aasmcpu.pas 125 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. private
  298. { next fields are filled in pass1, so pass2 is faster }
  299. insentry : PInsEntry;
  300. insoffset : longint;
  301. LastInsOffset : longint; { need to be public to be reset }
  302. inssize : shortint;
  303. {$ifdef x86_64}
  304. rex : byte;
  305. {$endif x86_64}
  306. function InsEnd:longint;
  307. procedure create_ot(objdata:TObjData);
  308. function Matches(p:PInsEntry):boolean;
  309. function calcsize(p:PInsEntry):shortint;
  310. procedure gencode(objdata:TObjData);
  311. function NeedAddrPrefix(opidx:byte):boolean;
  312. procedure Swapoperands;
  313. function FindInsentry(objdata:TObjData):boolean;
  314. end;
  315. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  316. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  317. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  318. procedure InitAsm;
  319. procedure DoneAsm;
  320. implementation
  321. uses
  322. cutils,
  323. globals,
  324. systems,
  325. procinfo,
  326. itcpugas,
  327. symsym,
  328. cpuinfo;
  329. {*****************************************************************************
  330. Instruction table
  331. *****************************************************************************}
  332. const
  333. {Instruction flags }
  334. IF_NONE = $00000000;
  335. IF_SM = $00000001; { size match first two operands }
  336. IF_SM2 = $00000002;
  337. IF_SB = $00000004; { unsized operands can't be non-byte }
  338. IF_SW = $00000008; { unsized operands can't be non-word }
  339. IF_SD = $00000010; { unsized operands can't be nondword }
  340. IF_SMASK = $0000001f;
  341. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  342. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  343. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  344. IF_ARMASK = $00000060; { mask for unsized argument spec }
  345. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  346. IF_PRIV = $00000100; { it's a privileged instruction }
  347. IF_SMM = $00000200; { it's only valid in SMM }
  348. IF_PROT = $00000400; { it's protected mode only }
  349. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  350. IF_UNDOC = $00001000; { it's an undocumented instruction }
  351. IF_FPU = $00002000; { it's an FPU instruction }
  352. IF_MMX = $00004000; { it's an MMX instruction }
  353. { it's a 3DNow! instruction }
  354. IF_3DNOW = $00008000;
  355. { it's a SSE (KNI, MMX2) instruction }
  356. IF_SSE = $00010000;
  357. { SSE2 instructions }
  358. IF_SSE2 = $00020000;
  359. { SSE3 instructions }
  360. IF_SSE3 = $00040000;
  361. { SSE64 instructions }
  362. IF_SSE64 = $00080000;
  363. { the mask for processor types }
  364. {IF_PMASK = longint($FF000000);}
  365. { the mask for disassembly "prefer" }
  366. {IF_PFMASK = longint($F001FF00);}
  367. { SVM instructions }
  368. IF_SVM = $00100000;
  369. { SSE4 instructions }
  370. IF_SSE4 = $00200000;
  371. { TODO: These flags were added to make x86ins.dat more readable.
  372. Values must be reassigned to make any other use of them. }
  373. IF_SSSE3 = $00200000;
  374. IF_SSE41 = $00200000;
  375. IF_SSE42 = $00200000;
  376. IF_AVX = $00200000;
  377. IF_AVX2 = $00200000;
  378. IF_BMI1 = $00200000;
  379. IF_BMI2 = $00200000;
  380. IF_16BITONLY = $00200000;
  381. IF_FMA = $00200000;
  382. IF_FMA4 = $00200000;
  383. IF_PLEVEL = $0F000000; { mask for processor level }
  384. IF_8086 = $00000000; { 8086 instruction }
  385. IF_186 = $01000000; { 186+ instruction }
  386. IF_286 = $02000000; { 286+ instruction }
  387. IF_386 = $03000000; { 386+ instruction }
  388. IF_486 = $04000000; { 486+ instruction }
  389. IF_PENT = $05000000; { Pentium instruction }
  390. IF_P6 = $06000000; { P6 instruction }
  391. IF_KATMAI = $07000000; { Katmai instructions }
  392. IF_WILLAMETTE = $08000000; { Willamette instructions }
  393. IF_PRESCOTT = $09000000; { Prescott instructions }
  394. IF_X86_64 = $0a000000;
  395. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  396. IF_AMD = $0c000000; { AMD-specific instruction }
  397. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  398. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  399. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  400. { added flags }
  401. IF_PRE = $40000000; { it's a prefix instruction }
  402. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  403. type
  404. TInsTabCache=array[TasmOp] of longint;
  405. PInsTabCache=^TInsTabCache;
  406. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  407. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  408. const
  409. {$if defined(x86_64)}
  410. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  411. {$elseif defined(i386)}
  412. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  413. {$elseif defined(i8086)}
  414. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  415. {$endif}
  416. var
  417. InsTabCache : PInsTabCache;
  418. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  419. const
  420. {$if defined(x86_64)}
  421. { Intel style operands ! }
  422. opsize_2_type:array[0..2,topsize] of longint=(
  423. (OT_NONE,
  424. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  425. OT_BITS16,OT_BITS32,OT_BITS64,
  426. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  427. OT_BITS64,
  428. OT_NEAR,OT_FAR,OT_SHORT,
  429. OT_NONE,
  430. OT_BITS128,
  431. OT_BITS256
  432. ),
  433. (OT_NONE,
  434. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  435. OT_BITS16,OT_BITS32,OT_BITS64,
  436. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  437. OT_BITS64,
  438. OT_NEAR,OT_FAR,OT_SHORT,
  439. OT_NONE,
  440. OT_BITS128,
  441. OT_BITS256
  442. ),
  443. (OT_NONE,
  444. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  445. OT_BITS16,OT_BITS32,OT_BITS64,
  446. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  447. OT_BITS64,
  448. OT_NEAR,OT_FAR,OT_SHORT,
  449. OT_NONE,
  450. OT_BITS128,
  451. OT_BITS256
  452. )
  453. );
  454. reg_ot_table : array[tregisterindex] of longint = (
  455. {$i r8664ot.inc}
  456. );
  457. {$elseif defined(i386)}
  458. { Intel style operands ! }
  459. opsize_2_type:array[0..2,topsize] of longint=(
  460. (OT_NONE,
  461. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  462. OT_BITS16,OT_BITS32,OT_BITS64,
  463. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  464. OT_BITS64,
  465. OT_NEAR,OT_FAR,OT_SHORT,
  466. OT_NONE,
  467. OT_BITS128,
  468. OT_BITS256
  469. ),
  470. (OT_NONE,
  471. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  472. OT_BITS16,OT_BITS32,OT_BITS64,
  473. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  474. OT_BITS64,
  475. OT_NEAR,OT_FAR,OT_SHORT,
  476. OT_NONE,
  477. OT_BITS128,
  478. OT_BITS256
  479. ),
  480. (OT_NONE,
  481. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  482. OT_BITS16,OT_BITS32,OT_BITS64,
  483. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  484. OT_BITS64,
  485. OT_NEAR,OT_FAR,OT_SHORT,
  486. OT_NONE,
  487. OT_BITS128,
  488. OT_BITS256
  489. )
  490. );
  491. reg_ot_table : array[tregisterindex] of longint = (
  492. {$i r386ot.inc}
  493. );
  494. {$elseif defined(i8086)}
  495. { Intel style operands ! }
  496. opsize_2_type:array[0..2,topsize] of longint=(
  497. (OT_NONE,
  498. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  499. OT_BITS16,OT_BITS32,OT_BITS64,
  500. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  501. OT_BITS64,
  502. OT_NEAR,OT_FAR,OT_SHORT,
  503. OT_NONE,
  504. OT_BITS128,
  505. OT_BITS256
  506. ),
  507. (OT_NONE,
  508. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  509. OT_BITS16,OT_BITS32,OT_BITS64,
  510. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  511. OT_BITS64,
  512. OT_NEAR,OT_FAR,OT_SHORT,
  513. OT_NONE,
  514. OT_BITS128,
  515. OT_BITS256
  516. ),
  517. (OT_NONE,
  518. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  519. OT_BITS16,OT_BITS32,OT_BITS64,
  520. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  521. OT_BITS64,
  522. OT_NEAR,OT_FAR,OT_SHORT,
  523. OT_NONE,
  524. OT_BITS128,
  525. OT_BITS256
  526. )
  527. );
  528. reg_ot_table : array[tregisterindex] of longint = (
  529. {$i r8086ot.inc}
  530. );
  531. {$endif}
  532. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  533. begin
  534. result := InsTabMemRefSizeInfoCache^[aAsmop];
  535. end;
  536. { Operation type for spilling code }
  537. type
  538. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  539. var
  540. operation_type_table : ^toperation_type_table;
  541. {****************************************************************************
