers, so we can set ss_equals_ds to
  2087. true (and thus, perform stronger optimizations on the reference),
  2088. regardless of whether this is inline asm or not (so, even if the user
  2089. is doing tricks by loading different values into DS and SS, it still
  2090. doesn't matter while the processor is in long mode) }
  2091. ss_equals_ds:=True;
  2092. {$else x86_64}
  2093. { for i8086 and i386 inline asm, we assume SS<>DS, even if we're
  2094. compiling for a memory model, where SS=DS, because the user might be
  2095. doing something tricky with the segment registers (and may have
  2096. temporarily set them differently) }
  2097. if inlineasm then
  2098. ss_equals_ds:=False
  2099. else
  2100. ss_equals_ds:=segment_regs_equal(NR_DS,NR_SS);
  2101. {$endif x86_64}
  2102. { remove redundant segment overrides }
  2103. if (ref.segment<>NR_NO) and
  2104. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2105. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2106. ref.segment:=NR_NO;
  2107. if not is_16_bit_ref(ref) then
  2108. begin
  2109. { Switching index to base position gives shorter assembler instructions.
  2110. Converting index*2 to base+index also gives shorter instructions. }
  2111. if (ref.base=NR_NO) and (ref.index<>NR_NO) and (ref.scalefactor<=2) and
  2112. (ss_equals_ds or (ref.segment<>NR_NO) or (ref.index<>NR_EBP)) then
  2113. begin
  2114. ref.base:=ref.index;
  2115. if ref.scalefactor=2 then
  2116. ref.scalefactor:=1
  2117. else
  2118. begin
  2119. ref.index:=NR_NO;
  2120. ref.scalefactor:=0;
  2121. end;
  2122. end;
  2123. { Switching rBP+reg to reg+rBP sometimes gives shorter instructions (if there's no offset)
  2124. On x86_64 this also works for switching r13+reg to reg+r13. }
  2125. if ((ref.base=NR_EBP) {$ifdef x86_64}or (ref.base=NR_RBP) or (ref.base=NR_R13) or (ref.base=NR_R13D){$endif}) and
  2126. (ref.index<>NR_NO) and
  2127. (ref.index<>NR_EBP) and {$ifdef x86_64}(ref.index<>NR_RBP) and (ref.index<>NR_R13) and (ref.index<>NR_R13D) and{$endif}
  2128. (ref.scalefactor<=1) and (ref.offset=0) and (ref.refaddr=addr_no) and
  2129. (ss_equals_ds or (ref.segment<>NR_NO)) then
  2130. begin
  2131. tmpreg:=ref.base;
  2132. ref.base:=ref.index;
  2133. ref.index:=tmpreg;
  2134. end;
  2135. end;
  2136. { remove redundant segment overrides again }
  2137. if (ref.segment<>NR_NO) and
  2138. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2139. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2140. ref.segment:=NR_NO;
  2141. end;
  2142. function taicpu.NeedAddrPrefix(opidx: byte): boolean;
  2143. begin
  2144. {$if defined(x86_64)}
  2145. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2146. {$elseif defined(i386)}
  2147. result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^.ref^);
  2148. {$elseif defined(i8086)}
  2149. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2150. {$endif}
  2151. end;
  2152. function taicpu.NeedAddrPrefix:boolean;
  2153. var
  2154. i: Integer;
  2155. begin
  2156. for i:=0 to ops-1 do
  2157. if needaddrprefix(i) then
  2158. exit(true);
  2159. result:=false;
  2160. end;
  2161. procedure badreg(r:Tregister);
  2162. begin
  2163. Message1(asmw_e_invalid_register,generic_regname(r));
  2164. end;
  2165. function regval(r:Tregister):byte;
  2166. const
  2167. intsupreg2opcode: array[0..7] of byte=
  2168. // ax cx dx bx si di bp sp -- in x86reg.dat
  2169. // ax cx dx bx sp bp si di -- needed order
  2170. (0, 1, 2, 3, 6, 7, 5, 4);
  2171. maxsupreg: array[tregistertype] of tsuperregister=
  2172. {$ifdef x86_64}
  2173. //(0, 16, 9, 8, 16, 32, 0, 0);
  2174. (0, 16, 9, 8, 32, 32, 8, 0); //TG
  2175. {$else x86_64}
  2176. (0, 8, 9, 8, 8, 32, 8, 0);
  2177. {$endif x86_64}
  2178. var
  2179. rs: tsuperregister;
  2180. rt: tregistertype;
  2181. begin
  2182. rs:=getsupreg(r);
  2183. rt:=getregtype(r);
  2184. if (rs>=maxsupreg[rt]) then
  2185. badreg(r);
  2186. result:=rs and 7;
  2187. if (rt=R_INTREGISTER) then
  2188. begin
  2189. if (rs<8) then
  2190. result:=intsupreg2opcode[rs];
  2191. if getsubreg(r)=R_SUBH then
  2192. inc(result,4);
  2193. end;
  2194. end;
  2195. {$if defined(x86_64)}
  2196. function rexbits(r: tregister): byte;
  2197. begin
  2198. result:=0;
  2199. case getregtype(r) of
  2200. R_INTREGISTER:
  2201. if (getsupreg(r)>=RS_R8) then
  2202. { Either B,X or R bits can be set, depending on register role in instruction.
  2203. Set all three bits here, caller will discard unnecessary ones. }
  2204. result:=result or $47
  2205. else if (getsubreg(r)=R_SUBL) and
  2206. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  2207. result:=result or $40
  2208. else if (getsubreg(r)=R_SUBH) then
  2209. { Not an actual REX bit, used to detect incompatible usage of
  2210. AH/BH/CH/DH }
  2211. result:=result or $80;
  2212. R_MMREGISTER:
  2213. //if getsupreg(r)>=RS_XMM8 then
  2214. // AVX512 = 32 register
  2215. // rexbit = 0 => MMRegister 0..7 or 16..23
  2216. // rexbit = 1 => MMRegister 8..15 or 24..31
  2217. if (getsupreg(r) and $08) = $08 then
  2218. result:=result or $47;
  2219. end;
  2220. end;
  2221. function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2222. var
  2223. sym : tasmsymbol;
  2224. md,s : byte;
  2225. base,index,scalefactor,
  2226. o : longint;
  2227. ir,br : Tregister;
  2228. isub,bsub : tsubregister;
  2229. begin
  2230. result:=false;
  2231. ir:=input.ref^.index;
  2232. br:=input.ref^.base;
  2233. isub:=getsubreg(ir);
  2234. bsub:=getsubreg(br);
  2235. s:=input.ref^.scalefactor;
  2236. o:=input.ref^.offset;
  2237. sym:=input.ref^.symbol;
  2238. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  2239. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2240. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  2241. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  2242. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2243. internalerror(200301081);
  2244. { it's direct address }
  2245. if (br=NR_NO) and (ir=NR_NO) then
  2246. begin
  2247. output.sib_present:=true;
  2248. output.bytes:=4;
  2249. output.modrm:=4 or (rfield shl 3);
  2250. output.sib:=$25;
  2251. end
  2252. else if (br=NR_RIP) and (ir=NR_NO) then
  2253. begin
  2254. { rip based }
  2255. output.sib_present:=false;
  2256. output.bytes:=4;
  2257. output.modrm:=5 or (rfield shl 3);
  2258. end
  2259. else
  2260. { it's an indirection }
  2261. begin
  2262. { 16 bit? }
  2263. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2264. (br<>NR_NO) and (bsub=R_SUBQ)
  2265. ) then
  2266. begin
  2267. // vector memory (AVX2) =>> ignore
  2268. end
  2269. else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
  2270. ((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
  2271. begin
  2272. message(asmw_e_16bit_32bit_not_supported);
  2273. end;
  2274. { wrong, for various reasons }
  2275. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2276. exit;
  2277. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  2278. result:=true;
  2279. { base }
  2280. case br of
  2281. NR_R8D,
  2282. NR_EAX,
  2283. NR_R8,
  2284. NR_RAX : base:=0;
  2285. NR_R9D,
  2286. NR_ECX,
  2287. NR_R9,
  2288. NR_RCX : base:=1;
  2289. NR_R10D,
  2290. NR_EDX,
  2291. NR_R10,
  2292. NR_RDX : base:=2;
  2293. NR_R11D,
  2294. NR_EBX,
  2295. NR_R11,
  2296. NR_RBX : base:=3;
  2297. NR_R12D,
  2298. NR_ESP,
  2299. NR_R12,
  2300. NR_RSP : base:=4;
  2301. NR_R13D,
  2302. NR_EBP,
  2303. NR_R13,
  2304. NR_NO,
  2305. NR_RBP : base:=5;
  2306. NR_R14D,
  2307. NR_ESI,
  2308. NR_R14,
  2309. NR_RSI : base:=6;
  2310. NR_R15D,
  2311. NR_EDI,
  2312. NR_R15,
  2313. NR_RDI : base:=7;
  2314. else
  2315. exit;
  2316. end;
  2317. { index }
  2318. case ir of
  2319. NR_R8D,
  2320. NR_EAX,
  2321. NR_R8,
  2322. NR_RAX,
  2323. NR_XMM0,
  2324. NR_XMM8,
  2325. NR_XMM16,
  2326. NR_XMM24,
  2327. NR_YMM0,
  2328. NR_YMM8,
  2329. NR_YMM16,
  2330. NR_YMM24,
  2331. NR_ZMM0,
  2332. NR_ZMM8,
  2333. NR_ZMM16,
  2334. NR_ZMM24: index:=0;
  2335. NR_R9D,
  2336. NR_ECX,
  2337. NR_R9,
  2338. NR_RCX,
  2339. NR_XMM1,
  2340. NR_XMM9,
  2341. NR_XMM17,
  2342. NR_XMM25,
  2343. NR_YMM1,
  2344. NR_YMM9,
  2345. NR_YMM17,
  2346. NR_YMM25,
  2347. NR_ZMM1,
  2348. NR_ZMM9,
  2349. NR_ZMM17,
  2350. NR_ZMM25: index:=1;
  2351. NR_R10D,
  2352. NR_EDX,
  2353. NR_R10,
  2354. NR_RDX,
  2355. NR_XMM2,
  2356. NR_XMM10,
  2357. NR_XMM18,
  2358. NR_XMM26,
  2359. NR_YMM2,
  2360. NR_YMM10,
  2361. NR_YMM18,
  2362. NR_YMM26,
  2363. NR_ZMM2,
  2364. NR_ZMM10,
  2365. NR_ZMM18,
  2366. NR_ZMM26: index:=2;
  2367. NR_R11D,
  2368. NR_EBX,
  2369. NR_R11,
  2370. NR_RBX,
  2371. NR_XMM3,
  2372. NR_XMM11,
  2373. NR_XMM19,
  2374. NR_XMM27,
  2375. NR_YMM3,
  2376. NR_YMM11,
  2377. NR_YMM19,
  2378. NR_YMM27,
  2379. NR_ZMM3,
  2380. NR_ZMM11,
  2381. NR_ZMM19,
  2382. NR_ZMM27: index:=3;
  2383. NR_R12D,
  2384. NR_ESP,
  2385. NR_R12,
  2386. NR_NO,
  2387. NR_XMM4,
  2388. NR_XMM12,
  2389. NR_XMM20,
  2390. NR_XMM28,
  2391. NR_YMM4,
  2392. NR_YMM12,
  2393. NR_YMM20,
  2394. NR_YMM28,
  2395. NR_ZMM4,
  2396. NR_ZMM12,
  2397. NR_ZMM20,
  2398. NR_ZMM28: index:=4;
  2399. NR_R13D,
  2400. NR_EBP,
  2401. NR_R13,
  2402. NR_RBP,
  2403. NR_XMM5,
  2404. NR_XMM13,
  2405. NR_XMM21,
  2406. NR_XMM29,
  2407. NR_YMM5,
  2408. NR_YMM13,
  2409. NR_YMM21,
  2410. NR_YMM29,
  2411. NR_ZMM5,
  2412. NR_ZMM13,
  2413. NR_ZMM21,
  2414. NR_ZMM29: index:=5;
  2415. NR_R14D,
  2416. NR_ESI,
  2417. NR_R14,
  2418. NR_RSI,
  2419. NR_XMM6,
  2420. NR_XMM14,
  2421. NR_XMM22,
  2422. NR_XMM30,
  2423. NR_YMM6,
  2424. NR_YMM14,
  2425. NR_YMM22,
  2426. NR_YMM30,
  2427. NR_ZMM6,
  2428. NR_ZMM14,
  2429. NR_ZMM22,
  2430. NR_ZMM30: index:=6;
  2431. NR_R15D,
  2432. NR_EDI,
  2433. NR_R15,
  2434. NR_RDI,
  2435. NR_XMM7,
  2436. NR_XMM15,
  2437. NR_XMM23,
  2438. NR_XMM31,
  2439. NR_YMM7,
  2440. NR_YMM15,
  2441. NR_YMM23,
  2442. NR_YMM31,
  2443. NR_ZMM7,
  2444. NR_ZMM15,
  2445. NR_ZMM23,
  2446. NR_ZMM31: index:=7;
  2447. else
  2448. exit;
  2449. end;
  2450. case s of
  2451. 0,
  2452. 1 : scalefactor:=0;
  2453. 2 : scalefactor:=1;
  2454. 4 : scalefactor:=2;
  2455. 8 : scalefactor:=3;
  2456. else
  2457. exit;
  2458. end;
  2459. { If rbp or r13 is used we must always include an offset }
