cgbase.pas 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. Some basic types and constants for the code generation
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# This unit exports some types which are used across the code generator }
  18. unit cgbase;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. globtype,
  23. symconst;
  24. type
  25. { Location types where value can be stored }
  26. TCGLoc=(
  27. LOC_INVALID, { added for tracking problems}
  28. LOC_VOID, { no value is available }
  29. LOC_CONSTANT, { constant value }
  30. LOC_JUMP, { boolean results only, jump to false or true label }
  31. LOC_FLAGS, { boolean results only, flags are set }
  32. LOC_REGISTER, { in a processor register }
  33. LOC_CREGISTER, { Constant register which shouldn't be modified }
  34. LOC_FPUREGISTER, { FPU stack }
  35. LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
  36. LOC_MMXREGISTER, { MMX register }
  37. { MMX register variable }
  38. LOC_CMMXREGISTER,
  39. { multimedia register }
  40. LOC_MMREGISTER,
  41. { Constant multimedia reg which shouldn't be modified }
  42. LOC_CMMREGISTER,
  43. { contiguous subset of bits of an integer register }
  44. LOC_SUBSETREG,
  45. LOC_CSUBSETREG,
  46. { contiguous subset of bits in memory }
  47. LOC_SUBSETREF,
  48. LOC_CSUBSETREF,
  49. { keep these last for range checking purposes }
  50. LOC_CREFERENCE, { in memory constant value reference (cannot change) }
  51. LOC_REFERENCE { in memory value }
  52. );
  53. TCGNonRefLoc=low(TCGLoc)..pred(LOC_CREFERENCE);
  54. TCGRefLoc=LOC_CREFERENCE..LOC_REFERENCE;
  55. { since we have only 16bit offsets, we need to be able to specify the high
  56. and lower 16 bits of the address of a symbol of up to 64 bit }
  57. trefaddr = (
  58. addr_no,
  59. addr_full,
  60. addr_pic,
  61. addr_pic_no_got
  62. {$IF defined(POWERPC) or defined(POWERPC64) or defined(SPARC) or defined(MIPS)}
  63. ,
  64. addr_low, // bits 48-63
  65. addr_high, // bits 32-47
  66. {$IF defined(POWERPC64)}
  67. addr_higher, // bits 16-31
  68. addr_highest, // bits 00-15
  69. {$ENDIF}
  70. addr_higha // bits 16-31, adjusted
  71. {$IF defined(POWERPC64)}
  72. ,
  73. addr_highera, // bits 32-47, adjusted
  74. addr_highesta // bits 48-63, adjusted
  75. {$ENDIF}
  76. {$ENDIF POWERPC or POWERPC64 or SPARC or MIPS}
  77. {$IFDEF MIPS}
  78. ,
  79. addr_pic_call16, // like addr_pic, but generates call16 reloc instead of got16
  80. addr_low_pic, // for large GOT model, generate got_hi16 and got_lo16 relocs
  81. addr_high_pic,
  82. addr_low_call, // counterpart of two above, generate call_hi16 and call_lo16 relocs
  83. addr_high_call
  84. {$ENDIF}
  85. {$IFDEF AVR}
  86. ,addr_lo8
  87. ,addr_hi8
  88. {$ENDIF}
  89. {$IFDEF i8086}
  90. ,addr_dgroup // the data segment group
  91. ,addr_seg // used for getting the segment of an object, e.g. 'mov ax, SEG symbol'
  92. {$ENDIF}
  93. {$IFDEF SPC32}
  94. ,addr_lo16
  95. ,addr_hi16
  96. {$ENDIF}
  97. );
  98. {# Generic opcodes, which must be supported by all processors
  99. }
  100. topcg =
  101. (
  102. OP_NONE,
  103. OP_MOVE, { replaced operation with direct load }
  104. OP_ADD, { simple addition }
  105. OP_AND, { simple logical and }
  106. OP_DIV, { simple unsigned division }
  107. OP_IDIV, { simple signed division }
  108. OP_IMUL, { simple signed multiply }
  109. OP_MUL, { simple unsigned multiply }
  110. OP_NEG, { simple negate }
  111. OP_NOT, { simple logical not }
  112. OP_OR, { simple logical or }