  542. TAI_ALIGN
  543. ****************************************************************************}
  544. constructor tai_align.create(b: byte);
  545. begin
  546. inherited create(b);
  547. reg:=NR_ECX;
  548. end;
  549. constructor tai_align.create_op(b: byte; _op: byte);
  550. begin
  551. inherited create_op(b,_op);
  552. reg:=NR_NO;
  553. end;
  554. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  555. const
  556. {$ifdef x86_64}
  557. alignarray:array[0..3] of string[4]=(
  558. #$66#$66#$66#$90,
  559. #$66#$66#$90,
  560. #$66#$90,
  561. #$90
  562. );
  563. {$else x86_64}
  564. alignarray:array[0..5] of string[8]=(
  565. #$8D#$B4#$26#$00#$00#$00#$00,
  566. #$8D#$B6#$00#$00#$00#$00,
  567. #$8D#$74#$26#$00,
  568. #$8D#$76#$00,
  569. #$89#$F6,
  570. #$90);
  571. {$endif x86_64}
  572. var
  573. bufptr : pchar;
  574. j : longint;
  575. localsize: byte;
  576. begin
  577. inherited calculatefillbuf(buf,executable);
  578. if not(use_op) and executable then
  579. begin
  580. bufptr:=pchar(@buf);
  581. { fillsize may still be used afterwards, so don't modify }
  582. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  583. localsize:=fillsize;
  584. while (localsize>0) do
  585. begin
  586. for j:=low(alignarray) to high(alignarray) do
  587. if (localsize>=length(alignarray[j])) then
  588. break;
  589. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  590. inc(bufptr,length(alignarray[j]));
  591. dec(localsize,length(alignarray[j]));
  592. end;
  593. end;
  594. calculatefillbuf:=pchar(@buf);
  595. end;
  596. {*****************************************************************************
  597. Taicpu Constructors
  598. *****************************************************************************}
  599. procedure taicpu.changeopsize(siz:topsize);
  600. begin
  601. opsize:=siz;
  602. end;
  603. procedure taicpu.init(_size : topsize);
  604. begin
  605. { default order is att }
  606. FOperandOrder:=op_att;
  607. segprefix:=NR_NO;
  608. opsize:=_size;
  609. insentry:=nil;
  610. LastInsOffset:=-1;
  611. InsOffset:=0;
  612. InsSize:=0;
  613. end;
  614. constructor taicpu.op_none(op : tasmop);
  615. begin
  616. inherited create(op);
  617. init(S_NO);
  618. end;
  619. constructor taicpu.op_none(op : tasmop;_size : topsize);
  620. begin
  621. inherited create(op);
  622. init(_size);
  623. end;
  624. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  625. begin
  626. inherited create(op);
  627. init(_size);
  628. ops:=1;
  629. loadreg(0,_op1);
  630. end;
  631. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  632. begin
  633. inherited create(op);
  634. init(_size);
  635. ops:=1;
  636. loadconst(0,_op1);
  637. end;
  638. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  639. begin
  640. inherited create(op);
  641. init(_size);
  642. ops:=1;
  643. loadref(0,_op1);
  644. end;
  645. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  646. begin
  647. inherited create(op);
  648. init(_size);
  649. ops:=2;
  650. loadreg(0,_op1);
  651. loadreg(1,_op2);
  652. end;
  653. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  654. begin
  655. inherited create(op);
  656. init(_size);
  657. ops:=2;
  658. loadreg(0,_op1);
  659. loadconst(1,_op2);
  660. end;
  661. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  662. begin
  663. inherited create(op);
  664. init(_size);
  665. ops:=2;
  666. loadreg(0,_op1);
  667. loadref(1,_op2);
  668. end;
  669. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  670. begin
  671. inherited create(op);
  672. init(_size);
  673. ops:=2;
  674. loadconst(0,_op1);
  675. loadreg(1,_op2);
  676. end;
  677. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  678. begin
  679. inherited create(op);
  680. init(_size);
  681. ops:=2;
  682. loadconst(0,_op1);
  683. loadconst(1,_op2);
  684. end;
  685. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  686. begin
  687. inherited create(op);
  688. init(_size);
  689. ops:=2;
  690. loadconst(0,_op1);
  691. loadref(1,_op2);
  692. end;
  693. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  694. begin
  695. inherited create(op);
  696. init(_size);
  697. ops:=2;
  698. loadref(0,_op1);
  699. loadreg(1,_op2);
  700. end;
  701. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  702. begin
  703. inherited create(op);
  704. init(_size);
  705. ops:=3;
  706. loadreg(0,_op1);
  707. loadreg(1,_op2);
  708. loadreg(2,_op3);
  709. end;
  710. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  711. begin
  712. inherited create(op);
  713. init(_size);
  714. ops:=3;
  715. loadconst(0,_op1);
  716. loadreg(1,_op2);
  717. loadreg(2,_op3);
  718. end;
  719. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  720. begin
  721. inherited create(op);
  722. init(_size);
  723. ops:=3;
  724. loadref(0,_op1);
  725. loadreg(1,_op2);
  726. loadreg(2,_op3);
  727. end;
  728. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  729. begin
  730. inherited create(op);
  731. init(_size);
  732. ops:=3;
  733. loadconst(0,_op1);
  734. loadref(1,_op2);
  735. loadreg(2,_op3);
  736. end;
  737. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  738. begin
  739. inherited create(op);
  740. init(_size);
  741. ops:=3;
  742. loadconst(0,_op1);
  743. loadreg(1,_op2);
  744. loadref(2,_op3);
  745. end;
  746. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  747. begin
  748. inherited create(op);
  749. init(_size);
  750. condition:=cond;
  751. ops:=1;
  752. loadsymbol(0,_op1,0);
  753. end;
  754. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  755. begin
  756. inherited create(op);
  757. init(_size);
  758. ops:=1;
  759. loadsymbol(0,_op1,0);
  760. end;
  761. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  762. begin
  763. inherited create(op);
  764. init(_size);
  765. ops:=1;
  766. loadsymbol(0,_op1,_op1ofs);
  767. end;
  768. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  769. begin
  770. inherited create(op);
  771. init(_size);
  772. ops:=2;
  773. loadsymbol(0,_op1,_op1ofs);
  774. loadreg(1,_op2);
  775. end;
  776. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  777. begin
  778. inherited create(op);
  779. init(_size);
  780. ops:=2;
  781. loadsymbol(0,_op1,_op1ofs);
  782. loadref(1,_op2);
  783. end;
  784. function taicpu.GetString:string;
  785. var
  786. i : longint;
  787. s : string;
  788. addsize : boolean;
  789. begin
  790. s:='['+std_op2str[opcode];
  791. for i:=0 to ops-1 do
  792. begin
  793. with oper[i]^ do
  794. begin
  795. if i=0 then
  796. s:=s+' '
  797. else
  798. s:=s+',';
  799. { type }
  800. addsize:=false;
  801. if (ot and OT_XMMREG)=OT_XMMREG then
  802. s:=s+'xmmreg'
  803. else
  804. if (ot and OT_YMMREG)=OT_YMMREG then
  805. s:=s+'ymmreg'
  806. else
  807. if (ot and OT_MMXREG)=OT_MMXREG then
  808. s:=s+'mmxreg'
  809. else
  810. if (ot and OT_FPUREG)=OT_FPUREG then
  811. s:=s+'fpureg'
  812. else
  813. if (ot and OT_REGISTER)=OT_REGISTER then
  814. begin
  815. s:=s+'reg';
  816. addsize:=true;
  817. end
  818. else
  819. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  820. begin
  821. s:=s+'imm';
  822. addsize:=true;
  823. end
  824. else
  825. if (ot and OT_MEMORY)=OT_MEMORY then
  826. begin
  827. s:=s+'mem';
  828. addsize:=true;
  829. end
  830. else
  831. s:=s+'???';
  832. { size }
  833. if addsize then
  834. begin
  835. if (ot and OT_BITS8)<>0 then
  836. s:=s+'8'
  837. else
  838. if (ot and OT_BITS16)<>0 then
  839. s:=s+'16'
  840. else
  841. if (ot and OT_BITS32)<>0 then
  842. s:=s+'32'
  843. else
  844. if (ot and OT_BITS64)<>0 then
  845. s:=s+'64'
  846. else
  847. if (ot and OT_BITS128)<>0 then
  848. s:=s+'128'
  849. else
  850. if (ot and OT_BITS256)<>0 then
  851. s:=s+'256'
  852. else
  853. s:=s+'??';
  854. { signed }
  855. if (ot and OT_SIGNED)<>0 then
  856. s:=s+'s';
  857. end;
  858. end;
  859. end;
  860. GetString:=s+']';
  861. end;
  862. procedure taicpu.Swapoperands;
  863. var
  864. p : POper;
  865. begin
  866. { Fix the operands which are in AT&T style and we need them in Intel style }
  867. case ops of
  868. 0,1:
  869. ;
  870. 2 : begin
  871. { 0,1 -> 1,0 }
  872. p:=oper[0];
  873. oper[0]:=oper[1];
  874. oper[1]:=p;
  875. end;
  876. 3 : begin
  877. { 0,1,2 -> 2,1,0 }
  878. p:=oper[0];
  879. oper[0]:=oper[2];
  880. oper[2]:=p;
  881. end;
  882. 4 : begin
  883. { 0,1,2,3 -> 3,2,1,0 }
  884. p:=oper[0];
  885. oper[0]:=oper[3];
  886. oper[3]:=p;
  887. p:=oper[1];
  888. oper[1]:=oper[2];
  889. oper[2]:=p;