  2460. if (br=NR_NO) or
  2461. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  2462. md:=0
  2463. else
  2464. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2465. md:=1
  2466. else
  2467. md:=2;
  2468. if (br=NR_NO) or (md=2) then
  2469. output.bytes:=4
  2470. else
  2471. output.bytes:=md;
  2472. { SIB needed ? }
  2473. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  2474. begin
  2475. output.sib_present:=false;
  2476. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  2477. end
  2478. else
  2479. begin
  2480. output.sib_present:=true;
  2481. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  2482. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2483. end;
  2484. end;
  2485. output.size:=1+ord(output.sib_present)+output.bytes;
  2486. result:=true;
  2487. end;
  2488. {$elseif defined(i386) or defined(i8086)}
  2489. function process_ea_ref_32(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2490. var
  2491. sym : tasmsymbol;
  2492. md,s : byte;
  2493. base,index,scalefactor,
  2494. o : longint;
  2495. ir,br : Tregister;
  2496. isub,bsub : tsubregister;
  2497. begin
  2498. result:=false;
  2499. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  2500. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  2501. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2502. internalerror(200301081);
  2503. ir:=input.ref^.index;
  2504. br:=input.ref^.base;
  2505. isub:=getsubreg(ir);
  2506. bsub:=getsubreg(br);
  2507. s:=input.ref^.scalefactor;
  2508. o:=input.ref^.offset;
  2509. sym:=input.ref^.symbol;
  2510. { it's direct address }
  2511. if (br=NR_NO) and (ir=NR_NO) then
  2512. begin
  2513. { it's a pure offset }
  2514. output.sib_present:=false;
  2515. output.bytes:=4;
  2516. output.modrm:=5 or (rfield shl 3);
  2517. end
  2518. else
  2519. { it's an indirection }
  2520. begin
  2521. { 16 bit address? }
  2522. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2523. (br<>NR_NO) and (bsub=R_SUBD)
  2524. ) then
  2525. begin
  2526. // vector memory (AVX2) =>> ignore
  2527. end
  2528. else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
  2529. ((br<>NR_NO) and (bsub<>R_SUBD)) then
  2530. message(asmw_e_16bit_not_supported);
  2531. {$ifdef OPTEA}
  2532. { make single reg base }
  2533. if (br=NR_NO) and (s=1) then
  2534. begin
  2535. br:=ir;
  2536. ir:=NR_NO;
  2537. end;
  2538. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  2539. if (br=NR_NO) and
  2540. (((s=2) and (ir<>NR_ESP)) or
  2541. (s=3) or (s=5) or (s=9)) then
  2542. begin
  2543. br:=ir;
  2544. dec(s);
  2545. end;
  2546. { swap ESP into base if scalefactor is 1 }
  2547. if (s=1) and (ir=NR_ESP) then
  2548. begin
  2549. ir:=br;
  2550. br:=NR_ESP;
  2551. end;
  2552. {$endif OPTEA}
  2553. { wrong, for various reasons }
  2554. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2555. exit;
  2556. { base }
  2557. case br of
  2558. NR_EAX : base:=0;
  2559. NR_ECX : base:=1;
  2560. NR_EDX : base:=2;
  2561. NR_EBX : base:=3;
  2562. NR_ESP : base:=4;
  2563. NR_NO,
  2564. NR_EBP : base:=5;
  2565. NR_ESI : base:=6;
  2566. NR_EDI : base:=7;
  2567. else
  2568. exit;
  2569. end;
  2570. { index }
  2571. case ir of
  2572. NR_EAX,
  2573. NR_XMM0,
  2574. NR_YMM0,
  2575. NR_ZMM0: index:=0;
  2576. NR_ECX,
  2577. NR_XMM1,
  2578. NR_YMM1,
  2579. NR_ZMM1: index:=1;
  2580. NR_EDX,
  2581. NR_XMM2,
  2582. NR_YMM2,
  2583. NR_ZMM2: index:=2;
  2584. NR_EBX,
  2585. NR_XMM3,
  2586. NR_YMM3,
  2587. NR_ZMM3: index:=3;
  2588. NR_NO,
  2589. NR_XMM4,
  2590. NR_YMM4,
  2591. NR_ZMM4: index:=4;
  2592. NR_EBP,
  2593. NR_XMM5,
  2594. NR_YMM5,
  2595. NR_ZMM5: index:=5;
  2596. NR_ESI,
  2597. NR_XMM6,
  2598. NR_YMM6,
  2599. NR_ZMM6: index:=6;
  2600. NR_EDI,
  2601. NR_XMM7,
  2602. NR_YMM7,
  2603. NR_ZMM7: index:=7;
  2604. else
  2605. exit;
  2606. end;
  2607. case s of
  2608. 0,
  2609. 1 : scalefactor:=0;
  2610. 2 : scalefactor:=1;
  2611. 4 : scalefactor:=2;
  2612. 8 : scalefactor:=3;
  2613. else
  2614. exit;
  2615. end;
  2616. if (br=NR_NO) or
  2617. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  2618. md:=0
  2619. else
  2620. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2621. md:=1
  2622. else
  2623. md:=2;
  2624. if (br=NR_NO) or (md=2) then
  2625. output.bytes:=4
  2626. else
  2627. output.bytes:=md;
  2628. { SIB needed ? }
  2629. if (ir=NR_NO) and (br<>NR_ESP) then
  2630. begin
  2631. output.sib_present:=false;
  2632. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2633. end
  2634. else
  2635. begin
  2636. output.sib_present:=true;
  2637. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  2638. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2639. end;
  2640. end;
  2641. if output.sib_present then
  2642. output.size:=2+output.bytes
  2643. else
  2644. output.size:=1+output.bytes;
  2645. result:=true;
  2646. end;
  2647. procedure maybe_swap_index_base(var br,ir:Tregister);
  2648. var
  2649. tmpreg: Tregister;
  2650. begin
  2651. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  2652. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  2653. begin
  2654. tmpreg:=br;
  2655. br:=ir;
  2656. ir:=tmpreg;
  2657. end;
  2658. end;
  2659. function process_ea_ref_16(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2660. var
  2661. sym : tasmsymbol;
  2662. md,s,rv : byte;
  2663. base,
  2664. o : longint;
  2665. ir,br : Tregister;
  2666. isub,bsub : tsubregister;
  2667. begin
  2668. result:=false;
  2669. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  2670. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2671. internalerror(200301081);
  2672. ir:=input.ref^.index;
  2673. br:=input.ref^.base;
  2674. isub:=getsubreg(ir);
  2675. bsub:=getsubreg(br);
  2676. s:=input.ref^.scalefactor;
  2677. o:=input.ref^.offset;
  2678. sym:=input.ref^.symbol;
  2679. { it's a direct address }
  2680. if (br=NR_NO) and (ir=NR_NO) then
  2681. begin
  2682. { it's a pure offset }
  2683. output.bytes:=2;
  2684. output.modrm:=6 or (rfield shl 3);
  2685. end
  2686. else
  2687. { it's an indirection }
  2688. begin
  2689. { 32 bit address? }
  2690. if ((ir<>NR_NO) and (isub<>R_SUBW)) or
  2691. ((br<>NR_NO) and (bsub<>R_SUBW)) then
  2692. message(asmw_e_32bit_not_supported);
  2693. { scalefactor can only be 1 in 16-bit addresses }
  2694. if (s<>1) and (ir<>NR_NO) then
  2695. exit;
  2696. maybe_swap_index_base(br,ir);
  2697. if (br=NR_BX) and (ir=NR_SI) then
  2698. base:=0
  2699. else if (br=NR_BX) and (ir=NR_DI) then
  2700. base:=1
  2701. else if (br=NR_BP) and (ir=NR_SI) then
  2702. base:=2
  2703. else if (br=NR_BP) and (ir=NR_DI) then
  2704. base:=3
  2705. else if (br=NR_NO) and (ir=NR_SI) then
  2706. base:=4
  2707. else if (br=NR_NO) and (ir=NR_DI) then
  2708. base:=5
  2709. else if (br=NR_BP) and (ir=NR_NO) then
  2710. base:=6
  2711. else if (br=NR_BX) and (ir=NR_NO) then
  2712. base:=7
  2713. else
  2714. exit;
  2715. if (base<>6) and (o=0) and (sym=nil) then
  2716. md:=0
  2717. else if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2718. md:=1
  2719. else
  2720. md:=2;
  2721. output.bytes:=md;
  2722. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2723. end;
  2724. output.size:=1+output.bytes;
  2725. output.sib_present:=false;
  2726. result:=true;
  2727. end;
  2728. {$endif}
  2729. function process_ea(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2730. var
  2731. rv : byte;
  2732. begin
  2733. result:=false;
  2734. fillchar(output,sizeof(output),0);
  2735. {Register ?}
  2736. if (input.typ=top_reg) then
  2737. begin
  2738. rv:=regval(input.reg);
  2739. output.modrm:=$c0 or (rfield shl 3) or rv;
  2740. output.size:=1;
  2741. {$ifdef x86_64}
  2742. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2743. {$endif x86_64}
  2744. result:=true;
  2745. exit;
  2746. end;
  2747. {No register, so memory reference.}
  2748. if input.typ<>top_ref then
  2749. internalerror(200409263);
  2750. {$if defined(x86_64)}
  2751. result:=process_ea_ref_64_32(input,output,rfield, uselargeoffset);
  2752. {$elseif defined(i386) or defined(i8086)}
  2753. if is_16_bit_ref(input.ref^) then
  2754. result:=process_ea_ref_16(input,output,rfield, uselargeoffset)
  2755. else
  2756. result:=process_ea_ref_32(input,output,rfield, uselargeoffset);
  2757. {$endif}
  2758. end;
  2759. function taicpu.calcsize(p:PInsEntry):shortint;
  2760. var
  2761. codes : pchar;
  2762. c : byte;
  2763. len : shortint;
  2764. len_ea_data: shortint;
  2765. len_ea_data_evex: shortint;
  2766. mref_offset: asizeint;
  2767. ea_data : ea;
  2768. exists_evex: boolean;
  2769. exists_vex: boolean;
  2770. exists_vex_extension: boolean;
  2771. exists_prefix_66: boolean;
  2772. exists_prefix_F2: boolean;
  2773. exists_prefix_F3: boolean;
  2774. exists_l256: boolean;
  2775. exists_l512: boolean;
  2776. exists_EVEXW1: boolean;
  2777. pmref_operand: poper;
  2778. //i: integer;
  2779. //refsize: integer;
  2780. //tuplesize: integer;
  2781. //memsize: integer;
  2782. {$ifdef x86_64}
  2783. omit_rexw : boolean;
  2784. {$endif x86_64}
  2785. begin
  2786. //TG TODO delete
  2787. if p^.opcode = a_VADDPS then
  2788. begin
  2789. len:=0;
  2790. end;
  2791. len:=0;
  2792. len_ea_data := 0;
  2793. len_ea_data_evex:= 0;
  2794. mref_offset := 0;
  2795. pmref_operand := nil;
  2796. codes:=@p^.code[0];
  2797. exists_vex := false;
  2798. exists_vex_extension := false;
  2799. exists_prefix_66 := false;
  2800. exists_prefix_F2 := false;
  2801. exists_prefix_F3 := false;
  2802. exists_evex := false;
  2803. exists_l256 := false;
  2804. exists_l512 := false;
  2805. exists_EVEXW1 := false;
  2806. {$ifdef x86_64}
  2807. rex:=0;
  2808. omit_rexw:=false;
  2809. {$endif x86_64}
  2810. repeat
  2811. c:=ord(codes^);
  2812. inc(codes);
  2813. case c of
  2814. &0 :
  2815. break;
  2816. &1,&2,&3 :
  2817. begin
  2818. inc(codes,c);
  2819. inc(len,c);
  2820. end;
  2821. &10,&11,&12 :
  2822. begin
  2823. {$ifdef x86_64}
  2824. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2825. {$endif x86_64}
  2826. inc(codes);
  2827. inc(len);
  2828. end;
  2829. &13,&23 :
  2830. begin
  2831. inc(codes);
  2832. inc(len);