  113. OP_SAR, { arithmetic shift-right }
  114. OP_SHL, { logical shift left }
  115. OP_SHR, { logical shift right }
  116. OP_SUB, { simple subtraction }
  117. OP_XOR, { simple exclusive or }
  118. OP_ROL, { rotate left }
  119. OP_ROR { rotate right }
  120. );
  121. {# Generic flag values - used for jump locations }
  122. TOpCmp =
  123. (
  124. OC_NONE,
  125. OC_EQ, { equality comparison }
  126. OC_GT, { greater than (signed) }
  127. OC_LT, { less than (signed) }
  128. OC_GTE, { greater or equal than (signed) }
  129. OC_LTE, { less or equal than (signed) }
  130. OC_NE, { not equal }
  131. OC_BE, { less or equal than (unsigned) }
  132. OC_B, { less than (unsigned) }
  133. OC_AE, { greater or equal than (unsigned) }
  134. OC_A { greater than (unsigned) }
  135. );
  136. { indirect symbol flags }
  137. tindsymflag = (is_data,is_weak);
  138. tindsymflags = set of tindsymflag;
  139. { OS_NO is also used memory references with large data that can
  140. not be loaded in a register directly }
  141. TCgSize = (OS_NO,
  142. { integer registers }
  143. OS_8,OS_16,OS_32,OS_64,OS_128,OS_S8,OS_S16,OS_S32,OS_S64,OS_S128,
  144. { single,double,extended,comp,float128 }
  145. OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,
  146. { multi-media sizes: split in byte, word, dword, ... }
  147. { entities, then the signed counterparts }
  148. OS_M8,OS_M16,OS_M32,OS_M64,OS_M128,OS_M256,
  149. OS_MS8,OS_MS16,OS_MS32,OS_MS64,OS_MS128,OS_MS256 );
  150. { Register types }
  151. TRegisterType = (
  152. R_INVALIDREGISTER, { = 0 }
  153. R_INTREGISTER, { = 1 }
  154. R_FPUREGISTER, { = 2 }
  155. { used by Intel only }
  156. R_MMXREGISTER, { = 3 }
  157. R_MMREGISTER, { = 4 }
  158. R_SPECIALREGISTER, { = 5 }
  159. R_ADDRESSREGISTER { = 6 }
  160. );
  161. { Sub registers }
  162. TSubRegister = (
  163. R_SUBNONE, { = 0; no sub register possible }
  164. R_SUBL, { = 1; 8 bits, Like AL }
  165. R_SUBH, { = 2; 8 bits, Like AH }
  166. R_SUBW, { = 3; 16 bits, Like AX }
  167. R_SUBD, { = 4; 32 bits, Like EAX }
  168. R_SUBQ, { = 5; 64 bits, Like RAX }
  169. { For Sparc floats that use F0:F1 to store doubles }
  170. R_SUBFS, { = 6; Float that allocates 1 FPU register }
  171. R_SUBFD, { = 7; Float that allocates 2 FPU registers }
  172. R_SUBFQ, { = 8; Float that allocates 4 FPU registers }
  173. R_SUBMMS, { = 9; single scalar in multi media register }
  174. R_SUBMMD, { = 10; double scalar in multi media register }
  175. R_SUBMMWHOLE, { = 11; complete MM register, size depends on CPU }
  176. { For Intel X86 AVX-Register }
  177. R_SUBMMX, { = 12; 128 BITS }
  178. R_SUBMMY { = 13; 256 BITS }
  179. );
  180. TSubRegisterSet = set of TSubRegister;
  181. TSuperRegister = type word;
  182. {
  183. The new register coding:
  184. SuperRegister (bits 0..15)
  185. Subregister (bits 16..23)
  186. Register type (bits 24..31)
  187. TRegister is defined as an enum to make it incompatible
  188. with TSuperRegister to avoid mixing them
  189. }
  190. TRegister = (
  191. TRegisterLowEnum := Low(longint),
  192. TRegisterHighEnum := High(longint)
  193. );
  194. TRegisterRec=packed record
  195. {$ifdef FPC_BIG_ENDIAN}
  196. regtype : Tregistertype;
  197. subreg : Tsubregister;
  198. supreg : Tsuperregister;
  199. {$else FPC_BIG_ENDIAN}
  200. supreg : Tsuperregister;
  201. subreg : Tsubregister;
  202. regtype : Tregistertype;
  203. {$endif FPC_BIG_ENDIAN}
  204. end;
  205. { A type to store register locations for 64 Bit values. }
  206. {$ifdef cpu64bitalu}