  890. end;
  891. else
  892. internalerror(201108141);
  893. end;
  894. end;
  895. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  896. begin
  897. if FOperandOrder<>order then
  898. begin
  899. Swapoperands;
  900. FOperandOrder:=order;
  901. end;
  902. end;
  903. function taicpu.FixNonCommutativeOpcodes: tasmop;
  904. begin
  905. result:=opcode;
  906. { we need ATT order }
  907. SetOperandOrder(op_att);
  908. if (
  909. (ops=2) and
  910. (oper[0]^.typ=top_reg) and
  911. (oper[1]^.typ=top_reg) and
  912. { if the first is ST and the second is also a register
  913. it is necessarily ST1 .. ST7 }
  914. ((oper[0]^.reg=NR_ST) or
  915. (oper[0]^.reg=NR_ST0))
  916. ) or
  917. { ((ops=1) and
  918. (oper[0]^.typ=top_reg) and
  919. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  920. (ops=0) then
  921. begin
  922. if opcode=A_FSUBR then
  923. result:=A_FSUB
  924. else if opcode=A_FSUB then
  925. result:=A_FSUBR
  926. else if opcode=A_FDIVR then
  927. result:=A_FDIV
  928. else if opcode=A_FDIV then
  929. result:=A_FDIVR
  930. else if opcode=A_FSUBRP then
  931. result:=A_FSUBP
  932. else if opcode=A_FSUBP then
  933. result:=A_FSUBRP
  934. else if opcode=A_FDIVRP then
  935. result:=A_FDIVP
  936. else if opcode=A_FDIVP then
  937. result:=A_FDIVRP;
  938. end;
  939. if (
  940. (ops=1) and
  941. (oper[0]^.typ=top_reg) and
  942. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  943. (oper[0]^.reg<>NR_ST)
  944. ) then
  945. begin
  946. if opcode=A_FSUBRP then
  947. result:=A_FSUBP
  948. else if opcode=A_FSUBP then
  949. result:=A_FSUBRP
  950. else if opcode=A_FDIVRP then
  951. result:=A_FDIVP
  952. else if opcode=A_FDIVP then
  953. result:=A_FDIVRP;
  954. end;
  955. end;
  956. {*****************************************************************************
  957. Assembler
  958. *****************************************************************************}
  959. type
  960. ea = packed record
  961. sib_present : boolean;
  962. bytes : byte;
  963. size : byte;
  964. modrm : byte;
  965. sib : byte;
  966. {$ifdef x86_64}
  967. rex : byte;
  968. {$endif x86_64}
  969. end;
  970. procedure taicpu.create_ot(objdata:TObjData);
  971. {
  972. this function will also fix some other fields which only needs to be once
  973. }
  974. var
  975. i,l,relsize : longint;
  976. currsym : TObjSymbol;
  977. begin
  978. if ops=0 then
  979. exit;
  980. { update oper[].ot field }
  981. for i:=0 to ops-1 do
  982. with oper[i]^ do
  983. begin
  984. case typ of
  985. top_reg :
  986. begin
  987. ot:=reg_ot_table[findreg_by_number(reg)];
  988. end;
  989. top_ref :
  990. begin
  991. if (ref^.refaddr=addr_no)
  992. {$ifdef i386}
  993. or (
  994. (ref^.refaddr in [addr_pic]) and
  995. { allow any base for assembler blocks }
  996. ((assigned(current_procinfo) and
  997. (pi_has_assembler_block in current_procinfo.flags) and
  998. (ref^.base<>NR_NO)) or (ref^.base=NR_EBX))
  999. )
  1000. {$endif i386}
  1001. {$ifdef x86_64}
  1002. or (
  1003. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1004. (ref^.base<>NR_NO)
  1005. )
  1006. {$endif x86_64}
  1007. then
  1008. begin
  1009. { create ot field }
  1010. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1011. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1012. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1013. ) then
  1014. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1015. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1016. (reg_ot_table[findreg_by_number(ref^.index)])
  1017. else if (ref^.base = NR_NO) and
  1018. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1019. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1020. ) then
  1021. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1022. ot := (OT_REG_GPR) or
  1023. (reg_ot_table[findreg_by_number(ref^.index)])
  1024. else if (ot and OT_SIZE_MASK)=0 then
  1025. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1026. else
  1027. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1028. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1029. ot:=ot or OT_MEM_OFFS;
  1030. { fix scalefactor }
  1031. if (ref^.index=NR_NO) then
  1032. ref^.scalefactor:=0
  1033. else
  1034. if (ref^.scalefactor=0) then
  1035. ref^.scalefactor:=1;
  1036. end
  1037. else
  1038. begin
  1039. { Jumps use a relative offset which can be 8bit,
  1040. for other opcodes we always need to generate the full
  1041. 32bit address }
  1042. if assigned(objdata) and
  1043. is_jmp then
  1044. begin
  1045. currsym:=objdata.symbolref(ref^.symbol);
  1046. l:=ref^.offset;
  1047. {$push}
  1048. {$r-}
  1049. if assigned(currsym) then
  1050. inc(l,currsym.address);
  1051. {$pop}
  1052. { when it is a forward jump we need to compensate the
  1053. offset of the instruction since the previous time,
  1054. because the symbol address is then still using the
  1055. 'old-style' addressing.
  1056. For backwards jumps this is not required because the
  1057. address of the symbol is already adjusted to the
  1058. new offset }
  1059. if (l>InsOffset) and (LastInsOffset<>-1) then
  1060. inc(l,InsOffset-LastInsOffset);
  1061. { instruction size will then always become 2 (PFV) }
  1062. relsize:=(InsOffset+2)-l;
  1063. if (relsize>=-128) and (relsize<=127) and
  1064. (
  1065. not assigned(currsym) or
  1066. (currsym.objsection=objdata.currobjsec)
  1067. ) then
  1068. ot:=OT_IMM8 or OT_SHORT
  1069. else
  1070. ot:=OT_IMM32 or OT_NEAR;
  1071. end
  1072. else
  1073. ot:=OT_IMM32 or OT_NEAR;
  1074. end;
  1075. end;
  1076. top_local :
  1077. begin
  1078. if (ot and OT_SIZE_MASK)=0 then
  1079. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1080. else
  1081. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1082. end;
  1083. top_const :
  1084. begin
  1085. // if opcode is a SSE or AVX-instruction then we need a
  1086. // special handling (opsize can different from const-size)
  1087. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1088. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1089. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1090. begin
  1091. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1092. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1093. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1094. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1095. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1096. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1097. end;
  1098. end
  1099. else
  1100. begin
  1101. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1102. { further, allow AAD and AAM with imm. operand }
  1103. if (opsize=S_NO) and not((i in [1,2,3])
  1104. {$ifndef x86_64}
  1105. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1106. {$endif x86_64}
  1107. ) then
  1108. message(asmr_e_invalid_opcode_and_operand);
  1109. if (opsize<>S_W) and (aint(val)>=-128) and (val<=127) then
  1110. ot:=OT_IMM8 or OT_SIGNED
  1111. else
  1112. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1113. if (val=1) and (i=1) then
  1114. ot := ot or OT_ONENESS;
  1115. end;
  1116. end;
  1117. top_none :
  1118. begin
  1119. { generated when there was an error in the
  1120. assembler reader. It never happends when generating
  1121. assembler }
  1122. end;
  1123. else
  1124. internalerror(200402261);
  1125. end;
  1126. end;
  1127. end;
  1128. function taicpu.InsEnd:longint;
  1129. begin
  1130. InsEnd:=InsOffset+InsSize;
  1131. end;
  1132. function taicpu.Matches(p:PInsEntry):boolean;
  1133. { * IF_SM stands for Size Match: any operand whose size is not
  1134. * explicitly specified by the template is `really' intended to be
  1135. * the same size as the first size-specified operand.
  1136. * Non-specification is tolerated in the input instruction, but
  1137. * _wrong_ specification is not.
  1138. *
  1139. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1140. * three-operand instructions such as SHLD: it implies that the
  1141. * first two operands must match in size, but that the third is
  1142. * required to be _unspecified_.
  1143. *
  1144. * IF_SB invokes Size Byte: operands with unspecified size in the
  1145. * template are really bytes, and so no non-byte specification in
  1146. * the input instruction will be tolerated. IF_SW similarly invokes
  1147. * Size Word, and IF_SD invokes Size Doubleword.
  1148. *
  1149. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1150. * that any operand with unspecified size in the template is
  1151. * required to have unspecified size in the instruction too...)