  2833. end;
  2834. &4,&5,&6,&7 :
  2835. begin
  2836. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2837. inc(len,2)
  2838. else
  2839. inc(len);
  2840. end;
  2841. &14,&15,&16,
  2842. &20,&21,&22,
  2843. &24,&25,&26,&27,
  2844. &50,&51,&52 :
  2845. inc(len);
  2846. &30,&31,&32,
  2847. &37,
  2848. &60,&61,&62 :
  2849. inc(len,2);
  2850. &34,&35,&36:
  2851. begin
  2852. {$ifdef i8086}
  2853. inc(len,2);
  2854. {$else i8086}
  2855. if opsize=S_Q then
  2856. inc(len,8)
  2857. else
  2858. inc(len,4);
  2859. {$endif i8086}
  2860. end;
  2861. &44,&45,&46:
  2862. inc(len,sizeof(pint));
  2863. &54,&55,&56:
  2864. inc(len,8);
  2865. &40,&41,&42,
  2866. &70,&71,&72,
  2867. &254,&255,&256 :
  2868. inc(len,4);
  2869. &64,&65,&66:
  2870. {$ifdef i8086}
  2871. inc(len,2);
  2872. {$else i8086}
  2873. inc(len,4);
  2874. {$endif i8086}
  2875. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2876. &320,&321,&322 :
  2877. begin
  2878. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2879. {$if defined(i386) or defined(x86_64)}
  2880. OT_BITS16 :
  2881. {$elseif defined(i8086)}
  2882. OT_BITS32 :
  2883. {$endif}
  2884. inc(len);
  2885. {$ifdef x86_64}
  2886. OT_BITS64:
  2887. begin
  2888. rex:=rex or $48;
  2889. end;
  2890. {$endif x86_64}
  2891. end;
  2892. end;
  2893. &310 :
  2894. {$if defined(x86_64)}
  2895. { every insentry with code 0310 must be marked with NOX86_64 }
  2896. InternalError(2011051301);
  2897. {$elseif defined(i386)}
  2898. inc(len);
  2899. {$elseif defined(i8086)}
  2900. {nothing};
  2901. {$endif}
  2902. &311 :
  2903. {$if defined(x86_64) or defined(i8086)}
  2904. inc(len)
  2905. {$endif x86_64 or i8086}
  2906. ;
  2907. &324 :
  2908. {$ifndef i8086}
  2909. inc(len)
  2910. {$endif not i8086}
  2911. ;
  2912. &326 :
  2913. begin
  2914. {$ifdef x86_64}
  2915. rex:=rex or $48;
  2916. {$endif x86_64}
  2917. end;
  2918. &312,
  2919. &323,
  2920. &327,
  2921. &331,&332: ;
  2922. &325:
  2923. {$ifdef i8086}
  2924. inc(len)
  2925. {$endif i8086}
  2926. ;
  2927. &333:
  2928. begin
  2929. inc(len);
  2930. exists_prefix_F2 := true;
  2931. end;
  2932. &334:
  2933. begin
  2934. inc(len);
  2935. exists_prefix_F3 := true;
  2936. end;
  2937. &361:
  2938. begin
  2939. {$ifndef i8086}
  2940. inc(len);
  2941. exists_prefix_66 := true;
  2942. {$endif not i8086}
  2943. end;
  2944. &335:
  2945. {$ifdef x86_64}
  2946. omit_rexw:=true
  2947. {$endif x86_64}
  2948. ;
  2949. &100..&227 :
  2950. begin
  2951. {$ifdef x86_64}
  2952. if (c<&177) then
  2953. begin
  2954. if (oper[c and 7]^.typ=top_reg) then
  2955. begin
  2956. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2957. end;
  2958. end;
  2959. {$endif x86_64}
  2960. if (oper[(c shr 3) and 7]^.typ = top_ref) and
  2961. (oper[(c shr 3) and 7]^.ref^.offset <> 0) then
  2962. begin
  2963. if (exists_vex and exists_evex and CheckUseEVEX) or
  2964. (not(exists_vex) and exists_evex) then
  2965. begin
  2966. CheckEVEXTuple(oper[(c shr 3) and 7]^, p, not(exists_l256 or exists_l512), exists_l256, exists_l512, exists_EVEXW1);
  2967. //const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  2968. end;
  2969. end;
  2970. if process_ea(oper[(c shr 3) and 7]^, ea_data, 0, EVEXTupleState = etsNotTuple) then
  2971. inc(len,ea_data.size)
  2972. else Message(asmw_e_invalid_effective_address);
  2973. {$ifdef x86_64}
  2974. rex:=rex or ea_data.rex;
  2975. {$endif x86_64}
  2976. end;
  2977. &350:
  2978. begin
  2979. exists_evex := true;
  2980. end;
  2981. &351: exists_l512 := true; // EVEX length bit 512
  2982. &352: exists_EVEXW1 := true; // EVEX W1
  2983. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2984. // =>> DEFAULT = 2 Bytes
  2985. begin
  2986. //if not(exists_vex) then
  2987. //begin
  2988. // inc(len, 2);
  2989. //end;
  2990. exists_vex := true;
  2991. end;
  2992. &363: // REX.W = 1
  2993. // =>> VEX prefix length = 3
  2994. begin
  2995. if not(exists_vex_extension) then
  2996. begin
  2997. //inc(len);
  2998. exists_vex_extension := true;
  2999. end;
  3000. end;
  3001. &364: exists_l256 := true; // VEX length bit 256
  3002. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  3003. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  3004. &370: // VEX-Extension prefix $0F
  3005. // ignore for calculating length
  3006. ;
  3007. &371, // VEX-Extension prefix $0F38
  3008. &372: // VEX-Extension prefix $0F3A
  3009. begin
  3010. if not(exists_vex_extension) then
  3011. begin
  3012. //inc(len);
  3013. exists_vex_extension := true;
  3014. end;
  3015. end;
  3016. &300,&301,&302:
  3017. begin
  3018. {$if defined(x86_64) or defined(i8086)}
  3019. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3020. inc(len);
  3021. {$endif x86_64 or i8086}
  3022. end;
  3023. else
  3024. InternalError(200603141);
  3025. end;
  3026. until false;
  3027. {$ifdef x86_64}
  3028. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  3029. Message(asmw_e_bad_reg_with_rex);
  3030. rex:=rex and $4F; { reset extra bits in upper nibble }
  3031. if omit_rexw then
  3032. begin
  3033. if rex=$48 then { remove rex entirely? }
  3034. rex:=0
  3035. else
  3036. rex:=rex and $F7;
  3037. end;
  3038. if not(exists_vex or exists_evex) then
  3039. begin
  3040. if rex<>0 then
  3041. Inc(len);
  3042. end;
  3043. {$endif}
  3044. if exists_evex and
  3045. exists_vex then
  3046. begin
  3047. if CheckUseEVEX then
  3048. begin
  3049. inc(len, 4);
  3050. end
  3051. else
  3052. begin
  3053. inc(len, 2);
  3054. if exists_vex_extension then inc(len);
  3055. {$ifdef x86_64}
  3056. if not(exists_vex_extension) then
  3057. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3058. {$endif x86_64}
  3059. end;
  3060. if exists_prefix_66 then dec(len);
  3061. if exists_prefix_F2 then dec(len);
  3062. if exists_prefix_F3 then dec(len);
  3063. end
  3064. else if exists_evex then
  3065. begin
  3066. inc(len, 4);
  3067. if exists_prefix_66 then dec(len);
  3068. if exists_prefix_F2 then dec(len);
  3069. if exists_prefix_F3 then dec(len);
  3070. end
  3071. else
  3072. begin
  3073. if exists_vex then
  3074. begin
  3075. inc(len,2);
  3076. if exists_prefix_66 then dec(len);
  3077. if exists_prefix_F2 then dec(len);
  3078. if exists_prefix_F3 then dec(len);
  3079. if exists_vex_extension then inc(len);
  3080. {$ifdef x86_64}
  3081. if not(exists_vex_extension) then
  3082. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3083. {$endif x86_64}
  3084. end;
  3085. end;
  3086. calcsize:=len;
  3087. end;
  3088. procedure taicpu.write0x66prefix(objdata:TObjData);
  3089. const
  3090. b66: Byte=$66;
  3091. begin
  3092. {$ifdef i8086}
  3093. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3094. Message(asmw_e_instruction_not_supported_by_cpu);
  3095. {$endif i8086}
  3096. objdata.writebytes(b66,1);
  3097. end;
  3098. procedure taicpu.write0x67prefix(objdata:TObjData);
  3099. const
  3100. b67: Byte=$67;
  3101. begin
  3102. {$ifdef i8086}
  3103. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3104. Message(asmw_e_instruction_not_supported_by_cpu);
  3105. {$endif i8086}
  3106. objdata.writebytes(b67,1);
  3107. end;
  3108. procedure taicpu.gencode(objdata: TObjData);
  3109. {
  3110. * the actual codes (C syntax, i.e. octal):
  3111. * \0 - terminates the code. (Unless it's a literal of course.)
  3112. * \1, \2, \3 - that many literal bytes follow in the code stream
  3113. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  3114. * (POP is never used for CS) depending on operand 0
  3115. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  3116. * on operand 0
  3117. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  3118. * to the register value of operand 0, 1 or 2
  3119. * \13 - a literal byte follows in the code stream, to be added
  3120. * to the condition code value of the instruction.
  3121. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  3122. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  3123. * \23 - a literal byte follows in the code stream, to be added
  3124. * to the inverted condition code value of the instruction
  3125. * (inverted version of \13).
  3126. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  3127. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  3128. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  3129. * assembly mode or the address-size override on the operand
  3130. * \37 - a word constant, from the _segment_ part of operand 0
  3131. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  3132. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  3133. on the address size of instruction
  3134. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  3135. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  3136. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  3137. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  3138. * assembly mode or the address-size override on the operand
  3139. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  3140. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  3141. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  3142. * field the register value of operand b.
  3143. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  3144. * field equal to digit b.
  3145. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  3146. * \300,\301,\302 - might be an 0x67, depending on the address size of
  3147. * the memory reference in operand x.
  3148. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  3149. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  3150. * \312 - (disassembler only) invalid with non-default address size.
  3151. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  3152. * size of operand x.
  3153. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  3154. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  3155. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  3156. * \327 - indicates that this instruction is only valid when the
  3157. * operand size is the default (instruction to disassembler,
  3158. * generates no code in the assembler)
  3159. * \331 - instruction not valid with REP prefix. Hint for
  3160. * disassembler only; for SSE instructions.