  207. tregister64 = tregister;
  208. tregister128 = record
  209. reglo,reghi : tregister;
  210. end;
  211. {$else cpu64bitalu}
  212. tregister64 = record
  213. reglo,reghi : tregister;
  214. end;
  215. {$endif cpu64bitalu}
  216. Tregistermmxset = record
  217. reg0,reg1,reg2,reg3:Tregister
  218. end;
  219. { Set type definition for registers }
  220. tsuperregisterset = array[byte] of set of byte;
  221. pmmshuffle = ^tmmshuffle;
  222. { this record describes shuffle operations for mm operations; if a pointer a shuffle record
  223. passed to an mm operation is nil, it means that the whole location is moved }
  224. tmmshuffle = record
  225. { describes how many shuffles are actually described, if len=0 then
  226. moving the scalar with index 0 to the scalar with index 0 is meant }
  227. len : byte;
  228. { lower nibble of each entry of this array describes index of the source data index while
  229. the upper nibble describes the destination index }
  230. shuffles : array[1..1] of byte;
  231. end;
  232. Tsuperregisterarray=array[0..$ffff] of Tsuperregister;
  233. Psuperregisterarray=^Tsuperregisterarray;
  234. Tsuperregisterworklist=object
  235. buflength,
  236. buflengthinc,
  237. length:word;
  238. buf:Psuperregisterarray;
  239. constructor init;
  240. constructor copyfrom(const x:Tsuperregisterworklist);
  241. destructor done;
  242. procedure clear;
  243. procedure add(s:tsuperregister);
  244. function addnodup(s:tsuperregister): boolean;
  245. function get:tsuperregister;
  246. function readidx(i:word):tsuperregister;
  247. procedure deleteidx(i:word);
  248. function delete(s:tsuperregister):boolean;
  249. end;
  250. psuperregisterworklist=^tsuperregisterworklist;
  251. const
  252. { alias for easier understanding }
  253. R_SSEREGISTER = R_MMREGISTER;
  254. { Invalid register number }
  255. RS_INVALID = high(tsuperregister);
  256. NR_INVALID = tregister($fffffffff);
  257. tcgsize2size : Array[tcgsize] of integer =
  258. { integer values }
  259. (0,1,2,4,8,16,1,2,4,8,16,
  260. { floating point values }
  261. 4,8,10,8,16,
  262. { multimedia values }
  263. 1,2,4,8,16,32,1,2,4,8,16,32);
  264. tfloat2tcgsize: array[tfloattype] of tcgsize =
  265. (OS_F32,OS_F64,OS_F80,OS_F80,OS_C64,OS_C64,OS_F128);
  266. tcgsize2tfloat: array[OS_F32..OS_C64] of tfloattype =
  267. (s32real,s64real,s80real,s64comp);
  268. tvarregable2tcgloc : array[tvarregable] of tcgloc = (LOC_VOID,
  269. LOC_CREGISTER,LOC_CFPUREGISTER,LOC_CMMREGISTER,LOC_CREGISTER);
  270. {$if defined(cpu64bitalu)}
  271. { operand size describing an unsigned value in a pair of int registers }
  272. OS_PAIR = OS_128;
  273. { operand size describing an signed value in a pair of int registers }
  274. OS_SPAIR = OS_S128;
  275. {$elseif defined(cpu32bitalu)}
  276. { operand size describing an unsigned value in a pair of int registers }
  277. OS_PAIR = OS_64;
  278. { operand size describing an signed value in a pair of int registers }
  279. OS_SPAIR = OS_S64;
  280. {$elseif defined(cpu16bitalu)}
  281. { operand size describing an unsigned value in a pair of int registers }
  282. OS_PAIR = OS_32;
  283. { operand size describing an signed value in a pair of int registers }
  284. OS_SPAIR = OS_S32;
  285. {$elseif defined(cpu8bitalu)}
  286. { operand size describing an unsigned value in a pair of int registers }
  287. OS_PAIR = OS_16;
  288. { operand size describing an signed value in a pair of int registers }
  289. OS_SPAIR = OS_S16;
  290. {$endif}