  1152. }
  1153. var
  1154. insot,
  1155. currot,
  1156. i,j,asize,oprs : longint;
  1157. insflags:cardinal;
  1158. siz : array[0..max_operands-1] of longint;
  1159. begin
  1160. result:=false;
  1161. { Check the opcode and operands }
  1162. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1163. exit;
  1164. for i:=0 to p^.ops-1 do
  1165. begin
  1166. insot:=p^.optypes[i];
  1167. currot:=oper[i]^.ot;
  1168. { Check the operand flags }
  1169. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1170. exit;
  1171. { Check if the passed operand size matches with one of
  1172. the supported operand sizes }
  1173. if ((insot and OT_SIZE_MASK)<>0) and
  1174. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1175. exit;
  1176. end;
  1177. { Check operand sizes }
  1178. insflags:=p^.flags;
  1179. if insflags and IF_SMASK<>0 then
  1180. begin
  1181. { as default an untyped size can get all the sizes, this is different
  1182. from nasm, but else we need to do a lot checking which opcodes want
  1183. size or not with the automatic size generation }
  1184. asize:=-1;
  1185. if (insflags and IF_SB)<>0 then
  1186. asize:=OT_BITS8
  1187. else if (insflags and IF_SW)<>0 then
  1188. asize:=OT_BITS16
  1189. else if (insflags and IF_SD)<>0 then
  1190. asize:=OT_BITS32;
  1191. if (insflags and IF_ARMASK)<>0 then
  1192. begin
  1193. siz[0]:=-1;
  1194. siz[1]:=-1;
  1195. siz[2]:=-1;
  1196. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1197. end
  1198. else
  1199. begin
  1200. siz[0]:=asize;
  1201. siz[1]:=asize;
  1202. siz[2]:=asize;
  1203. end;
  1204. if (insflags and (IF_SM or IF_SM2))<>0 then
  1205. begin
  1206. if (insflags and IF_SM2)<>0 then
  1207. oprs:=2
  1208. else
  1209. oprs:=p^.ops;
  1210. for i:=0 to oprs-1 do
  1211. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1212. begin
  1213. for j:=0 to oprs-1 do
  1214. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1215. break;
  1216. end;
  1217. end
  1218. else
  1219. oprs:=2;
  1220. { Check operand sizes }
  1221. for i:=0 to p^.ops-1 do
  1222. begin
  1223. insot:=p^.optypes[i];
  1224. currot:=oper[i]^.ot;
  1225. if ((insot and OT_SIZE_MASK)=0) and
  1226. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1227. { Immediates can always include smaller size }
  1228. ((currot and OT_IMMEDIATE)=0) and
  1229. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1230. exit;
  1231. end;
  1232. end;
  1233. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1234. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1235. begin
  1236. for i:=0 to p^.ops-1 do
  1237. begin
  1238. insot:=p^.optypes[i];
  1239. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1240. ((insot and OT_YMMRM) = OT_YMMRM) then
  1241. begin
  1242. if (insot and OT_SIZE_MASK) = 0 then
  1243. begin
  1244. case insot and (OT_XMMRM or OT_YMMRM) of
  1245. OT_XMMRM: insot := insot or OT_BITS128;
  1246. OT_YMMRM: insot := insot or OT_BITS256;
  1247. end;
  1248. end;
  1249. end;
  1250. currot:=oper[i]^.ot;
  1251. { Check the operand flags }
  1252. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1253. exit;
  1254. { Check if the passed operand size matches with one of
  1255. the supported operand sizes }
  1256. if ((insot and OT_SIZE_MASK)<>0) and
  1257. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1258. exit;
  1259. end;
  1260. end;
  1261. result:=true;
  1262. end;
  1263. procedure taicpu.ResetPass1;
  1264. begin
  1265. { we need to reset everything here, because the choosen insentry
  1266. can be invalid for a new situation where the previously optimized
  1267. insentry is not correct }
  1268. InsEntry:=nil;
  1269. InsSize:=0;
  1270. LastInsOffset:=-1;
  1271. end;
  1272. procedure taicpu.ResetPass2;
  1273. begin
  1274. { we are here in a second pass, check if the instruction can be optimized }
  1275. if assigned(InsEntry) and
  1276. ((InsEntry^.flags and IF_PASS2)<>0) then
  1277. begin
  1278. InsEntry:=nil;
  1279. InsSize:=0;
  1280. end;
  1281. LastInsOffset:=-1;
  1282. end;
  1283. function taicpu.CheckIfValid:boolean;
  1284. begin
  1285. result:=FindInsEntry(nil);
  1286. end;
  1287. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1288. var
  1289. i : longint;
  1290. begin
  1291. result:=false;
  1292. { Things which may only be done once, not when a second pass is done to
  1293. optimize }
  1294. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1295. begin
  1296. current_filepos:=fileinfo;
  1297. { We need intel style operands }
  1298. SetOperandOrder(op_intel);
  1299. { create the .ot fields }
  1300. create_ot(objdata);
  1301. { set the file postion }
  1302. end
  1303. else
  1304. begin
  1305. { we've already an insentry so it's valid }
  1306. result:=true;
  1307. exit;
  1308. end;
  1309. { Lookup opcode in the table }
  1310. InsSize:=-1;
  1311. i:=instabcache^[opcode];
  1312. if i=-1 then
  1313. begin
  1314. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1315. exit;
  1316. end;
  1317. insentry:=@instab[i];
  1318. while (insentry^.opcode=opcode) do
  1319. begin
  1320. if matches(insentry) then
  1321. begin
  1322. result:=true;
  1323. exit;
  1324. end;
  1325. inc(insentry);
  1326. end;
  1327. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1328. { No instruction found, set insentry to nil and inssize to -1 }
  1329. insentry:=nil;
  1330. inssize:=-1;
  1331. end;
  1332. function taicpu.Pass1(objdata:TObjData):longint;
  1333. begin
  1334. Pass1:=0;
  1335. { Save the old offset and set the new offset }
  1336. InsOffset:=ObjData.CurrObjSec.Size;
  1337. { Error? }
  1338. if (Insentry=nil) and (InsSize=-1) then
  1339. exit;
  1340. { set the file postion }
  1341. current_filepos:=fileinfo;
  1342. { Get InsEntry }
  1343. if FindInsEntry(ObjData) then
  1344. begin
  1345. { Calculate instruction size }
  1346. InsSize:=calcsize(insentry);
  1347. if segprefix<>NR_NO then
  1348. inc(InsSize);
  1349. { Fix opsize if size if forced }
  1350. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1351. begin
  1352. if (insentry^.flags and IF_ARMASK)=0 then
  1353. begin
  1354. if (insentry^.flags and IF_SB)<>0 then
  1355. begin
  1356. if opsize=S_NO then
  1357. opsize:=S_B;
  1358. end
  1359. else if (insentry^.flags and IF_SW)<>0 then
  1360. begin
  1361. if opsize=S_NO then
  1362. opsize:=S_W;
  1363. end
  1364. else if (insentry^.flags and IF_SD)<>0 then
  1365. begin
  1366. if opsize=S_NO then
  1367. opsize:=S_L;
  1368. end;
  1369. end;
  1370. end;
  1371. LastInsOffset:=InsOffset;
  1372. Pass1:=InsSize;
  1373. exit;
  1374. end;
  1375. LastInsOffset:=-1;
  1376. end;
  1377. const
  1378. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1379. // es cs ss ds fs gs
  1380. $26, $2E, $36, $3E, $64, $65
  1381. );
  1382. procedure taicpu.Pass2(objdata:TObjData);
  1383. begin
  1384. { error in pass1 ? }
  1385. if insentry=nil then
  1386. exit;
  1387. current_filepos:=fileinfo;
  1388. { Segment override }
  1389. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1390. begin
  1391. objdata.writebytes(segprefixes[segprefix],1);
  1392. { fix the offset for GenNode }
  1393. inc(InsOffset);
  1394. end
  1395. else if segprefix<>NR_NO then
  1396. InternalError(201001071);
  1397. { Generate the instruction }
  1398. GenCode(objdata);
  1399. end;
  1400. function taicpu.needaddrprefix(opidx:byte):boolean;
  1401. begin
  1402. result:=(oper[opidx]^.typ=top_ref) and
  1403. (oper[opidx]^.ref^.refaddr=addr_no) and
  1404. {$ifdef x86_64}
  1405. (oper[opidx]^.ref^.base<>NR_RIP) and
  1406. {$endif x86_64}
  1407. (
  1408. (
  1409. (oper[opidx]^.ref^.index<>NR_NO) and
  1410. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1411. ) or
  1412. (
  1413. (oper[opidx]^.ref^.base<>NR_NO) and
  1414. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1415. )
  1416. );
  1417. end;
  1418. procedure badreg(r:Tregister);
  1419. begin
  1420. Message1(asmw_e_invalid_register,generic_regname(r));
  1421. end;
  1422. function regval(r:Tregister):byte;
  1423. const
  1424. intsupreg2opcode: array[0..7] of byte=
  1425. // ax cx dx bx si di bp sp -- in x86reg.dat
  1426. // ax cx dx bx sp bp si di -- needed order
  1427. (0, 1, 2, 3, 6, 7, 5, 4);
  1428. maxsupreg: array[tregistertype] of tsuperregister=
  1429. {$ifdef x86_64}
  1430. (0, 16, 9, 8, 16, 32, 0);
  1431. {$else x86_64}
  1432. (0, 8, 9, 8, 8, 32, 0);
  1433. {$endif x86_64}
  1434. var
  1435. rs: tsuperregister;
  1436. rt: tregistertype;
  1437. begin
  1438. rs:=getsupreg(r);
  1439. rt:=getregtype(r);
  1440. if (rs>=maxsupreg[rt]) then
  1441. badreg(r);
  1442. result:=rs and 7;
  1443. if (rt=R_INTREGISTER) then
  1444. begin
  1445. if (rs<8) then
  1446. result:=intsupreg2opcode[rs];
  1447. if getsubreg(r)=R_SUBH then
  1448. inc(result,4);
  1449. end;
  1450. end;
  1451. {$ifdef x86_64}
  1452. function rexbits(r: tregister): byte;
  1453. begin
  1454. result:=0;
  1455. case getregtype(r) of
  1456. R_INTREGISTER:
  1457. if (getsupreg(r)>=RS_R8) then
  1458. { Either B,X or R bits can be set, depending on register role in instruction.