  3161. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  3162. * \333 - 0xF3 prefix for SSE instructions
  3163. * \334 - 0xF2 prefix for SSE instructions
  3164. * \335 - Indicates 64-bit operand size with REX.W not necessary
  3165. * \350 - EVEX prefix for AVX instructions
  3166. * \351 - EVEX Vector length 512
  3167. * \352 - EVEX W1
  3168. * \361 - 0x66 prefix for SSE instructions
  3169. * \362 - VEX prefix for AVX instructions
  3170. * \363 - VEX W1
  3171. * \364 - VEX Vector length 256
  3172. * \366 - operand 2 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3173. * \367 - operand 3 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3174. * \370 - VEX 0F-FLAG
  3175. * \371 - VEX 0F38-FLAG
  3176. * \372 - VEX 0F3A-FLAG
  3177. }
  3178. var
  3179. {$ifdef i8086}
  3180. currval : longint;
  3181. {$else i8086}
  3182. currval : aint;
  3183. {$endif i8086}
  3184. currsym : tobjsymbol;
  3185. currrelreloc,
  3186. currabsreloc,
  3187. currabsreloc32 : TObjRelocationType;
  3188. {$ifdef x86_64}
  3189. rexwritten : boolean;
  3190. {$endif x86_64}
  3191. procedure getvalsym(opidx:longint);
  3192. begin
  3193. case oper[opidx]^.typ of
  3194. top_ref :
  3195. begin
  3196. currval:=oper[opidx]^.ref^.offset;
  3197. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  3198. {$ifdef i8086}
  3199. if oper[opidx]^.ref^.refaddr=addr_seg then
  3200. begin
  3201. currrelreloc:=RELOC_SEGREL;
  3202. currabsreloc:=RELOC_SEG;
  3203. currabsreloc32:=RELOC_SEG;
  3204. end
  3205. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  3206. begin
  3207. currrelreloc:=RELOC_DGROUPREL;
  3208. currabsreloc:=RELOC_DGROUP;
  3209. currabsreloc32:=RELOC_DGROUP;
  3210. end
  3211. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  3212. begin
  3213. currrelreloc:=RELOC_FARDATASEGREL;
  3214. currabsreloc:=RELOC_FARDATASEG;
  3215. currabsreloc32:=RELOC_FARDATASEG;
  3216. end
  3217. else
  3218. {$endif i8086}
  3219. {$ifdef i386}
  3220. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3221. (tf_pic_uses_got in target_info.flags) then
  3222. begin
  3223. currrelreloc:=RELOC_PLT32;
  3224. currabsreloc:=RELOC_GOT32;
  3225. currabsreloc32:=RELOC_GOT32;
  3226. end
  3227. else
  3228. {$endif i386}
  3229. {$ifdef x86_64}
  3230. if oper[opidx]^.ref^.refaddr=addr_pic then
  3231. begin
  3232. currrelreloc:=RELOC_PLT32;
  3233. currabsreloc:=RELOC_GOTPCREL;
  3234. currabsreloc32:=RELOC_GOTPCREL;
  3235. end
  3236. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  3237. begin
  3238. currrelreloc:=RELOC_RELATIVE;
  3239. currabsreloc:=RELOC_RELATIVE;
  3240. currabsreloc32:=RELOC_RELATIVE;
  3241. end
  3242. else
  3243. {$endif x86_64}
  3244. begin
  3245. currrelreloc:=RELOC_RELATIVE;
  3246. currabsreloc:=RELOC_ABSOLUTE;
  3247. currabsreloc32:=RELOC_ABSOLUTE32;
  3248. end;
  3249. end;
  3250. top_const :
  3251. begin
  3252. {$ifdef i8086}
  3253. currval:=longint(oper[opidx]^.val);
  3254. {$else i8086}
  3255. currval:=aint(oper[opidx]^.val);
  3256. {$endif i8086}
  3257. currsym:=nil;
  3258. currabsreloc:=RELOC_ABSOLUTE;
  3259. currabsreloc32:=RELOC_ABSOLUTE32;
  3260. end;
  3261. else
  3262. Message(asmw_e_immediate_or_reference_expected);
  3263. end;
  3264. end;
  3265. {$ifdef x86_64}
  3266. procedure maybewriterex;
  3267. begin
  3268. if (rex<>0) and not(rexwritten) then
  3269. begin
  3270. rexwritten:=true;
  3271. objdata.writebytes(rex,1);
  3272. end;
  3273. end;
  3274. {$endif x86_64}
  3275. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  3276. begin
  3277. {$ifdef i386}
  3278. { Special case of '_GLOBAL_OFFSET_TABLE_'
  3279. which needs a special relocation type R_386_GOTPC }
  3280. if assigned (p) and
  3281. (p.name='_GLOBAL_OFFSET_TABLE_') and
  3282. (tf_pic_uses_got in target_info.flags) then
  3283. begin
  3284. { nothing else than a 4 byte relocation should occur
  3285. for GOT }
  3286. if len<>4 then
  3287. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3288. Reloctype:=RELOC_GOTPC;
  3289. { We need to add the offset of the relocation
  3290. of _GLOBAL_OFFSET_TABLE symbol within
  3291. the current instruction }
  3292. inc(data,objdata.currobjsec.size-insoffset);
  3293. end;
  3294. {$endif i386}
  3295. objdata.writereloc(data,len,p,Reloctype);
  3296. end;
  3297. const
  3298. CondVal:array[TAsmCond] of byte=($0,
  3299. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  3300. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  3301. $0, $A, $A, $B, $8, $4);
  3302. var
  3303. i: integer;
  3304. c : byte;
  3305. pb : pbyte;
  3306. codes : pchar;
  3307. bytes : array[0..3] of byte;
  3308. rfield,
  3309. data,s,opidx : longint;
  3310. ea_data : ea;
  3311. relsym : TObjSymbol;
  3312. needed_VEX_Extension: boolean;
  3313. needed_VEX: boolean;
  3314. needed_EVEX: boolean;
  3315. needed_VSIB: boolean;
  3316. opmode: integer;
  3317. VEXvvvv: byte;
  3318. VEXmmmmm: byte;
  3319. VEXw : byte;
  3320. VEXpp : byte;
  3321. VEXll : byte;
  3322. EVEXvvvv: byte;
  3323. EVEXpp: byte;
  3324. EVEXr: byte;
  3325. EVEXx: byte;
  3326. EVEXv: byte;
  3327. EVEXll: byte;
  3328. EVEXw0: byte;
  3329. EVEXw1: byte;
  3330. EVEXz : byte;
  3331. EVEXaaa : byte;
  3332. EVEXb : byte;
  3333. EVEXmm : byte;
  3334. //TG delete
  3335. pins: tinsentry;
  3336. t: toptype;
  3337. begin
  3338. { safety check }
  3339. // TODO delete
  3340. i := longword(insoffset);
  3341. if objdata.currobjsec.size<>longword(insoffset) then
  3342. begin
  3343. internalerror(200130121);
  3344. end;
  3345. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  3346. currsym:=nil;
  3347. currabsreloc:=RELOC_NONE;
  3348. currabsreloc32:=RELOC_NONE;
  3349. currrelreloc:=RELOC_NONE;
  3350. currval:=0;
  3351. { check instruction's processor level }
  3352. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  3353. {$ifdef i8086}
  3354. if objdata.CPUType<>cpu_none then
  3355. begin
  3356. if IF_8086 in insentry^.flags then
  3357. else if IF_186 in insentry^.flags then
  3358. begin
  3359. if objdata.CPUType<cpu_186 then
  3360. Message(asmw_e_instruction_not_supported_by_cpu);
  3361. end
  3362. else if IF_286 in insentry^.flags then
  3363. begin
  3364. if objdata.CPUType<cpu_286 then
  3365. Message(asmw_e_instruction_not_supported_by_cpu);
  3366. end
  3367. else if IF_386 in insentry^.flags then
  3368. begin
  3369. if objdata.CPUType<cpu_386 then
  3370. Message(asmw_e_instruction_not_supported_by_cpu);
  3371. end
  3372. else if IF_486 in insentry^.flags then
  3373. begin
  3374. if objdata.CPUType<cpu_486 then
  3375. Message(asmw_e_instruction_not_supported_by_cpu);
  3376. end
  3377. else if IF_PENT in insentry^.flags then
  3378. begin
  3379. if objdata.CPUType<cpu_Pentium then
  3380. Message(asmw_e_instruction_not_supported_by_cpu);
  3381. end
  3382. else if IF_P6 in insentry^.flags then
  3383. begin
  3384. if objdata.CPUType<cpu_Pentium2 then
  3385. Message(asmw_e_instruction_not_supported_by_cpu);
  3386. end
  3387. else if IF_KATMAI in insentry^.flags then
  3388. begin
  3389. if objdata.CPUType<cpu_Pentium3 then
  3390. Message(asmw_e_instruction_not_supported_by_cpu);
  3391. end
  3392. else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
  3393. begin
  3394. if objdata.CPUType<cpu_Pentium4 then
  3395. Message(asmw_e_instruction_not_supported_by_cpu);
  3396. end
  3397. else if IF_NEC in insentry^.flags then
  3398. begin
  3399. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  3400. if objdata.CPUType>=cpu_386 then
  3401. Message(asmw_e_instruction_not_supported_by_cpu);
  3402. end
  3403. else if IF_SANDYBRIDGE in insentry^.flags then
  3404. begin
  3405. { todo: handle these properly }
  3406. end;
  3407. end;
  3408. {$endif i8086}
  3409. { load data to write }
  3410. codes:=insentry^.code;
  3411. {$ifdef x86_64}
  3412. rexwritten:=false;
  3413. {$endif x86_64}
  3414. { Force word push/pop for registers }
  3415. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  3416. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  3417. write0x66prefix(objdata);
  3418. // needed VEX Prefix (for AVX etc.)
  3419. needed_VEX := false;
  3420. needed_EVEX := false;
  3421. needed_VEX_Extension := false;
  3422. needed_VSIB := false;
  3423. opmode := -1;
  3424. VEXvvvv := 0;
  3425. VEXmmmmm := 0;
  3426. VEXll := 0;
  3427. VEXw := 0;
  3428. VEXpp := 0;
  3429. EVEXpp := 0;
  3430. EVEXvvvv := 0;
  3431. EVEXr := 0;
  3432. EVEXx := 0;
  3433. EVEXv := 0;
  3434. EVEXll := 0;
  3435. EVEXw0 := 0;
  3436. EVEXw1 := 0;
  3437. EVEXz := 0;
  3438. EVEXaaa := 0;
  3439. EVEXb := 0;
  3440. EVEXmm := 0;
  3441. pins := insentry^;
  3442. repeat
  3443. c:=ord(codes^);
  3444. inc(codes);
  3445. case c of
  3446. &0: break;
  3447. &1,
  3448. &2,
  3449. &3: inc(codes,c);
  3450. &10,
  3451. &11,
  3452. &12: inc(codes, 1);
  3453. &74: opmode := 0;
  3454. &75: opmode := 1;
  3455. &76: opmode := 2;
  3456. &100..&227: begin
  3457. // AVX 512 - EVEX
  3458. // check operands
  3459. // TODO delete
  3460. pins := insentry^;
  3461. i := ord(c);
  3462. if (c shr 6) = 1 then
  3463. begin
  3464. opidx := c and 7;
  3465. if ops > opidx then
  3466. begin
  3467. t := oper[opidx]^.typ;
  3468. if (oper[opidx]^.typ=top_reg) then
  3469. if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXr := 1; //TG TODO check
  3470. end
  3471. end
  3472. else EVEXr := 1; // modrm:reg not used =>> 1
  3473. opidx := (c shr 3) and 7;
  3474. if ops > opidx then
  3475. case oper[opidx]^.typ of
  3476. top_reg: if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXx := 1; //TG TODO check
  3477. top_ref: begin
  3478. if getsupreg(oper[opidx]^.ref^.index) and $08 = $0 then EVEXx := 1; //TG TODO check
  3479. if getsubreg(oper[opidx]^.ref^.index) in [R_SUBMMX,R_SUBMMY,R_SUBMMZ] then
  3480. begin
  3481. // VSIB memory addresing
  3482. if getsupreg(oper[opidx]^.ref^.index) and $10 = $0 then EVEXv := 1; // VECTOR-Index
  3483. needed_VSIB := true;
  3484. end;
  3485. end;
  3486. end;
  3487. end;
  3488. &333: begin
  3489. VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  3490. VEXpp := $02; // set SIMD-prefix $F3
  3491. EVEXpp := $02; // set SIMD-prefix $F3
  3492. end;
  3493. &334: begin
  3494. VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  3495. VEXpp := $03; // set SIMD-prefix $F2
  3496. EVEXpp := $03; // set SIMD-prefix $F2
  3497. end;
  3498. &350: needed_EVEX := true; // AVX512 instruction or AVX128/256/512-instruction (depended on operands [x,y,z]mm16..)