  291. { Table to convert tcgsize variables to the correspondending
  292. unsigned types }
  293. tcgsize2unsigned : array[tcgsize] of tcgsize = (OS_NO,
  294. OS_8,OS_16,OS_32,OS_64,OS_128,OS_8,OS_16,OS_32,OS_64,OS_128,
  295. OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,
  296. OS_M8,OS_M16,OS_M32,OS_M64,OS_M128,OS_M256,OS_M8,OS_M16,OS_M32,
  297. OS_M64,OS_M128,OS_M256);
  298. tcgloc2str : array[TCGLoc] of string[12] = (
  299. 'LOC_INVALID',
  300. 'LOC_VOID',
  301. 'LOC_CONST',
  302. 'LOC_JUMP',
  303. 'LOC_FLAGS',
  304. 'LOC_REG',
  305. 'LOC_CREG',
  306. 'LOC_FPUREG',
  307. 'LOC_CFPUREG',
  308. 'LOC_MMXREG',
  309. 'LOC_CMMXREG',
  310. 'LOC_MMREG',
  311. 'LOC_CMMREG',
  312. 'LOC_SSETREG',
  313. 'LOC_CSSETREG',
  314. 'LOC_SSETREF',
  315. 'LOC_CSSETREF',
  316. 'LOC_CREF',
  317. 'LOC_REF'
  318. );
  319. var
  320. mms_movescalar : pmmshuffle;
  321. procedure supregset_reset(var regs:tsuperregisterset;setall:boolean;
  322. maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  323. procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  324. procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  325. function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
  326. function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
  327. function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
  328. function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
  329. function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
  330. procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
  331. procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  332. function generic_regname(r:tregister):string;
  333. {# From a constant numeric value, return the abstract code generator
  334. size.
  335. }
  336. function int_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
  337. function int_float_cgsize(const a: tcgint): tcgsize;
  338. function tcgsize2str(cgsize: tcgsize):string;
  339. { return the inverse condition of opcmp }
  340. function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  341. { return the opcmp needed when swapping the operands }
  342. function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  343. { return whether op is commutative }
  344. function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
  345. { returns true, if shuffle describes a real shuffle operation and not only a move }
  346. function realshuffle(shuffle : pmmshuffle) : boolean;
  347. { returns true, if the shuffle describes only a move of the scalar at index 0 }
  348. function shufflescalar(shuffle : pmmshuffle) : boolean;
  349. { removes shuffling from shuffle, this means that the destenation index of each shuffle is copied to
  350. the source }
  351. procedure removeshuffles(var shuffle : tmmshuffle);
  352. implementation
  353. uses
  354. verbose;
  355. {******************************************************************************
  356. tsuperregisterworklist
  357. ******************************************************************************}
  358. constructor tsuperregisterworklist.init;
  359. begin
  360. length:=0;
  361. buflength:=0;
  362. buflengthinc:=16;
  363. buf:=nil;
  364. end;
  365. constructor Tsuperregisterworklist.copyfrom(const x:Tsuperregisterworklist);
  366. begin
  367. self:=x;
  368. if x.buf<>nil then
  369. begin
  370. getmem(buf,buflength*sizeof(Tsuperregister));
  371. move(x.buf^,buf^,length*sizeof(Tsuperregister));
  372. end;
  373. end;
  374. destructor tsuperregisterworklist.done;
  375. begin