  1459. Set all three bits here, caller will discard unnecessary ones. }
  1460. result:=result or $47
  1461. else if (getsubreg(r)=R_SUBL) and
  1462. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1463. result:=result or $40
  1464. else if (getsubreg(r)=R_SUBH) then
  1465. { Not an actual REX bit, used to detect incompatible usage of
  1466. AH/BH/CH/DH }
  1467. result:=result or $80;
  1468. R_MMREGISTER:
  1469. if getsupreg(r)>=RS_XMM8 then
  1470. result:=result or $47;
  1471. end;
  1472. end;
  1473. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1474. var
  1475. sym : tasmsymbol;
  1476. md,s,rv : byte;
  1477. base,index,scalefactor,
  1478. o : longint;
  1479. ir,br : Tregister;
  1480. isub,bsub : tsubregister;
  1481. begin
  1482. process_ea:=false;
  1483. fillchar(output,sizeof(output),0);
  1484. {Register ?}
  1485. if (input.typ=top_reg) then
  1486. begin
  1487. rv:=regval(input.reg);
  1488. output.modrm:=$c0 or (rfield shl 3) or rv;
  1489. output.size:=1;
  1490. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1491. process_ea:=true;
  1492. exit;
  1493. end;
  1494. {No register, so memory reference.}
  1495. if input.typ<>top_ref then
  1496. internalerror(200409263);
  1497. ir:=input.ref^.index;
  1498. br:=input.ref^.base;
  1499. isub:=getsubreg(ir);
  1500. bsub:=getsubreg(br);
  1501. s:=input.ref^.scalefactor;
  1502. o:=input.ref^.offset;
  1503. sym:=input.ref^.symbol;
  1504. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1505. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1506. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1507. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1508. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1509. internalerror(200301081);
  1510. { it's direct address }
  1511. if (br=NR_NO) and (ir=NR_NO) then
  1512. begin
  1513. output.sib_present:=true;
  1514. output.bytes:=4;
  1515. output.modrm:=4 or (rfield shl 3);
  1516. output.sib:=$25;
  1517. end
  1518. else if (br=NR_RIP) and (ir=NR_NO) then
  1519. begin
  1520. { rip based }
  1521. output.sib_present:=false;
  1522. output.bytes:=4;
  1523. output.modrm:=5 or (rfield shl 3);
  1524. end
  1525. else
  1526. { it's an indirection }
  1527. begin
  1528. { 16 bit? }
  1529. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1530. (br<>NR_NO) and (bsub=R_SUBADDR)
  1531. ) then
  1532. begin
  1533. // vector memory (AVX2) =>> ignore
  1534. end
  1535. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1536. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1537. begin
  1538. message(asmw_e_16bit_32bit_not_supported);
  1539. end;
  1540. { wrong, for various reasons }
  1541. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1542. exit;
  1543. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1544. process_ea:=true;
  1545. { base }
  1546. case br of
  1547. NR_R8D,
  1548. NR_EAX,
  1549. NR_R8,
  1550. NR_RAX : base:=0;
  1551. NR_R9D,
  1552. NR_ECX,
  1553. NR_R9,
  1554. NR_RCX : base:=1;
  1555. NR_R10D,
  1556. NR_EDX,
  1557. NR_R10,
  1558. NR_RDX : base:=2;
  1559. NR_R11D,
  1560. NR_EBX,
  1561. NR_R11,
  1562. NR_RBX : base:=3;
  1563. NR_R12D,
  1564. NR_ESP,
  1565. NR_R12,
  1566. NR_RSP : base:=4;
  1567. NR_R13D,
  1568. NR_EBP,
  1569. NR_R13,
  1570. NR_NO,
  1571. NR_RBP : base:=5;
  1572. NR_R14D,
  1573. NR_ESI,
  1574. NR_R14,
  1575. NR_RSI : base:=6;
  1576. NR_R15D,
  1577. NR_EDI,
  1578. NR_R15,
  1579. NR_RDI : base:=7;
  1580. else
  1581. exit;
  1582. end;
  1583. { index }
  1584. case ir of
  1585. NR_R8D,
  1586. NR_EAX,
  1587. NR_R8,
  1588. NR_RAX,
  1589. NR_XMM0,
  1590. NR_XMM8,
  1591. NR_YMM0,
  1592. NR_YMM8 : index:=0;
  1593. NR_R9D,
  1594. NR_ECX,
  1595. NR_R9,
  1596. NR_RCX,
  1597. NR_XMM1,
  1598. NR_XMM9,
  1599. NR_YMM1,
  1600. NR_YMM9 : index:=1;
  1601. NR_R10D,
  1602. NR_EDX,
  1603. NR_R10,
  1604. NR_RDX,
  1605. NR_XMM2,
  1606. NR_XMM10,
  1607. NR_YMM2,
  1608. NR_YMM10 : index:=2;
  1609. NR_R11D,
  1610. NR_EBX,
  1611. NR_R11,
  1612. NR_RBX,
  1613. NR_XMM3,
  1614. NR_XMM11,
  1615. NR_YMM3,
  1616. NR_YMM11 : index:=3;
  1617. NR_R12D,
  1618. NR_ESP,
  1619. NR_R12,
  1620. NR_NO,
  1621. NR_XMM4,
  1622. NR_XMM12,
  1623. NR_YMM4,
  1624. NR_YMM12 : index:=4;
  1625. NR_R13D,
  1626. NR_EBP,
  1627. NR_R13,
  1628. NR_RBP,
  1629. NR_XMM5,
  1630. NR_XMM13,
  1631. NR_YMM5,
  1632. NR_YMM13: index:=5;
  1633. NR_R14D,
  1634. NR_ESI,
  1635. NR_R14,
  1636. NR_RSI,
  1637. NR_XMM6,
  1638. NR_XMM14,
  1639. NR_YMM6,
  1640. NR_YMM14: index:=6;
  1641. NR_R15D,
  1642. NR_EDI,
  1643. NR_R15,
  1644. NR_RDI,
  1645. NR_XMM7,
  1646. NR_XMM15,
  1647. NR_YMM7,
  1648. NR_YMM15: index:=7;
  1649. else
  1650. exit;
  1651. end;
  1652. case s of
  1653. 0,
  1654. 1 : scalefactor:=0;
  1655. 2 : scalefactor:=1;
  1656. 4 : scalefactor:=2;
  1657. 8 : scalefactor:=3;
  1658. else
  1659. exit;
  1660. end;
  1661. { If rbp or r13 is used we must always include an offset }
  1662. if (br=NR_NO) or
  1663. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1664. md:=0
  1665. else
  1666. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1667. md:=1
  1668. else
  1669. md:=2;
  1670. if (br=NR_NO) or (md=2) then
  1671. output.bytes:=4
  1672. else
  1673. output.bytes:=md;
  1674. { SIB needed ? }
  1675. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1676. begin
  1677. output.sib_present:=false;
  1678. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1679. end
  1680. else
  1681. begin
  1682. output.sib_present:=true;
  1683. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1684. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1685. end;
  1686. end;
  1687. output.size:=1+ord(output.sib_present)+output.bytes;
  1688. process_ea:=true;
  1689. end;
  1690. {$else x86_64}
  1691. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1692. var
  1693. sym : tasmsymbol;
  1694. md,s,rv : byte;
  1695. base,index,scalefactor,
  1696. o : longint;
  1697. ir,br : Tregister;
  1698. isub,bsub : tsubregister;
  1699. begin
  1700. process_ea:=false;
  1701. fillchar(output,sizeof(output),0);
  1702. {Register ?}
  1703. if (input.typ=top_reg) then
  1704. begin
  1705. rv:=regval(input.reg);
  1706. output.modrm:=$c0 or (rfield shl 3) or rv;
  1707. output.size:=1;
  1708. process_ea:=true;
  1709. exit;
  1710. end;
  1711. {No register, so memory reference.}
  1712. if (input.typ<>top_ref) then
  1713. internalerror(200409262);
  1714. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1715. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1716. internalerror(200301081);
  1717. ir:=input.ref^.index;
  1718. br:=input.ref^.base;
  1719. isub:=getsubreg(ir);
  1720. bsub:=getsubreg(br);
  1721. s:=input.ref^.scalefactor;
  1722. o:=input.ref^.offset;
  1723. sym:=input.ref^.symbol;
  1724. { it's direct address }
  1725. if (br=NR_NO) and (ir=NR_NO) then
  1726. begin
  1727. { it's a pure offset }
  1728. output.sib_present:=false;
  1729. output.bytes:=4;
  1730. output.modrm:=5 or (rfield shl 3);
  1731. end
  1732. else
  1733. { it's an indirection }
  1734. begin
  1735. { 16 bit address? }
  1736. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1737. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1738. message(asmw_e_16bit_not_supported);
  1739. {$ifdef OPTEA}
  1740. { make single reg base }
  1741. if (br=NR_NO) and (s=1) then
  1742. begin
  1743. br:=ir;
  1744. ir:=NR_NO;
  1745. end;
  1746. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1747. if (br=NR_NO) and
  1748. (((s=2) and (ir<>NR_ESP)) or
  1749. (s=3) or (s=5) or (s=9)) then
  1750. begin
  1751. br:=ir;
  1752. dec(s);
  1753. end;
  1754. { swap ESP into base if scalefactor is 1 }
  1755. if (s=1) and (ir=NR_ESP) then
  1756. begin
  1757. ir:=br;
  1758. br:=NR_ESP;
  1759. end;
  1760. {$endif OPTEA}
  1761. { wrong, for various reasons }
  1762. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1763. exit;
  1764. { base }
  1765. case br of
  1766. NR_EAX : base:=0;
  1767. NR_ECX : base:=1;
  1768. NR_EDX : base:=2;
  1769. NR_EBX : base:=3;
  1770. NR_ESP : base:=4;
  1771. NR_NO,
  1772. NR_EBP : base:=5;
  1773. NR_ESI : base:=6;
  1774. NR_EDI : base:=7;
  1775. else
  1776. exit;
  1777. end;
  1778. { index }
  1779. case ir of
  1780. NR_EAX : index:=0;
  1781. NR_ECX : index:=1;
  1782. NR_EDX : index:=2;
  1783. NR_EBX : index:=3;
  1784. NR_NO : index:=4;
  1785. NR_EBP : index:=5;
  1786. NR_ESI : index:=6;
  1787. NR_EDI : index:=7;
  1788. else
  1789. exit;
  1790. end;
  1791. case s of