  3499. &351: EVEXll := $02; // vectorlength = 512 bits AND no scalar
  3500. &352: EVEXw1 := $01;
  3501. &361: begin
  3502. VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  3503. VEXpp := $01; // set SIMD-prefix $66
  3504. EVEXpp := $01; // set SIMD-prefix $66
  3505. end;
  3506. &362: needed_VEX := true;
  3507. &363: begin
  3508. needed_VEX_Extension := true;
  3509. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  3510. VEXw := 1;
  3511. end;
  3512. &364: begin
  3513. VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  3514. VEXll := $01;
  3515. EVEXll := $01;
  3516. end;
  3517. &366,
  3518. &367: begin
  3519. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3520. if (ops > opidx) and
  3521. (oper[opidx]^.typ=top_reg) and
  3522. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_xmm) or
  3523. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_ymm) or
  3524. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_zmm)) then
  3525. if (getsupreg(oper[opidx]^.reg) and $10 = $0) then EVEXx := 1; //TG TODO check
  3526. end;
  3527. &370: begin
  3528. VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  3529. EVEXmm := $01;
  3530. end;
  3531. &371: begin
  3532. needed_VEX_Extension := true;
  3533. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  3534. EVEXmm := $02;
  3535. end;
  3536. &372: begin
  3537. needed_VEX_Extension := true;
  3538. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  3539. EVEXmm := $03;
  3540. end;
  3541. end;
  3542. until false;
  3543. {$ifndef x86_64}
  3544. EVEXv := 1;
  3545. EVEXx := 1;
  3546. EVEXr := 1;
  3547. {$endif}
  3548. if needed_VEX or needed_EVEX then
  3549. begin
  3550. if (opmode > ops) or
  3551. (opmode < -1) then
  3552. begin
  3553. Internalerror(777100);
  3554. end
  3555. else if opmode = -1 then
  3556. begin
  3557. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  3558. EVEXvvvv := $0F;
  3559. {$ifdef x86_64}
  3560. if not(needed_vsib) then EVEXv := 1;
  3561. {$endif x86_64}
  3562. end
  3563. else if oper[opmode]^.typ = top_reg then
  3564. begin
  3565. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  3566. EVEXvvvv := not(regval(oper[opmode]^.reg)) and $07;
  3567. {$ifdef x86_64}
  3568. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  3569. if rexbits(oper[opmode]^.reg) = 0 then EVEXvvvv := EVEXvvvv or (1 shl 3);
  3570. if getsupreg(oper[opmode]^.reg) and $10 = 0 then EVEXv := 1; //TG TODO check
  3571. {$else}
  3572. VEXvvvv := VEXvvvv or (1 shl 6);
  3573. EVEXvvvv := EVEXvvvv or (1 shl 3);
  3574. {$endif x86_64}
  3575. end
  3576. else Internalerror(777101);
  3577. if not(needed_VEX_Extension) then
  3578. begin
  3579. {$ifdef x86_64}
  3580. if rex and $0B <> 0 then needed_VEX_Extension := true;
  3581. {$endif x86_64}
  3582. end;
  3583. //TG
  3584. if needed_EVEX and needed_VEX then
  3585. begin
  3586. needed_EVEX := false;
  3587. if CheckUseEVEX then
  3588. begin
  3589. // EVEX-Flags r,v,x indicate extended-MMregister
  3590. // Flag = 0 =>> [x,y,z]mm16..[x,y,z]mm31
  3591. // Flag = 1 =>> [x,y,z]mm00..[x,y,z]mm15
  3592. needed_EVEX := true;
  3593. needed_VEX := false;
  3594. needed_VEX_Extension := false; //TG TODO check
  3595. end;
  3596. end;
  3597. if needed_EVEX then
  3598. begin
  3599. EVEXaaa:= 0;
  3600. EVEXz := 0;
  3601. for i := 0 to ops - 1 do
  3602. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  3603. begin
  3604. if oper[i]^.vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  3605. begin
  3606. EVEXaaa := oper[i]^.vopext and $07;
  3607. if oper[i]^.vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then EVEXz := 1;
  3608. end;
  3609. if oper[i]^.vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  3610. begin
  3611. EVEXb := 1;
  3612. end;
  3613. // flag EVEXb is multiple use (broadcast, sae and er)
  3614. if oper[i]^.vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  3615. begin
  3616. EVEXb := 1;
  3617. end;
  3618. if oper[i]^.vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  3619. begin
  3620. EVEXb := 1;
  3621. case oper[i]^.vopext and OTVE_VECTOR_ER_MASK of
  3622. OTVE_VECTOR_RNSAE: EVEXll := 0;
  3623. OTVE_VECTOR_RDSAE: EVEXll := 1;
  3624. OTVE_VECTOR_RUSAE: EVEXll := 2;
  3625. OTVE_VECTOR_RZSAE: EVEXll := 3;
  3626. else EVEXll := 0;
  3627. end;
  3628. end;
  3629. end;
  3630. bytes[0] := $62;
  3631. bytes[1] := ((EVEXmm and $03) shl 0) or
  3632. {$ifdef x86_64}
  3633. ((not(rex) and $05) shl 5) or
  3634. {$else}
  3635. (($05) shl 5) or
  3636. {$endif x86_64}
  3637. ((EVEXr and $01) shl 4) or
  3638. ((EVEXx and $01) shl 6);
  3639. bytes[2] := ((EVEXpp and $03) shl 0) or
  3640. ((1 and $01) shl 2) or // fixed in AVX512
  3641. ((EVEXvvvv and $0F) shl 3) or
  3642. ((EVEXw1 and $01) shl 7);
  3643. bytes[3] := ((EVEXaaa and $07) shl 0) or
  3644. ((EVEXv and $01) shl 3) or
  3645. ((EVEXb and $01) shl 4) or
  3646. ((EVEXll and $03) shl 5) or
  3647. ((EVEXz and $01) shl 7);
  3648. objdata.writebytes(bytes,4);
  3649. end
  3650. else if needed_VEX_Extension then
  3651. begin
  3652. // VEX-Prefix-Length = 3 Bytes
  3653. {$ifdef x86_64}
  3654. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  3655. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  3656. {$else}
  3657. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  3658. {$endif x86_64}
  3659. bytes[0]:=$C4;
  3660. bytes[1]:=VEXmmmmm;
  3661. bytes[2]:=VEXvvvv;
  3662. objdata.writebytes(bytes,3);
  3663. end
  3664. else
  3665. begin
  3666. // VEX-Prefix-Length = 2 Bytes
  3667. {$ifdef x86_64}
  3668. if rex and $04 = 0 then
  3669. {$endif x86_64}
  3670. begin
  3671. VEXvvvv := VEXvvvv or (1 shl 7);
  3672. end;
  3673. bytes[0]:=$C5;
  3674. bytes[1]:=VEXvvvv;
  3675. objdata.writebytes(bytes,2);
  3676. end;
  3677. end
  3678. else
  3679. begin
  3680. needed_VEX_Extension := false;
  3681. opmode := -1;
  3682. end;
  3683. if not(needed_EVEX) then
  3684. begin
  3685. for opidx := 0 to ops - 1 do
  3686. begin
  3687. if ops > opidx then
  3688. if (oper[opidx]^.typ=top_reg) and
  3689. (getregtype(oper[opidx]^.reg) = R_MMREGISTER) then
  3690. if getsupreg(oper[opidx]^.reg) and $10 = $10 then
  3691. begin
  3692. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3693. break;
  3694. end;
  3695. //badreg(oper[opidx]^.reg);
  3696. end;
  3697. end;
  3698. { load data to write }
  3699. codes:=insentry^.code;
  3700. repeat
  3701. c:=ord(codes^);
  3702. inc(codes);
  3703. case c of
  3704. &0 :
  3705. break;
  3706. &1,&2,&3 :
  3707. begin
  3708. {$ifdef x86_64}
  3709. if not(needed_VEX or needed_EVEX) then // TG
  3710. maybewriterex;
  3711. {$endif x86_64}
  3712. objdata.writebytes(codes^,c);
  3713. inc(codes,c);
  3714. end;
  3715. &4,&6 :
  3716. begin
  3717. case oper[0]^.reg of
  3718. NR_CS:
  3719. bytes[0]:=$e;
  3720. NR_NO,
  3721. NR_DS:
  3722. bytes[0]:=$1e;
  3723. NR_ES:
  3724. bytes[0]:=$6;
  3725. NR_SS:
  3726. bytes[0]:=$16;
  3727. else
  3728. internalerror(777004);
  3729. end;
  3730. if c=&4 then
  3731. inc(bytes[0]);
  3732. objdata.writebytes(bytes,1);
  3733. end;
  3734. &5,&7 :
  3735. begin
  3736. case oper[0]^.reg of
  3737. NR_FS:
  3738. bytes[0]:=$a0;
  3739. NR_GS:
  3740. bytes[0]:=$a8;
  3741. else
  3742. internalerror(777005);
  3743. end;
  3744. if c=&5 then
  3745. inc(bytes[0]);
  3746. objdata.writebytes(bytes,1);
  3747. end;
  3748. &10,&11,&12 :
  3749. begin
  3750. {$ifdef x86_64}
  3751. if not(needed_VEX or needed_EVEX) then // TG
  3752. maybewriterex;
  3753. {$endif x86_64}
  3754. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  3755. inc(codes);
  3756. objdata.writebytes(bytes,1);
  3757. end;
  3758. &13 :
  3759. begin
  3760. bytes[0]:=ord(codes^)+condval[condition];
  3761. inc(codes);
  3762. objdata.writebytes(bytes,1);
  3763. end;
  3764. &14,&15,&16 :
  3765. begin
  3766. getvalsym(c-&14);
  3767. if (currval<-128) or (currval>127) then
  3768. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  3769. if assigned(currsym) then
  3770. objdata_writereloc(currval,1,currsym,currabsreloc)
  3771. else
  3772. objdata.writebytes(currval,1);
  3773. end;
  3774. &20,&21,&22 :
  3775. begin
  3776. getvalsym(c-&20);
  3777. if (currval<-256) or (currval>255) then
  3778. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  3779. if assigned(currsym) then
  3780. objdata_writereloc(currval,1,currsym,currabsreloc)
  3781. else
  3782. objdata.writebytes(currval,1);
  3783. end;
  3784. &23 :
  3785. begin
  3786. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  3787. inc(codes);
  3788. objdata.writebytes(bytes,1);
  3789. end;
  3790. &24,&25,&26,&27 :
  3791. begin
  3792. getvalsym(c-&24);
  3793. if IF_IMM3 in insentry^.flags then
  3794. begin
  3795. if (currval<0) or (currval>7) then
  3796. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  3797. end
  3798. else if IF_IMM4 in insentry^.flags then
  3799. begin
  3800. if (currval<0) or (currval>15) then
  3801. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  3802. end
  3803. else
  3804. if (currval<0) or (currval>255) then
  3805. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  3806. if assigned(currsym) then
  3807. objdata_writereloc(currval,1,currsym,currabsreloc)
  3808. else
  3809. objdata.writebytes(currval,1);
  3810. end;
  3811. &30,&31,&32 : // 030..032
  3812. begin
  3813. getvalsym(c-&30);
  3814. {$ifndef i8086}
  3815. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  3816. if (currval<-65536) or (currval>65535) then
  3817. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  3818. {$endif i8086}
  3819. if assigned(currsym)
  3820. {$ifdef i8086}
  3821. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3822. {$endif i8086}
  3823. then
  3824. objdata_writereloc(currval,2,currsym,currabsreloc)
  3825. else
  3826. objdata.writebytes(currval,2);
  3827. end;
  3828. &34,&35,&36 : // 034..036
  3829. { !!! These are intended (and used in opcode table) to select depending
  3830. on address size, *not* operand size. Works by coincidence only. }
  3831. begin
  3832. getvalsym(c-&34);
  3833. {$ifdef i8086}
  3834. if assigned(currsym) then
  3835. objdata_writereloc(currval,2,currsym,currabsreloc)
  3836. else
  3837. objdata.writebytes(currval,2);
  3838. {$else i8086}
  3839. if opsize=S_Q then
  3840. begin
  3841. if assigned(currsym) then
  3842. objdata_writereloc(currval,8,currsym,currabsreloc)
  3843. else
  3844. objdata.writebytes(currval,8);
  3845. end
  3846. else
  3847. begin
  3848. if assigned(currsym) then
  3849. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3850. else
  3851. objdata.writebytes(currval,4);
  3852. end
  3853. {$endif i8086}
  3854. end;
  3855. &40,&41,&42 : // 040..042
  3856. begin
  3857. getvalsym(c-&40);
  3858. if assigned(currsym)
  3859. {$ifdef i8086}
  3860. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3861. {$endif i8086}
  3862. then
  3863. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3864. else
  3865. objdata.writebytes(currval,4);
  3866. end;
  3867. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  3868. begin // address size (we support only default address sizes).