  376. if assigned(buf) then
  377. freemem(buf);
  378. end;
  379. procedure tsuperregisterworklist.add(s:tsuperregister);
  380. begin
  381. inc(length);
  382. { Need to increase buffer length? }
  383. if length>=buflength then
  384. begin
  385. inc(buflength,buflengthinc);
  386. buflengthinc:=buflengthinc*2;
  387. if buflengthinc>256 then
  388. buflengthinc:=256;
  389. reallocmem(buf,buflength*sizeof(Tsuperregister));
  390. end;
  391. buf^[length-1]:=s;
  392. end;
  393. function tsuperregisterworklist.addnodup(s:tsuperregister): boolean;
  394. begin
  395. addnodup := false;
  396. if indexword(buf^,length,s) = -1 then
  397. begin
  398. add(s);
  399. addnodup := true;
  400. end;
  401. end;
  402. procedure tsuperregisterworklist.clear;
  403. begin
  404. length:=0;
  405. end;
  406. procedure tsuperregisterworklist.deleteidx(i:word);
  407. begin
  408. if i>=length then
  409. internalerror(200310144);
  410. buf^[i]:=buf^[length-1];
  411. dec(length);
  412. end;
  413. function tsuperregisterworklist.readidx(i:word):tsuperregister;
  414. begin
  415. if (i >= length) then
  416. internalerror(2005010601);
  417. result := buf^[i];
  418. end;
  419. function tsuperregisterworklist.get:tsuperregister;
  420. begin
  421. if length=0 then
  422. internalerror(200310142);
  423. get:=buf^[0];
  424. buf^[0]:=buf^[length-1];
  425. dec(length);
  426. end;
  427. function tsuperregisterworklist.delete(s:tsuperregister):boolean;
  428. var
  429. i:longint;
  430. begin
  431. delete:=false;
  432. { indexword in 1.0.x and 1.9.4 is broken }
  433. i:=indexword(buf^,length,s);
  434. if i<>-1 then
  435. begin
  436. deleteidx(i);
  437. delete := true;
  438. end;
  439. end;
  440. procedure supregset_reset(var regs:tsuperregisterset;setall:boolean;
  441. maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  442. begin
  443. fillchar(regs,(maxreg+7) shr 3,-byte(setall));
  444. end;
  445. procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  446. begin
  447. include(regs[s shr 8],(s and $ff));
  448. end;
  449. procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  450. begin
  451. exclude(regs[s shr 8],(s and $ff));
  452. end;
  453. function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
  454. begin
  455. result:=(s and $ff) in regs[s shr 8];
  456. end;
  457. function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
  458. begin
  459. tregisterrec(result).regtype:=rt;
  460. tregisterrec(result).supreg:=sr;
  461. tregisterrec(result).subreg:=sb;
  462. end;
  463. function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
  464. begin
  465. result:=tregisterrec(r).subreg;
  466. end;
  467. function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
  468. begin
  469. result:=tregisterrec(r).supreg;
  470. end;
  471. function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
  472. begin
  473. result:=tregisterrec(r).regtype;
  474. end;
  475. procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
  476. begin
  477. tregisterrec(r).subreg:=sr;
  478. end;
  479. procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  480. begin
  481. tregisterrec(r).supreg:=sr;
  482. end;
  483. function generic_regname(r:tregister):string;
  484. var
  485. nr : string[12];
  486. begin
  487. str(getsupreg(r),nr);
  488. case getregtype(r) of
  489. R_INTREGISTER:
  490. result:='ireg'+nr;
  491. R_FPUREGISTER:
  492. result:='freg'+nr;
  493. R_MMREGISTER:
  494. result:='mreg'+nr;
  495. R_MMXREGISTER:
  496. result:='xreg'+nr;
  497. R_ADDRESSREGISTER:
  498. result:='areg'+nr;
  499. R_SPECIALREGISTER:
  500. result:='sreg'+nr;
  501. else
  502. begin
  503. result:='INVALID';
  504. exit;
  505. end;
  506. end;
  507. case getsubreg(r) of
  508. R_SUBNONE:
  509. ;
  510. R_SUBL:
  511. result:=result+'l';
  512. R_SUBH:
  513. result:=result+'h';
  514. R_SUBW:
  515. result:=result+'w';
  516. R_SUBD:
  517. result:=result+'d';
  518. R_SUBQ:
  519. result:=result+'q';
  520. R_SUBFS:
  521. result:=result+'fs';
  522. R_SUBFD:
  523. result:=result+'fd';
  524. R_SUBMMD:
  525. result:=result+'md';
  526. R_SUBMMS:
  527. result:=result+'ms';
  528. R_SUBMMWHOLE:
  529. result:=result+'ma';
  530. R_SUBMMX:
  531. result:=result+'mx';
  532. R_SUBMMY:
  533. result:=result+'my';
  534. else
  535. internalerror(200308252);
  536. end;
  537. end;
  538. function int_cgsize(const a: tcgint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
  539. const
  540. size2cgsize : array[0..8] of tcgsize = (
  541. OS_NO,OS_8,OS_16,OS_NO,OS_32,OS_NO,OS_NO,OS_NO,OS_64
  542. );
  543. begin
  544. {$ifdef cpu64bitalu}
  545. if a=16 then
  546. result:=OS_128
  547. else
  548. {$endif cpu64bitalu}
  549. if a>8 then
  550. result:=OS_NO
  551. else
  552. result:=size2cgsize[a];
  553. end;
  554. function int_float_cgsize(const a: tcgint): tcgsize;
  555. begin
  556. case a of
  557. 4 :
  558. result:=OS_F32;
  559. 8 :
  560. result:=OS_F64;
  561. 10 :
  562. result:=OS_F80;
  563. 16 :
  564. result:=OS_F128;
  565. else
  566. internalerror(200603211);
  567. end;
  568. end;
  569. function tcgsize2str(cgsize: tcgsize):string;
  570. begin
  571. Str(cgsize, Result);
  572. end;
  573. function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  574. const
  575. list: array[TOpCmp] of TOpCmp =
  576. (OC_NONE,OC_NE,OC_LTE,OC_GTE,OC_LT,OC_GT,OC_EQ,OC_A,OC_AE,
  577. OC_B,OC_BE);
  578. begin
  579. inverse_opcmp := list[opcmp];
  580. end;
  581. function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  582. const
  583. list: array[TOpCmp] of TOpCmp =
  584. (OC_NONE,OC_EQ,OC_LT,OC_GT,OC_LTE,OC_GTE,OC_NE,OC_AE,OC_A,
  585. OC_BE,OC_B);
  586. begin
  587. swap_opcmp := list[opcmp];
  588. end;
  589. function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
  590. const
  591. list: array[topcg] of boolean =
  592. (true,false,true,true,false,false,true,true,false,false,
  593. true,false,false,false,false,true,false,false);
  594. begin
  595. commutativeop := list[op];
  596. end;
  597. function realshuffle(shuffle : pmmshuffle) : boolean;
  598. var
  599. i : longint;
  600. begin
  601. realshuffle:=true;
  602. if (shuffle=nil) or (shuffle^.len=0) then
  603. realshuffle:=false
  604. else
  605. begin
  606. for i:=1 to shuffle^.len do
  607. begin
  608. if (shuffle^.shuffles[i] and $f)<>((shuffle^.shuffles[i] and $f0) shr 4) then
  609. exit;
  610. end;
  611. realshuffle:=false;
  612. end;
  613. end;
  614. function shufflescalar(shuffle : pmmshuffle) : boolean;
  615. begin
  616. result:=shuffle^.len=0;
  617. end;
  618. procedure removeshuffles(var shuffle : tmmshuffle);
  619. var
  620. i : longint;
  621. begin
  622. if shuffle.len=0 then
  623. exit;
  624. for i:=1 to shuffle.len do
  625. shuffle.shuffles[i]:=(shuffle.shuffles[i] and $f) or ((shuffle.shuffles[i] and $f0) shr 4);
  626. end;
  627. initialization
  628. new(mms_movescalar);
  629. mms_movescalar^.len:=0;
  630. finalization
  631. dispose(mms_movescalar);
  632. end.