  1792. 0,
  1793. 1 : scalefactor:=0;
  1794. 2 : scalefactor:=1;
  1795. 4 : scalefactor:=2;
  1796. 8 : scalefactor:=3;
  1797. else
  1798. exit;
  1799. end;
  1800. if (br=NR_NO) or
  1801. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1802. md:=0
  1803. else
  1804. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1805. md:=1
  1806. else
  1807. md:=2;
  1808. if (br=NR_NO) or (md=2) then
  1809. output.bytes:=4
  1810. else
  1811. output.bytes:=md;
  1812. { SIB needed ? }
  1813. if (ir=NR_NO) and (br<>NR_ESP) then
  1814. begin
  1815. output.sib_present:=false;
  1816. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1817. end
  1818. else
  1819. begin
  1820. output.sib_present:=true;
  1821. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1822. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1823. end;
  1824. end;
  1825. if output.sib_present then
  1826. output.size:=2+output.bytes
  1827. else
  1828. output.size:=1+output.bytes;
  1829. process_ea:=true;
  1830. end;
  1831. {$endif x86_64}
  1832. function taicpu.calcsize(p:PInsEntry):shortint;
  1833. var
  1834. codes : pchar;
  1835. c : byte;
  1836. len : shortint;
  1837. ea_data : ea;
  1838. exists_vex: boolean;
  1839. exists_vex_extension: boolean;
  1840. exists_prefix_66: boolean;
  1841. exists_prefix_F2: boolean;
  1842. exists_prefix_F3: boolean;
  1843. {$ifdef x86_64}
  1844. omit_rexw : boolean;
  1845. {$endif x86_64}
  1846. begin
  1847. len:=0;
  1848. codes:=@p^.code[0];
  1849. exists_vex := false;
  1850. exists_vex_extension := false;
  1851. exists_prefix_66 := false;
  1852. exists_prefix_F2 := false;
  1853. exists_prefix_F3 := false;
  1854. {$ifdef x86_64}
  1855. rex:=0;
  1856. omit_rexw:=false;
  1857. {$endif x86_64}
  1858. repeat
  1859. c:=ord(codes^);
  1860. inc(codes);
  1861. case c of
  1862. 0 :
  1863. break;
  1864. 1,2,3 :
  1865. begin
  1866. inc(codes,c);
  1867. inc(len,c);
  1868. end;
  1869. 8,9,10 :
  1870. begin
  1871. {$ifdef x86_64}
  1872. rex:=rex or (rexbits(oper[c-8]^.reg) and $F1);
  1873. {$endif x86_64}
  1874. inc(codes);
  1875. inc(len);
  1876. end;
  1877. 11 :
  1878. begin
  1879. inc(codes);
  1880. inc(len);
  1881. end;
  1882. 4,5,6,7 :
  1883. begin
  1884. if opsize=S_W then
  1885. inc(len,2)
  1886. else
  1887. inc(len);
  1888. end;
  1889. 12,13,14,
  1890. 16,17,18,
  1891. 20,21,22,23,
  1892. 40,41,42 :
  1893. inc(len);
  1894. 24,25,26,
  1895. 31,
  1896. 48,49,50 :
  1897. inc(len,2);
  1898. 28,29,30:
  1899. begin
  1900. if opsize=S_Q then
  1901. inc(len,8)
  1902. else
  1903. inc(len,4);
  1904. end;
  1905. 36,37,38:
  1906. inc(len,sizeof(pint));
  1907. 44,45,46:
  1908. inc(len,8);
  1909. 32,33,34,
  1910. 52,53,54,
  1911. 56,57,58,
  1912. 172,173,174 :
  1913. inc(len,4);
  1914. 60,61,62,63: ; // ignore vex-coded operand-idx
  1915. 208,209,210 :
  1916. begin
  1917. case (oper[c-208]^.ot and OT_SIZE_MASK) of
  1918. OT_BITS16:
  1919. inc(len);
  1920. {$ifdef x86_64}
  1921. OT_BITS64:
  1922. begin
  1923. rex:=rex or $48;
  1924. end;
  1925. {$endif x86_64}
  1926. end;
  1927. end;
  1928. 200 :
  1929. {$ifndef x86_64}
  1930. inc(len);
  1931. {$else x86_64}
  1932. { every insentry with code 0310 must be marked with NOX86_64 }
  1933. InternalError(2011051301);
  1934. {$endif x86_64}
  1935. 201 :
  1936. {$ifdef x86_64}
  1937. inc(len)
  1938. {$endif x86_64}
  1939. ;
  1940. 212 :
  1941. inc(len);
  1942. 214 :
  1943. begin
  1944. {$ifdef x86_64}
  1945. rex:=rex or $48;
  1946. {$endif x86_64}
  1947. end;
  1948. 202,
  1949. 211,
  1950. 213,
  1951. 215,
  1952. 217,218: ;
  1953. 219:
  1954. begin
  1955. inc(len);
  1956. exists_prefix_F2 := true;
  1957. end;
  1958. 220:
  1959. begin
  1960. inc(len);
  1961. exists_prefix_F3 := true;
  1962. end;
  1963. 241:
  1964. begin
  1965. inc(len);
  1966. exists_prefix_66 := true;
  1967. end;
  1968. 221:
  1969. {$ifdef x86_64}
  1970. omit_rexw:=true
  1971. {$endif x86_64}
  1972. ;
  1973. 64..151 :
  1974. begin
  1975. {$ifdef x86_64}
  1976. if (c<127) then
  1977. begin
  1978. if (oper[c and 7]^.typ=top_reg) then
  1979. begin
  1980. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  1981. end;
  1982. end;
  1983. {$endif x86_64}
  1984. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  1985. Message(asmw_e_invalid_effective_address)
  1986. else
  1987. inc(len,ea_data.size);
  1988. {$ifdef x86_64}
  1989. rex:=rex or ea_data.rex;
  1990. {$endif x86_64}
  1991. end;
  1992. 242: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  1993. // =>> DEFAULT = 2 Bytes
  1994. begin
  1995. if not(exists_vex) then
  1996. begin
  1997. inc(len, 2);
  1998. exists_vex := true;
  1999. end;
  2000. end;
  2001. 243: // REX.W = 1
  2002. // =>> VEX prefix length = 3
  2003. begin
  2004. if not(exists_vex_extension) then
  2005. begin
  2006. inc(len);
  2007. exists_vex_extension := true;
  2008. end;
  2009. end;
  2010. 244: ; // VEX length bit
  2011. 246, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2012. 247: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2013. 248: // VEX-Extension prefix $0F
  2014. // ignore for calculating length
  2015. ;
  2016. 249, // VEX-Extension prefix $0F38
  2017. 250: // VEX-Extension prefix $0F3A
  2018. begin
  2019. if not(exists_vex_extension) then
  2020. begin
  2021. inc(len);
  2022. exists_vex_extension := true;
  2023. end;
  2024. end;
  2025. 192,193,194:
  2026. begin
  2027. {$ifdef x86_64}
  2028. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2029. inc(len);
  2030. {$endif x86_64}
  2031. end;
  2032. else
  2033. InternalError(200603141);
  2034. end;
  2035. until false;
  2036. {$ifdef x86_64}
  2037. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2038. Message(asmw_e_bad_reg_with_rex);
  2039. rex:=rex and $4F; { reset extra bits in upper nibble }
  2040. if omit_rexw then
  2041. begin
  2042. if rex=$48 then { remove rex entirely? }
  2043. rex:=0
  2044. else
  2045. rex:=rex and $F7;
  2046. end;
  2047. if not(exists_vex) then
  2048. begin
  2049. if rex<>0 then
  2050. Inc(len);
  2051. end;
  2052. {$endif}
  2053. if exists_vex then
  2054. begin
  2055. if exists_prefix_66 then dec(len);
  2056. if exists_prefix_F2 then dec(len);
  2057. if exists_prefix_F3 then dec(len);
  2058. {$ifdef x86_64}
  2059. if not(exists_vex_extension) then
  2060. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2061. {$endif x86_64}
  2062. end;
  2063. calcsize:=len;
  2064. end;
  2065. procedure taicpu.GenCode(objdata:TObjData);
  2066. {
  2067. * the actual codes (C syntax, i.e. octal):
  2068. * \0 - terminates the code. (Unless it's a literal of course.)
  2069. * \1, \2, \3 - that many literal bytes follow in the code stream
  2070. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2071. * (POP is never used for CS) depending on operand 0
  2072. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2073. * on operand 0
  2074. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2075. * to the register value of operand 0, 1 or 2
  2076. * \13 - a literal byte follows in the code stream, to be added
  2077. * to the condition code value of the instruction.
  2078. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2079. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2080. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2081. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2082. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2083. * assembly mode or the address-size override on the operand
  2084. * \37 - a word constant, from the _segment_ part of operand 0
  2085. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2086. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2087. on the address size of instruction
  2088. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2089. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2090. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2091. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2092. * assembly mode or the address-size override on the operand
  2093. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2094. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2095. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2096. * field the register value of operand b.
  2097. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2098. * field equal to digit b.
  2099. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2100. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2101. * the memory reference in operand x.