  3869. getvalsym(c-&44);
  3870. {$if defined(x86_64)}
  3871. if assigned(currsym) then
  3872. objdata_writereloc(currval,8,currsym,currabsreloc)
  3873. else
  3874. objdata.writebytes(currval,8);
  3875. {$elseif defined(i386)}
  3876. if assigned(currsym) then
  3877. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3878. else
  3879. objdata.writebytes(currval,4);
  3880. {$elseif defined(i8086)}
  3881. if assigned(currsym) then
  3882. objdata_writereloc(currval,2,currsym,currabsreloc)
  3883. else
  3884. objdata.writebytes(currval,2);
  3885. {$endif}
  3886. end;
  3887. &50,&51,&52 : // 050..052 - byte relative operand
  3888. begin
  3889. getvalsym(c-&50);
  3890. data:=currval-insend;
  3891. {$push}
  3892. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  3893. if assigned(currsym) then
  3894. inc(data,currsym.address);
  3895. {$pop}
  3896. if (data>127) or (data<-128) then
  3897. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  3898. objdata.writebytes(data,1);
  3899. end;
  3900. &54,&55,&56: // 054..056 - qword immediate operand
  3901. begin
  3902. getvalsym(c-&54);
  3903. if assigned(currsym) then
  3904. objdata_writereloc(currval,8,currsym,currabsreloc)
  3905. else
  3906. objdata.writebytes(currval,8);
  3907. end;
  3908. &60,&61,&62 :
  3909. begin
  3910. getvalsym(c-&60);
  3911. {$ifdef i8086}
  3912. if assigned(currsym) then
  3913. objdata_writereloc(currval,2,currsym,currrelreloc)
  3914. else
  3915. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3916. {$else i8086}
  3917. InternalError(777006);
  3918. {$endif i8086}
  3919. end;
  3920. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  3921. begin
  3922. getvalsym(c-&64);
  3923. {$ifdef i8086}
  3924. if assigned(currsym) then
  3925. objdata_writereloc(currval,2,currsym,currrelreloc)
  3926. else
  3927. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3928. {$else i8086}
  3929. if assigned(currsym) then
  3930. objdata_writereloc(currval,4,currsym,currrelreloc)
  3931. else
  3932. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3933. {$endif i8086}
  3934. end;
  3935. &70,&71,&72 : // 070..072 - long relative operand
  3936. begin
  3937. getvalsym(c-&70);
  3938. if assigned(currsym) then
  3939. objdata_writereloc(currval,4,currsym,currrelreloc)
  3940. else
  3941. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3942. end;
  3943. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  3944. // ignore
  3945. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  3946. begin
  3947. getvalsym(c-&254);
  3948. {$ifdef x86_64}
  3949. { for i386 as aint type is longint the
  3950. following test is useless }
  3951. if (currval<low(longint)) or (currval>high(longint)) then
  3952. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  3953. {$endif x86_64}
  3954. if assigned(currsym) then
  3955. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3956. else
  3957. objdata.writebytes(currval,4);
  3958. end;
  3959. &300,&301,&302:
  3960. begin
  3961. {$if defined(x86_64) or defined(i8086)}
  3962. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3963. write0x67prefix(objdata);
  3964. {$endif x86_64 or i8086}
  3965. end;
  3966. &310 : { fixed 16-bit addr }
  3967. {$if defined(x86_64)}
  3968. { every insentry having code 0310 must be marked with NOX86_64 }
  3969. InternalError(2011051302);
  3970. {$elseif defined(i386)}
  3971. write0x67prefix(objdata);
  3972. {$elseif defined(i8086)}
  3973. {nothing};
  3974. {$endif}
  3975. &311 : { fixed 32-bit addr }
  3976. {$if defined(x86_64) or defined(i8086)}
  3977. write0x67prefix(objdata)
  3978. {$endif x86_64 or i8086}
  3979. ;
  3980. &320,&321,&322 :
  3981. begin
  3982. case oper[c-&320]^.ot and OT_SIZE_MASK of
  3983. {$if defined(i386) or defined(x86_64)}
  3984. OT_BITS16 :
  3985. {$elseif defined(i8086)}
  3986. OT_BITS32 :
  3987. {$endif}
  3988. write0x66prefix(objdata);
  3989. {$ifndef x86_64}
  3990. OT_BITS64 :
  3991. Message(asmw_e_64bit_not_supported);
  3992. {$endif x86_64}
  3993. end;
  3994. end;
  3995. &323 : {no action needed};
  3996. &325:
  3997. {$ifdef i8086}
  3998. write0x66prefix(objdata);
  3999. {$else i8086}
  4000. {no action needed};
  4001. {$endif i8086}
  4002. &324,
  4003. &361:
  4004. begin
  4005. {$ifndef i8086}
  4006. if not(needed_VEX or needed_EVEX) then
  4007. write0x66prefix(objdata);
  4008. {$endif not i8086}
  4009. end;
  4010. &326 :
  4011. begin
  4012. {$ifndef x86_64}
  4013. Message(asmw_e_64bit_not_supported);
  4014. {$endif x86_64}
  4015. end;
  4016. &333 :
  4017. begin
  4018. if not(needed_VEX or needed_EVEX) then
  4019. begin
  4020. bytes[0]:=$f3;
  4021. objdata.writebytes(bytes,1);
  4022. end;
  4023. end;
  4024. &334 :
  4025. begin
  4026. if not(needed_VEX or needed_EVEX) then
  4027. begin
  4028. bytes[0]:=$f2;
  4029. objdata.writebytes(bytes,1);
  4030. end;
  4031. end;
  4032. &335:
  4033. ;
  4034. &312,
  4035. &327,
  4036. &331,&332 :
  4037. begin
  4038. { these are dissambler hints or 32 bit prefixes which
  4039. are not needed }
  4040. end;
  4041. &362..&364: ; // VEX flags =>> nothing todo
  4042. &366, &367:
  4043. begin
  4044. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  4045. if (needed_VEX or needed_EVEX) and
  4046. (ops=4) and
  4047. (oper[opidx]^.typ=top_reg) and
  4048. (
  4049. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_xmm) or
  4050. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_ymm) or
  4051. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_zmm)
  4052. ) then
  4053. begin
  4054. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  4055. objdata.writebytes(bytes,1);
  4056. end
  4057. else
  4058. Internalerror(2014032001);
  4059. end;
  4060. &350..&352: ; // EVEX flags =>> nothing todo
  4061. &370..&372: ; // VEX flags =>> nothing todo
  4062. &37:
  4063. begin
  4064. {$ifdef i8086}
  4065. if assigned(currsym) then
  4066. objdata_writereloc(0,2,currsym,RELOC_SEG)
  4067. else
  4068. InternalError(2015041503);
  4069. {$else i8086}
  4070. InternalError(777006);
  4071. {$endif i8086}
  4072. end;
  4073. else
  4074. begin
  4075. { rex should be written at this point }
  4076. {$ifdef x86_64}
  4077. if not(needed_VEX or needed_EVEX) then // TG
  4078. if (rex<>0) and not(rexwritten) then
  4079. internalerror(200603191);
  4080. {$endif x86_64}
  4081. if (c>=&100) and (c<=&227) then // 0100..0227
  4082. begin
  4083. if (c<&177) then // 0177
  4084. begin
  4085. if (oper[c and 7]^.typ=top_reg) then
  4086. rfield:=regval(oper[c and 7]^.reg)
  4087. else
  4088. rfield:=regval(oper[c and 7]^.ref^.base);
  4089. end
  4090. else
  4091. rfield:=c and 7;
  4092. opidx:=(c shr 3) and 7;
  4093. if not process_ea(oper[opidx]^,ea_data,rfield, EVEXTupleState = etsNotTuple) then
  4094. Message(asmw_e_invalid_effective_address);
  4095. pb:=@bytes[0];
  4096. pb^:=ea_data.modrm;
  4097. inc(pb);
  4098. if ea_data.sib_present then
  4099. begin
  4100. pb^:=ea_data.sib;
  4101. inc(pb);
  4102. end;
  4103. s:=pb-@bytes[0];
  4104. objdata.writebytes(bytes,s);
  4105. case ea_data.bytes of
  4106. 0 : ;
  4107. 1 :
  4108. begin
  4109. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  4110. begin
  4111. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4112. {$ifdef i386}
  4113. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4114. (tf_pic_uses_got in target_info.flags) then
  4115. currabsreloc:=RELOC_GOT32
  4116. else
  4117. {$endif i386}
  4118. {$ifdef x86_64}
  4119. if oper[opidx]^.ref^.refaddr=addr_pic then
  4120. currabsreloc:=RELOC_GOTPCREL
  4121. else
  4122. {$endif x86_64}
  4123. currabsreloc:=RELOC_ABSOLUTE;
  4124. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  4125. end
  4126. else
  4127. begin
  4128. bytes[0]:=oper[opidx]^.ref^.offset;
  4129. objdata.writebytes(bytes,1);
  4130. end;
  4131. inc(s);
  4132. end;
  4133. 2,4 :
  4134. begin
  4135. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4136. currval:=oper[opidx]^.ref^.offset;
  4137. {$ifdef x86_64}
  4138. if oper[opidx]^.ref^.refaddr=addr_pic then
  4139. currabsreloc:=RELOC_GOTPCREL
  4140. else
  4141. if oper[opidx]^.ref^.base=NR_RIP then
  4142. begin
  4143. currabsreloc:=RELOC_RELATIVE;
  4144. { Adjust reloc value by number of bytes following the displacement,
  4145. but not if displacement is specified by literal constant }
  4146. if Assigned(currsym) then
  4147. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  4148. end
  4149. else
  4150. {$endif x86_64}
  4151. {$ifdef i386}
  4152. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4153. (tf_pic_uses_got in target_info.flags) then
  4154. currabsreloc:=RELOC_GOT32
  4155. else
  4156. {$endif i386}
  4157. {$ifdef i8086}
  4158. if ea_data.bytes=2 then
  4159. currabsreloc:=RELOC_ABSOLUTE
  4160. else
  4161. {$endif i8086}
  4162. currabsreloc:=RELOC_ABSOLUTE32;
  4163. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  4164. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  4165. begin
  4166. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  4167. if relsym.objsection=objdata.CurrObjSec then
  4168. begin
  4169. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  4170. {$ifdef i8086}
  4171. if ea_data.bytes=4 then
  4172. currabsreloc:=RELOC_RELATIVE32
  4173. else
  4174. {$endif i8086}
  4175. currabsreloc:=RELOC_RELATIVE;
  4176. end
  4177. else
  4178. begin
  4179. currabsreloc:=RELOC_PIC_PAIR;
  4180. currval:=relsym.offset;
  4181. end;
  4182. end;
  4183. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  4184. inc(s,ea_data.bytes);
  4185. end;
  4186. end;
  4187. end
  4188. else
  4189. InternalError(777007);
  4190. end;
  4191. end;
  4192. until false;
  4193. end;
  4194. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  4195. begin
  4196. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  4197. (regtype = R_INTREGISTER) and
  4198. (ops=2) and
  4199. (oper[0]^.typ=top_reg) and
  4200. (oper[1]^.typ=top_reg) and
  4201. (oper[0]^.reg=oper[1]^.reg)
  4202. ) or
  4203. ({ checking the opcodes is a long "or" chain, so check first the registers which is more selective }
  4204. ((regtype = R_MMREGISTER) and
  4205. (ops=2) and
  4206. (oper[0]^.typ=top_reg) and
  4207. (oper[1]^.typ=top_reg) and
  4208. (oper[0]^.reg=oper[1]^.reg)) and
  4209. (
  4210. (opcode=A_MOVSS) or (opcode=A_MOVSD) or
  4211. (opcode=A_MOVQ) or (opcode=A_MOVD) or
  4212. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  4213. (opcode=A_MOVUPS) or (opcode=A_MOVUPD) or
  4214. (opcode=A_MOVDQA) or (opcode=A_MOVDQU) or
  4215. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or
  4216. (opcode=A_VMOVQ) or (opcode=A_VMOVD) or
  4217. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD) or
  4218. (opcode=A_VMOVUPS) or (opcode=A_VMOVUPD) or
  4219. (opcode=A_VMOVDQA) or (opcode=A_VMOVDQU)
  4220. )
  4221. );
  4222. end;
  4223. procedure build_spilling_operation_type_table;
  4224. var
  4225. opcode : tasmop;
  4226. i : integer;
  4227. begin
  4228. new(operation_type_table);
  4229. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  4230. for opcode:=low(tasmop) to high(tasmop) do
  4231. with InsProp[opcode] do
  4232. begin
  4233. if Ch_Rop1 in Ch then
  4234. operation_type_table^[opcode,0]:=operand_read;
  4235. if Ch_Wop1 in Ch then
  4236. operation_type_table^[opcode,0]:=operand_write;
  4237. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  4238. operation_type_table^[opcode,0]:=operand_readwrite;
  4239. if Ch_Rop2 in Ch then
  4240. operation_type_table^[opcode,1]:=operand_read;
  4241. if Ch_Wop2 in Ch then
  4242. operation_type_table^[opcode,1]:=operand_write;
  4243. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  4244. operation_type_table^[opcode,1]:=operand_readwrite;
  4245. if Ch_Rop3 in Ch then
  4246. operation_type_table^[opcode,2]:=operand_read;
  4247. if Ch_Wop3 in Ch then
  4248. operation_type_table^[opcode,2]:=operand_write;
  4249. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  4250. operation_type_table^[opcode,2]:=operand_readwrite;
  4251. if Ch_Rop4 in Ch then
  4252. operation_type_table^[opcode,3]:=operand_read;
  4253. if Ch_Wop4 in Ch then
  4254. operation_type_table^[opcode,3]:=operand_write;
  4255. if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
  4256. operation_type_table^[opcode,3]:=operand_readwrite;
  4257. end;
  4258. end;
  4259. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  4260. begin
  4261. { the information in the instruction table is made for the string copy
  4262. operation MOVSD so hack here (FK)
  4263. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  4264. so fix it here (FK)