  2102. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2103. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2104. * \312 - (disassembler only) invalid with non-default address size.
  2105. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2106. * size of operand x.
  2107. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2108. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2109. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2110. * \327 - indicates that this instruction is only valid when the
  2111. * operand size is the default (instruction to disassembler,
  2112. * generates no code in the assembler)
  2113. * \331 - instruction not valid with REP prefix. Hint for
  2114. * disassembler only; for SSE instructions.
  2115. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2116. * \333 - 0xF3 prefix for SSE instructions
  2117. * \334 - 0xF2 prefix for SSE instructions
  2118. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2119. * \361 - 0x66 prefix for SSE instructions
  2120. * \362 - VEX prefix for AVX instructions
  2121. * \363 - VEX W1
  2122. * \364 - VEX Vector length 256
  2123. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2124. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2125. * \370 - VEX 0F-FLAG
  2126. * \371 - VEX 0F38-FLAG
  2127. * \372 - VEX 0F3A-FLAG
  2128. }
  2129. var
  2130. currval : aint;
  2131. currsym : tobjsymbol;
  2132. currrelreloc,
  2133. currabsreloc,
  2134. currabsreloc32 : TObjRelocationType;
  2135. {$ifdef x86_64}
  2136. rexwritten : boolean;
  2137. {$endif x86_64}
  2138. procedure getvalsym(opidx:longint);
  2139. begin
  2140. case oper[opidx]^.typ of
  2141. top_ref :
  2142. begin
  2143. currval:=oper[opidx]^.ref^.offset;
  2144. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2145. {$ifdef i386}
  2146. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2147. (tf_pic_uses_got in target_info.flags) then
  2148. begin
  2149. currrelreloc:=RELOC_PLT32;
  2150. currabsreloc:=RELOC_GOT32;
  2151. currabsreloc32:=RELOC_GOT32;
  2152. end
  2153. else
  2154. {$endif i386}
  2155. {$ifdef x86_64}
  2156. if oper[opidx]^.ref^.refaddr=addr_pic then
  2157. begin
  2158. currrelreloc:=RELOC_PLT32;
  2159. currabsreloc:=RELOC_GOTPCREL;
  2160. currabsreloc32:=RELOC_GOTPCREL;
  2161. end
  2162. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2163. begin
  2164. currrelreloc:=RELOC_RELATIVE;
  2165. currabsreloc:=RELOC_RELATIVE;
  2166. currabsreloc32:=RELOC_RELATIVE;
  2167. end
  2168. else
  2169. {$endif x86_64}
  2170. begin
  2171. currrelreloc:=RELOC_RELATIVE;
  2172. currabsreloc:=RELOC_ABSOLUTE;
  2173. currabsreloc32:=RELOC_ABSOLUTE32;
  2174. end;
  2175. end;
  2176. top_const :
  2177. begin
  2178. currval:=aint(oper[opidx]^.val);
  2179. currsym:=nil;
  2180. currabsreloc:=RELOC_ABSOLUTE;
  2181. currabsreloc32:=RELOC_ABSOLUTE32;
  2182. end;
  2183. else
  2184. Message(asmw_e_immediate_or_reference_expected);
  2185. end;
  2186. end;
  2187. {$ifdef x86_64}
  2188. procedure maybewriterex;
  2189. begin
  2190. if (rex<>0) and not(rexwritten) then
  2191. begin
  2192. rexwritten:=true;
  2193. objdata.writebytes(rex,1);
  2194. end;
  2195. end;
  2196. {$endif x86_64}
  2197. procedure objdata_writereloc(Data:aint;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2198. begin
  2199. {$ifdef i386}
  2200. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2201. which needs a special relocation type R_386_GOTPC }
  2202. if assigned (p) and
  2203. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2204. (tf_pic_uses_got in target_info.flags) then
  2205. begin
  2206. { nothing else than a 4 byte relocation should occur
  2207. for GOT }
  2208. if len<>4 then
  2209. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2210. Reloctype:=RELOC_GOTPC;
  2211. { We need to add the offset of the relocation
  2212. of _GLOBAL_OFFSET_TABLE symbol within
  2213. the current instruction }
  2214. inc(data,objdata.currobjsec.size-insoffset);
  2215. end;
  2216. {$endif i386}
  2217. objdata.writereloc(data,len,p,Reloctype);
  2218. end;
  2219. const
  2220. CondVal:array[TAsmCond] of byte=($0,
  2221. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2222. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2223. $0, $A, $A, $B, $8, $4);
  2224. var
  2225. c : byte;
  2226. pb : pbyte;
  2227. codes : pchar;
  2228. bytes : array[0..3] of byte;
  2229. rfield,
  2230. data,s,opidx : longint;
  2231. ea_data : ea;
  2232. relsym : TObjSymbol;
  2233. needed_VEX_Extension: boolean;
  2234. needed_VEX: boolean;
  2235. opmode: integer;
  2236. VEXvvvv: byte;
  2237. VEXmmmmm: byte;
  2238. begin
  2239. { safety check }
  2240. if objdata.currobjsec.size<>longword(insoffset) then
  2241. internalerror(200130121);
  2242. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2243. currsym:=nil;
  2244. currabsreloc:=RELOC_NONE;
  2245. currabsreloc32:=RELOC_NONE;
  2246. currrelreloc:=RELOC_NONE;
  2247. currval:=0;
  2248. { load data to write }
  2249. codes:=insentry^.code;
  2250. {$ifdef x86_64}
  2251. rexwritten:=false;
  2252. {$endif x86_64}
  2253. { Force word push/pop for registers }
  2254. if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
  2255. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2256. begin
  2257. bytes[0]:=$66;
  2258. objdata.writebytes(bytes,1);
  2259. end;
  2260. // needed VEX Prefix (for AVX etc.)
  2261. needed_VEX := false;
  2262. needed_VEX_Extension := false;
  2263. opmode := -1;
  2264. VEXvvvv := 0;
  2265. VEXmmmmm := 0;
  2266. repeat
  2267. c:=ord(codes^);
  2268. inc(codes);
  2269. case c of
  2270. 0: break;
  2271. 1,
  2272. 2,
  2273. 3: inc(codes,c);
  2274. 60: opmode := 0;
  2275. 61: opmode := 1;
  2276. 62: opmode := 2;
  2277. 219: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2278. 220: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2279. 241: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2280. 242: needed_VEX := true;
  2281. 243: begin
  2282. needed_VEX_Extension := true;
  2283. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2284. end;
  2285. 244: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2286. 248: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2287. 249: begin
  2288. needed_VEX_Extension := true;
  2289. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2290. end;
  2291. 250: begin
  2292. needed_VEX_Extension := true;
  2293. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2294. end;
  2295. end;
  2296. until false;
  2297. if needed_VEX then
  2298. begin
  2299. if (opmode > ops) or
  2300. (opmode < -1) then
  2301. begin
  2302. Internalerror(777100);
  2303. end
  2304. else if opmode = -1 then
  2305. begin
  2306. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2307. end
  2308. else if oper[opmode]^.typ = top_reg then
  2309. begin
  2310. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2311. {$ifdef x86_64}
  2312. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2313. {$else}
  2314. VEXvvvv := VEXvvvv or (1 shl 6);
  2315. {$endif x86_64}
  2316. end
  2317. else Internalerror(777101);
  2318. if not(needed_VEX_Extension) then
  2319. begin
  2320. {$ifdef x86_64}
  2321. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2322. {$endif x86_64}
  2323. end;
  2324. if needed_VEX_Extension then
  2325. begin
  2326. // VEX-Prefix-Length = 3 Bytes
  2327. bytes[0]:=$C4;
  2328. objdata.writebytes(bytes,1);
  2329. {$ifdef x86_64}
  2330. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2331. {$else}
  2332. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2333. {$endif x86_64}
  2334. bytes[0] := VEXmmmmm;
  2335. objdata.writebytes(bytes,1);
  2336. {$ifdef x86_64}
  2337. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2338. {$endif x86_64}
  2339. bytes[0] := VEXvvvv;
  2340. objdata.writebytes(bytes,1);
  2341. end
  2342. else
  2343. begin
  2344. // VEX-Prefix-Length = 2 Bytes
  2345. bytes[0]:=$C5;
  2346. objdata.writebytes(bytes,1);
  2347. {$ifdef x86_64}
  2348. if rex and $04 = 0 then
  2349. {$endif x86_64}
  2350. begin
  2351. VEXvvvv := VEXvvvv or (1 shl 7);
  2352. end;
  2353. bytes[0] := VEXvvvv;
  2354. objdata.writebytes(bytes,1);
  2355. end;
  2356. end
  2357. else
  2358. begin
  2359. needed_VEX_Extension := false;
  2360. opmode := -1;
  2361. end;
  2362. { load data to write }
  2363. codes:=insentry^.code;
  2364. repeat
  2365. c:=ord(codes^);
  2366. inc(codes);
  2367. case c of
  2368. 0 :
  2369. break;
  2370. 1,2,3 :
  2371. begin
  2372. {$ifdef x86_64}
  2373. if not(needed_VEX) then // TG
  2374. maybewriterex;
  2375. {$endif x86_64}