  4265. }
  4266. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  4267. begin
  4268. case opnr of
  4269. 0:
  4270. result:=operand_read;
  4271. 1:
  4272. result:=operand_write;
  4273. else
  4274. internalerror(200506055);
  4275. end
  4276. end
  4277. { IMUL has 1, 2 and 3-operand forms }
  4278. else if opcode=A_IMUL then
  4279. begin
  4280. case ops of
  4281. 1:
  4282. if opnr=0 then
  4283. result:=operand_read
  4284. else
  4285. internalerror(2014011802);
  4286. 2:
  4287. begin
  4288. case opnr of
  4289. 0:
  4290. result:=operand_read;
  4291. 1:
  4292. result:=operand_readwrite;
  4293. else
  4294. internalerror(2014011803);
  4295. end;
  4296. end;
  4297. 3:
  4298. begin
  4299. case opnr of
  4300. 0,1:
  4301. result:=operand_read;
  4302. 2:
  4303. result:=operand_write;
  4304. else
  4305. internalerror(2014011804);
  4306. end;
  4307. end;
  4308. else
  4309. internalerror(2014011805);
  4310. end;
  4311. end
  4312. else
  4313. result:=operation_type_table^[opcode,opnr];
  4314. end;
  4315. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  4316. var
  4317. tmpref: treference;
  4318. begin
  4319. tmpref:=ref;
  4320. {$ifdef i8086}
  4321. if tmpref.segment=NR_SS then
  4322. tmpref.segment:=NR_NO;
  4323. {$endif i8086}
  4324. case getregtype(r) of
  4325. R_INTREGISTER :
  4326. begin
  4327. if getsubreg(r)=R_SUBH then
  4328. inc(tmpref.offset);
  4329. { we don't need special code here for 32 bit loads on x86_64, since
  4330. those will automatically zero-extend the upper 32 bits. }
  4331. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  4332. end;
  4333. R_MMREGISTER :
  4334. if current_settings.fputype in fpu_avx_instructionsets then
  4335. case getsubreg(r) of
  4336. R_SUBMMD:
  4337. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  4338. R_SUBMMS:
  4339. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  4340. R_SUBQ,
  4341. R_SUBMMWHOLE:
  4342. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  4343. else
  4344. internalerror(200506043);
  4345. end
  4346. else
  4347. case getsubreg(r) of
  4348. R_SUBMMD:
  4349. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  4350. R_SUBMMS:
  4351. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  4352. R_SUBQ,
  4353. R_SUBMMWHOLE:
  4354. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  4355. else
  4356. internalerror(200506043);
  4357. end;
  4358. else
  4359. internalerror(200401041);
  4360. end;
  4361. end;
  4362. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  4363. var
  4364. size: topsize;
  4365. tmpref: treference;
  4366. begin
  4367. tmpref:=ref;
  4368. {$ifdef i8086}
  4369. if tmpref.segment=NR_SS then
  4370. tmpref.segment:=NR_NO;
  4371. {$endif i8086}
  4372. case getregtype(r) of
  4373. R_INTREGISTER :
  4374. begin
  4375. if getsubreg(r)=R_SUBH then
  4376. inc(tmpref.offset);
  4377. size:=reg2opsize(r);
  4378. {$ifdef x86_64}
  4379. { even if it's a 32 bit reg, we still have to spill 64 bits
  4380. because we often perform 64 bit operations on them }
  4381. if (size=S_L) then
  4382. begin
  4383. size:=S_Q;
  4384. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  4385. end;
  4386. {$endif x86_64}
  4387. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  4388. end;
  4389. R_MMREGISTER :
  4390. if current_settings.fputype in fpu_avx_instructionsets then
  4391. case getsubreg(r) of
  4392. R_SUBMMD:
  4393. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  4394. R_SUBMMS:
  4395. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  4396. R_SUBQ,
  4397. R_SUBMMWHOLE:
  4398. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  4399. else
  4400. internalerror(200506042);
  4401. end
  4402. else
  4403. case getsubreg(r) of
  4404. R_SUBMMD:
  4405. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  4406. R_SUBMMS:
  4407. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  4408. R_SUBQ,
  4409. R_SUBMMWHOLE:
  4410. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  4411. else
  4412. internalerror(200506042);
  4413. end;
  4414. else
  4415. internalerror(200401041);
  4416. end;
  4417. end;
  4418. {$ifdef i8086}
  4419. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  4420. var
  4421. r: treference;
  4422. begin
  4423. reference_reset_symbol(r,s,0,1,[]);
  4424. r.refaddr:=addr_seg;
  4425. loadref(opidx,r);
  4426. end;
  4427. {$endif i8086}
  4428. {*****************************************************************************
  4429. Instruction table
  4430. *****************************************************************************}
  4431. procedure BuildInsTabCache;
  4432. var
  4433. i : longint;
  4434. begin
  4435. new(instabcache);
  4436. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  4437. i:=0;
  4438. while (i<InsTabEntries) do
  4439. begin
  4440. if InsTabCache^[InsTab[i].OPcode]=-1 then
  4441. InsTabCache^[InsTab[i].OPcode]:=i;
  4442. inc(i);
  4443. end;
  4444. end;
  4445. procedure BuildInsTabMemRefSizeInfoCache;
  4446. var
  4447. AsmOp: TasmOp;
  4448. i,j: longint;
  4449. insentry : PInsEntry;
  4450. codes : pchar;
  4451. c : byte;
  4452. MRefInfo: TMemRefSizeInfo;
  4453. SConstInfo: TConstSizeInfo;
  4454. actRegSize: int64;
  4455. actMemSize: int64;
  4456. actConstSize: int64;
  4457. actRegCount: integer;
  4458. actMemCount: integer;
  4459. actConstCount: integer;
  4460. actRegTypes : int64;
  4461. actRegMemTypes: int64;
  4462. NewRegSize: int64;
  4463. actVMemCount : integer;
  4464. actVMemTypes : int64;
  4465. RegMMXSizeMask: int64;
  4466. RegXMMSizeMask: int64;
  4467. RegYMMSizeMask: int64;
  4468. RegZMMSizeMask: int64;
  4469. RegMMXConstSizeMask: int64;
  4470. RegXMMConstSizeMask: int64;
  4471. RegYMMConstSizeMask: int64;
  4472. RegZMMConstSizeMask: int64;
  4473. RegBCSTSizeMask: int64;
  4474. RegBCSTXMMSizeMask: int64;
  4475. RegBCSTYMMSizeMask: int64;
  4476. RegBCSTZMMSizeMask: int64;
  4477. bitcount: integer;
  4478. function bitcnt(aValue: int64): integer;
  4479. var
  4480. i: integer;
  4481. begin
  4482. result := 0;
  4483. for i := 0 to 63 do
  4484. begin
  4485. if (aValue mod 2) = 1 then
  4486. begin
  4487. inc(result);
  4488. end;
  4489. aValue := aValue shr 1;
  4490. end;
  4491. end;
  4492. begin
  4493. new(InsTabMemRefSizeInfoCache);
  4494. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  4495. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  4496. begin
  4497. i := InsTabCache^[AsmOp];
  4498. if i >= 0 then
  4499. begin
  4500. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  4501. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbUnknown;
  4502. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 0;
  4503. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  4504. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  4505. InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := [];
  4506. insentry:=@instab[i];
  4507. RegMMXSizeMask := 0;
  4508. RegXMMSizeMask := 0;
  4509. RegYMMSizeMask := 0;
  4510. RegZMMSizeMask := 0;
  4511. RegMMXConstSizeMask := 0;
  4512. RegXMMConstSizeMask := 0;
  4513. RegYMMConstSizeMask := 0;
  4514. RegZMMConstSizeMask := 0;
  4515. RegBCSTSizeMask:= 0;
  4516. RegBCSTXMMSizeMask := 0;
  4517. RegBCSTYMMSizeMask := 0;
  4518. RegBCSTZMMSizeMask := 0;
  4519. //TG TODO delete
  4520. if Asmop = A_VFPCLASSPD then
  4521. begin
  4522. MRefInfo := msiUnkown;
  4523. end;
  4524. while (insentry^.opcode=AsmOp) do
  4525. begin
  4526. MRefInfo := msiUnkown;
  4527. actRegSize := 0;
  4528. actRegCount := 0;
  4529. actRegTypes := 0;
  4530. NewRegSize := 0;
  4531. actMemSize := 0;
  4532. actMemCount := 0;
  4533. actRegMemTypes := 0;
  4534. actVMemCount := 0;
  4535. actVMemTypes := 0;
  4536. actConstSize := 0;
  4537. actConstCount := 0;
  4538. for j := 0 to insentry^.ops -1 do
  4539. begin
  4540. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  4541. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  4542. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  4543. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) OR
  4544. ((insentry^.optypes[j] and OT_ZMEM32) = OT_ZMEM32) OR
  4545. ((insentry^.optypes[j] and OT_ZMEM64) = OT_ZMEM64) then
  4546. begin
  4547. inc(actVMemCount);
  4548. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64 OR OT_ZMEM32 OR OT_ZMEM64) of
  4549. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  4550. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  4551. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  4552. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  4553. OT_ZMEM32: actVMemTypes := actVMemTypes or OT_ZMEM32;
  4554. OT_ZMEM64: actVMemTypes := actVMemTypes or OT_ZMEM64;
  4555. else InternalError(777206);
  4556. end;
  4557. end
  4558. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  4559. begin
  4560. inc(actRegCount);
  4561. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  4562. if NewRegSize = 0 then
  4563. begin
  4564. case insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
  4565. OT_MMXREG: begin
  4566. NewRegSize := OT_BITS64;
  4567. end;
  4568. OT_XMMREG: begin
  4569. NewRegSize := OT_BITS128;
  4570. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4571. end;
  4572. OT_YMMREG: begin
  4573. NewRegSize := OT_BITS256;
  4574. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4575. end;
  4576. OT_ZMMREG: begin
  4577. NewRegSize := OT_BITS512;
  4578. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4579. end;
  4580. OT_KREG: begin
  4581. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4582. end;
  4583. else NewRegSize := not(0);
  4584. end;
  4585. end;
  4586. actRegSize := actRegSize or NewRegSize;
  4587. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK));
  4588. end
  4589. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  4590. begin
  4591. inc(actMemCount);
  4592. actMemSize:=actMemSize or (insentry^.optypes[j] and (OT_SIZE_MASK OR OT_VECTORBCST));
  4593. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  4594. begin
  4595. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  4596. end;
  4597. end
  4598. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  4599. begin
  4600. inc(actConstCount);
  4601. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  4602. end
  4603. end;
  4604. if actConstCount > 0 then
  4605. begin
  4606. case actConstSize of
  4607. 0: SConstInfo := csiNoSize;
  4608. OT_BITS8: SConstInfo := csiMem8;
  4609. OT_BITS16: SConstInfo := csiMem16;
  4610. OT_BITS32: SConstInfo := csiMem32;
  4611. OT_BITS64: SConstInfo := csiMem64;
  4612. else SConstInfo := csiMultiple;
  4613. end;
  4614. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  4615. begin
  4616. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  4617. end
  4618. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  4619. begin
  4620. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  4621. end;
  4622. end;
  4623. if actVMemCount > 0 then
  4624. begin
  4625. if actVMemCount = 1 then
  4626. begin
  4627. if actVMemTypes > 0 then
  4628. begin
  4629. case actVMemTypes of
  4630. OT_XMEM32: MRefInfo := msiXMem32;
  4631. OT_XMEM64: MRefInfo := msiXMem64;
  4632. OT_YMEM32: MRefInfo := msiYMem32;
  4633. OT_YMEM64: MRefInfo := msiYMem64;
  4634. OT_ZMEM32: MRefInfo := msiZMem32;
  4635. OT_ZMEM64: MRefInfo := msiZMem64;
  4636. else InternalError(777208);
  4637. end;
  4638. case actRegTypes of
  4639. OT_XMMREG: case MRefInfo of
  4640. msiXMem32,
  4641. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  4642. msiYMem32,
  4643. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  4644. msiZMem32,
  4645. msiZMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS512;
  4646. else InternalError(777210);
  4647. end;
  4648. OT_YMMREG: case MRefInfo of
  4649. msiXMem32,
  4650. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  4651. msiYMem32,
  4652. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  4653. msiZMem32,
  4654. msiZMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS512;
  4655. else InternalError(777211);
  4656. end;
  4657. OT_ZMMREG: case MRefInfo of
  4658. msiXMem32,
  4659. msiXMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS128;
  4660. msiYMem32,
  4661. msiYMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS256;
  4662. msiZMem32,
  4663. msiZMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS512;
  4664. else InternalError(777211);
  4665. end;
  4666. //else InternalError(777209);
  4667. end;
  4668. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  4669. begin
  4670. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4671. end
  4672. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4673. begin
  4674. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64] then
  4675. begin
  4676. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  4677. end
  4678. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> msiVMemMultiple then InternalError(777212);
  4679. end;
  4680. end;
  4681. end
  4682. else InternalError(777207);
  4683. end
  4684. else
  4685. begin
  4686. if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then actMemCount:=1;
  4687. case actMemCount of
  4688. 0: ; // nothing todo
  4689. 1: begin
  4690. MRefInfo := msiUnkown;
  4691. case actRegMemTypes and (OT_MMXRM or OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
  4692. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  4693. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  4694. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  4695. OT_ZMMRM: actMemSize := actMemSize or OT_BITS512;
  4696. end;
  4697. case actMemSize of
  4698. 0: MRefInfo := msiNoSize;
  4699. OT_BITS8: MRefInfo := msiMem8;
  4700. OT_BITS16: MRefInfo := msiMem16;
  4701. OT_BITS32: MRefInfo := msiMem32;
  4702. OT_BITSB32: MRefInfo := msiBMem32;
  4703. OT_BITS64: MRefInfo := msiMem64;
  4704. OT_BITSB64: MRefInfo := msiBMem64;
  4705. OT_BITS128: MRefInfo := msiMem128;
  4706. OT_BITS256: MRefInfo := msiMem256;
  4707. OT_BITS512: MRefInfo := msiMem512;
  4708. OT_BITS80,
  4709. OT_FAR,
  4710. OT_NEAR,
  4711. OT_SHORT: ; // ignore
  4712. else
  4713. begin
  4714. bitcount := bitcnt(actMemSize);
  4715. if bitcount > 1 then MRefInfo := msiMultiple
  4716. else InternalError(777203);
  4717. end;
  4718. end;
  4719. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  4720. begin
  4721. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4722. end
  4723. else
  4724. begin
  4725. // ignore broadcast-memory
  4726. if not(MRefInfo in [msiBMem32, msiBMem64]) then
  4727. begin
  4728. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4729. begin
  4730. with InsTabMemRefSizeInfoCache^[AsmOp] do
  4731. begin
  4732. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  4733. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  4734. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  4735. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  4736. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  4737. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  4738. else if ((MemRefSize = msiMem512) OR (MRefInfo = msiMem512)) then MemRefSize := msiMultiple512
  4739. else MemRefSize := msiMultiple;
  4740. end;
  4741. end;
  4742. end;
  4743. end;
  4744. //if not(MRefInfo in [msiBMem32, msiBMem64]) and (actRegCount > 0) then
  4745. if actRegCount > 0 then
  4746. begin
  4747. if MRefInfo in [msiBMem32, msiBMem64] then
  4748. begin
  4749. if IF_BCST2 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to2];
  4750. if IF_BCST4 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to4];
  4751. if IF_BCST8 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to8];
  4752. if IF_BCST16 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to16];
  4753. //InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes
  4754. // BROADCAST - OPERAND
  4755. RegBCSTSizeMask := RegBCSTSizeMask or actMemSize;
  4756. case actRegTypes and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4757. OT_XMMREG: RegBCSTXMMSizeMask := RegBCSTXMMSizeMask or actMemSize;
  4758. OT_YMMREG: RegBCSTYMMSizeMask := RegBCSTYMMSizeMask or actMemSize;
  4759. OT_ZMMREG: RegBCSTZMMSizeMask := RegBCSTZMMSizeMask or actMemSize;
  4760. else begin
  4761. RegBCSTXMMSizeMask := not(0);
  4762. RegBCSTYMMSizeMask := not(0);
  4763. RegBCSTZMMSizeMask := not(0);
  4764. end;
  4765. end;
  4766. end
  4767. else
  4768. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4769. OT_MMXREG: if actConstCount > 0 then RegMMXConstSizeMask := RegMMXConstSizeMask or actMemSize
  4770. else RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  4771. OT_XMMREG: if actConstCount > 0 then RegXMMConstSizeMask := RegXMMConstSizeMask or actMemSize
  4772. else RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  4773. OT_YMMREG: if actConstCount > 0 then RegYMMConstSizeMask := RegYMMConstSizeMask or actMemSize
  4774. else RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  4775. OT_ZMMREG: if actConstCount > 0 then RegZMMConstSizeMask := RegZMMConstSizeMask or actMemSize
  4776. else RegZMMSizeMask := RegZMMSizeMask or actMemSize;
  4777. else begin
  4778. RegMMXSizeMask := not(0);
  4779. RegXMMSizeMask := not(0);
  4780. RegYMMSizeMask := not(0);
  4781. RegZMMSizeMask := not(0);
  4782. RegMMXConstSizeMask := not(0);
  4783. RegXMMConstSizeMask := not(0);
  4784. RegYMMConstSizeMask := not(0);
  4785. RegZMMConstSizeMask := not(0);
  4786. end;
  4787. end;
  4788. end
  4789. else
  4790. end
  4791. else InternalError(777202);
  4792. end;
  4793. end;
  4794. inc(insentry);
  4795. end;
  4796. if InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX then
  4797. begin
  4798. case RegBCSTSizeMask of
  4799. 0: ; // ignore;
  4800. OT_BITSB32: begin
  4801. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST32;
  4802. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 4;
  4803. end;
  4804. OT_BITSB64: begin
  4805. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST64;
  4806. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 2;
  4807. end;
  4808. else begin
  4809. //TG TODO - mixed broadcast
  4810. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbMultiple;
  4811. end;;
  4812. end;
  4813. end;
  4814. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  4815. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  4816. begin
  4817. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  4818. begin
  4819. if ((RegXMMSizeMask = OT_BITS128) or (RegXMMSizeMask = 0)) and
  4820. ((RegYMMSizeMask = OT_BITS256) or (RegYMMSizeMask = 0)) and
  4821. ((RegZMMSizeMask = OT_BITS512) or (RegZMMSizeMask = 0)) and
  4822. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) <> 0) then
  4823. begin
  4824. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  4825. end
  4826. else
  4827. begin
  4828. //TG TODO delete
  4829. if not((AsmOp = A_VGATHERQPS) or
  4830. (AsmOp = A_VGATHERQPS) or
  4831. (AsmOp = A_VPGATHERQD)) then
  4832. begin
  4833. RegZMMSizeMask := RegZMMSizeMask;
  4834. end;
  4835. end;
  4836. end
  4837. else if (RegMMXSizeMask or RegMMXConstSizeMask) <> 0 then
  4838. begin
  4839. if ((RegMMXSizeMask or RegMMXConstSizeMask) = OT_BITS64) and
  4840. ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) and
  4841. ((RegYMMSizeMask or RegYMMConstSizeMask) = 0) and
  4842. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4843. begin
  4844. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4845. end
  4846. else
  4847. begin
  4848. //TG TODO delete
  4849. if not(InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiMultiple16]) then
  4850. RegMMXSizeMask := RegMMXSizeMask;
  4851. end;
  4852. end
  4853. else if (((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) or ((RegXMMSizeMask or RegXMMConstSizeMask) = 0)) and
  4854. (((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) or ((RegYMMSizeMask or RegYMMConstSizeMask) = 0)) and
  4855. (((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) or ((RegZMMSizeMask or RegZMMConstSizeMask) = 0)) and
  4856. (((RegXMMSizeMask or RegXMMConstSizeMask or
  4857. RegYMMSizeMask or RegYMMConstSizeMask or
  4858. RegZMMSizeMask or RegZMMConstSizeMask)) <> 0) then
  4859. begin
  4860. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4861. end
  4862. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4863. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4864. (RegZMMSizeMask or RegZMMConstSizeMask = 0) then
  4865. begin
  4866. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  4867. end
  4868. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4869. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4870. (RegZMMSizeMask or RegZMMConstSizeMask = OT_BITS64) then
  4871. begin
  4872. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32z64;
  4873. end
  4874. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS32) and
  4875. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS64) then
  4876. begin
  4877. if ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4878. begin
  4879. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  4880. end
  4881. else if ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS128) then
  4882. begin
  4883. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64z128;
  4884. end
  4885. else
  4886. begin
  4887. //TG TODO delete
  4888. RegZMMSizeMask := RegZMMSizeMask;
  4889. end;
  4890. end
  4891. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4892. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  4893. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4894. begin
  4895. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  4896. end
  4897. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4898. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  4899. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS256) then
  4900. begin
  4901. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128z256;
  4902. end
  4903. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4904. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  4905. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4906. begin
  4907. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  4908. end
  4909. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4910. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  4911. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) then
  4912. begin
  4913. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256z512;
  4914. end
  4915. else if ((RegXMMConstSizeMask = 0) or (RegXMMConstSizeMask = OT_BITS128)) and
  4916. ((RegYMMConstSizeMask = 0) or (RegYMMConstSizeMask = OT_BITS256)) and
  4917. ((RegZMMConstSizeMask = 0) or (RegZMMConstSizeMask = OT_BITS512)) and
  4918. ((RegXMMConstSizeMask or RegYMMConstSizeMask or RegZMMConstSizeMask) <> 0) and
  4919. (
  4920. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS128) or
  4921. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS256) or
  4922. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS512)
  4923. ) then
  4924. begin
  4925. case RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask of
  4926. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst128;
  4927. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst256;
  4928. OT_BITS512: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst512;
  4929. else InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMultiple;
  4930. end;
  4931. end
  4932. else
  4933. begin
  4934. if not(
  4935. (AsmOp = A_CVTSI2SS) or
  4936. (AsmOp = A_CVTSI2SD) or
  4937. (AsmOp = A_CVTPD2DQ) or
  4938. (AsmOp = A_VCVTPD2DQ) or
  4939. (AsmOp = A_VCVTPD2PS) or
  4940. (AsmOp = A_VCVTSI2SD) or
  4941. (AsmOp = A_VCVTSI2SS) or
  4942. (AsmOp = A_VCVTTPD2DQ) or
  4943. (AsmOp = A_VCVTPD2UDQ) or
  4944. (AsmOp = A_VCVTQQ2PS) or
  4945. (AsmOp = A_VCVTTPD2UDQ) or
  4946. (AsmOp = A_VCVTUQQ2PS) or
  4947. (AsmOp = A_VCVTUSI2SD) or
  4948. (AsmOp = A_VCVTUSI2SS) or
  4949. // TODO check
  4950. (AsmOp = A_VCMPSS)
  4951. ) then
  4952. InternalError(777205);
  4953. end;
  4954. end;
  4955. end;
  4956. end;
  4957. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  4958. begin
  4959. // only supported intructiones with SSE- or AVX-operands
  4960. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  4961. begin
  4962. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  4963. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  4964. end;
  4965. end;
  4966. end;
  4967. procedure InitAsm;
  4968. begin
  4969. build_spilling_operation_type_table;
  4970. if not assigned(instabcache) then
  4971. BuildInsTabCache;
  4972. if not assigned(InsTabMemRefSizeInfoCache) then
  4973. BuildInsTabMemRefSizeInfoCache;
  4974. end;
  4975. procedure DoneAsm;
  4976. begin
  4977. if assigned(operation_type_table) then
  4978. begin
  4979. dispose(operation_type_table);
  4980. operation_type_table:=nil;
  4981. end;
  4982. if assigned(instabcache) then
  4983. begin
  4984. dispose(instabcache);
  4985. instabcache:=nil;
  4986. end;
  4987. if assigned(InsTabMemRefSizeInfoCache) then
  4988. begin
  4989. dispose(InsTabMemRefSizeInfoCache);
  4990. InsTabMemRefSizeInfoCache:=nil;
  4991. end;
  4992. end;
  4993. begin
  4994. cai_align:=tai_align;
  4995. cai_cpu:=taicpu;
  4996. end.