  2376. objdata.writebytes(codes^,c);
  2377. inc(codes,c);
  2378. end;
  2379. 4,6 :
  2380. begin
  2381. case oper[0]^.reg of
  2382. NR_CS:
  2383. bytes[0]:=$e;
  2384. NR_NO,
  2385. NR_DS:
  2386. bytes[0]:=$1e;
  2387. NR_ES:
  2388. bytes[0]:=$6;
  2389. NR_SS:
  2390. bytes[0]:=$16;
  2391. else
  2392. internalerror(777004);
  2393. end;
  2394. if c=4 then
  2395. inc(bytes[0]);
  2396. objdata.writebytes(bytes,1);
  2397. end;
  2398. 5,7 :
  2399. begin
  2400. case oper[0]^.reg of
  2401. NR_FS:
  2402. bytes[0]:=$a0;
  2403. NR_GS:
  2404. bytes[0]:=$a8;
  2405. else
  2406. internalerror(777005);
  2407. end;
  2408. if c=5 then
  2409. inc(bytes[0]);
  2410. objdata.writebytes(bytes,1);
  2411. end;
  2412. 8,9,10 :
  2413. begin
  2414. {$ifdef x86_64}
  2415. if not(needed_VEX) then // TG
  2416. maybewriterex;
  2417. {$endif x86_64}
  2418. bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
  2419. inc(codes);
  2420. objdata.writebytes(bytes,1);
  2421. end;
  2422. 11 :
  2423. begin
  2424. bytes[0]:=ord(codes^)+condval[condition];
  2425. inc(codes);
  2426. objdata.writebytes(bytes,1);
  2427. end;
  2428. 12,13,14 :
  2429. begin
  2430. getvalsym(c-12);
  2431. if (currval<-128) or (currval>127) then
  2432. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2433. if assigned(currsym) then
  2434. objdata_writereloc(currval,1,currsym,currabsreloc)
  2435. else
  2436. objdata.writebytes(currval,1);
  2437. end;
  2438. 16,17,18 :
  2439. begin
  2440. getvalsym(c-16);
  2441. if (currval<-256) or (currval>255) then
  2442. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2443. if assigned(currsym) then
  2444. objdata_writereloc(currval,1,currsym,currabsreloc)
  2445. else
  2446. objdata.writebytes(currval,1);
  2447. end;
  2448. 20,21,22,23 :
  2449. begin
  2450. getvalsym(c-20);
  2451. if (currval<0) or (currval>255) then
  2452. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2453. if assigned(currsym) then
  2454. objdata_writereloc(currval,1,currsym,currabsreloc)
  2455. else
  2456. objdata.writebytes(currval,1);
  2457. end;
  2458. 24,25,26 : // 030..032
  2459. begin
  2460. getvalsym(c-24);
  2461. {$ifndef i8086}
  2462. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2463. if (currval<-65536) or (currval>65535) then
  2464. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2465. {$endif i8086}
  2466. if assigned(currsym) then
  2467. objdata_writereloc(currval,2,currsym,currabsreloc)
  2468. else
  2469. objdata.writebytes(currval,2);
  2470. end;
  2471. 28,29,30 : // 034..036
  2472. { !!! These are intended (and used in opcode table) to select depending
  2473. on address size, *not* operand size. Works by coincidence only. }
  2474. begin
  2475. getvalsym(c-28);
  2476. if opsize=S_Q then
  2477. begin
  2478. if assigned(currsym) then
  2479. objdata_writereloc(currval,8,currsym,currabsreloc)
  2480. else
  2481. objdata.writebytes(currval,8);
  2482. end
  2483. else
  2484. begin
  2485. if assigned(currsym) then
  2486. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2487. else
  2488. objdata.writebytes(currval,4);
  2489. end
  2490. end;
  2491. 32,33,34 : // 040..042
  2492. begin
  2493. getvalsym(c-32);
  2494. if assigned(currsym) then
  2495. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2496. else
  2497. objdata.writebytes(currval,4);
  2498. end;
  2499. 36,37,38 : // 044..046 - select between word/dword/qword depending on
  2500. begin // address size (we support only default address sizes).
  2501. getvalsym(c-36);
  2502. {$ifdef x86_64}
  2503. if assigned(currsym) then
  2504. objdata_writereloc(currval,8,currsym,currabsreloc)
  2505. else
  2506. objdata.writebytes(currval,8);
  2507. {$else x86_64}
  2508. if assigned(currsym) then
  2509. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2510. else
  2511. objdata.writebytes(currval,4);
  2512. {$endif x86_64}
  2513. end;
  2514. 40,41,42 : // 050..052 - byte relative operand
  2515. begin
  2516. getvalsym(c-40);
  2517. data:=currval-insend;
  2518. {$push}
  2519. {$r-}
  2520. if assigned(currsym) then
  2521. inc(data,currsym.address);
  2522. {$pop}
  2523. if (data>127) or (data<-128) then
  2524. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2525. objdata.writebytes(data,1);
  2526. end;
  2527. 44,45,46: // 054..056 - qword immediate operand
  2528. begin
  2529. getvalsym(c-44);
  2530. if assigned(currsym) then
  2531. objdata_writereloc(currval,8,currsym,currabsreloc)
  2532. else
  2533. objdata.writebytes(currval,8);
  2534. end;
  2535. 52,53,54 : // 064..066 - select between 16/32 address mode, but we support only 32
  2536. begin
  2537. getvalsym(c-52);
  2538. if assigned(currsym) then
  2539. objdata_writereloc(currval,4,currsym,currrelreloc)
  2540. else
  2541. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2542. end;
  2543. 56,57,58 : // 070..072 - long relative operand
  2544. begin
  2545. getvalsym(c-56);
  2546. if assigned(currsym) then
  2547. objdata_writereloc(currval,4,currsym,currrelreloc)
  2548. else
  2549. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2550. end;
  2551. 60,61,62 : ; // 074..076 - vex-coded vector operand
  2552. // ignore
  2553. 172,173,174 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2554. begin
  2555. getvalsym(c-172);
  2556. {$ifdef x86_64}
  2557. { for i386 as aint type is longint the
  2558. following test is useless }
  2559. if (currval<low(longint)) or (currval>high(longint)) then
  2560. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2561. {$endif x86_64}
  2562. if assigned(currsym) then
  2563. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2564. else
  2565. objdata.writebytes(currval,4);
  2566. end;
  2567. 192,193,194:
  2568. begin
  2569. {$ifdef x86_64}
  2570. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2571. begin
  2572. bytes[0]:=$67;
  2573. objdata.writebytes(bytes,1);
  2574. end;
  2575. {$endif x86_64}
  2576. end;
  2577. 200 : { fixed 16-bit addr }
  2578. {$ifndef x86_64}
  2579. begin
  2580. bytes[0]:=$67;
  2581. objdata.writebytes(bytes,1);
  2582. end;
  2583. {$else x86_64}
  2584. { every insentry having code 0310 must be marked with NOX86_64 }
  2585. InternalError(2011051302);
  2586. {$endif}
  2587. 201 : { fixed 32-bit addr }
  2588. {$ifdef x86_64}
  2589. begin
  2590. bytes[0]:=$67;
  2591. objdata.writebytes(bytes,1);
  2592. end
  2593. {$endif x86_64}
  2594. ;
  2595. 208,209,210 :
  2596. begin
  2597. case oper[c-208]^.ot and OT_SIZE_MASK of
  2598. OT_BITS16 :
  2599. begin
  2600. bytes[0]:=$66;
  2601. objdata.writebytes(bytes,1);
  2602. end;
  2603. {$ifndef x86_64}
  2604. OT_BITS64 :
  2605. Message(asmw_e_64bit_not_supported);
  2606. {$endif x86_64}
  2607. end;
  2608. end;
  2609. 211,
  2610. 213 : {no action needed};
  2611. 212,
  2612. 241:
  2613. begin
  2614. if not(needed_VEX) then
  2615. begin
  2616. bytes[0]:=$66;
  2617. objdata.writebytes(bytes,1);
  2618. end;
  2619. end;
  2620. 214 :
  2621. begin
  2622. {$ifndef x86_64}
  2623. Message(asmw_e_64bit_not_supported);
  2624. {$endif x86_64}
  2625. end;
  2626. 219 :
  2627. begin
  2628. if not(needed_VEX) then
  2629. begin
  2630. bytes[0]:=$f3;
  2631. objdata.writebytes(bytes,1);
  2632. end;
  2633. end;
  2634. 220 :
  2635. begin
  2636. if not(needed_VEX) then
  2637. begin
  2638. bytes[0]:=$f2;
  2639. objdata.writebytes(bytes,1);
  2640. end;
  2641. end;
  2642. 221:
  2643. ;
  2644. 202,
  2645. 215,
  2646. 217,218 :
  2647. begin
  2648. { these are dissambler hints or 32 bit prefixes which
  2649. are not needed }
  2650. end;
  2651. 242..244: ; // VEX flags =>> nothing todo
  2652. 246: begin
  2653. if needed_VEX then
  2654. begin
  2655. if ops = 4 then
  2656. begin
  2657. if (oper[2]^.typ=top_reg) then
  2658. begin
  2659. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2660. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2661. begin
  2662. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2663. objdata.writebytes(bytes,1);
  2664. end
  2665. else Internalerror(2014032001);
  2666. end
  2667. else Internalerror(2014032002);
  2668. end
  2669. else Internalerror(2014032003);
  2670. end
  2671. else Internalerror(2014032004);
  2672. end;
  2673. 247: begin
  2674. if needed_VEX then
  2675. begin
  2676. if ops = 4 then
  2677. begin
  2678. if (oper[3]^.typ=top_reg) then
  2679. begin
  2680. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2681. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2682. begin
  2683. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  2684. objdata.writebytes(bytes,1);
  2685. end
  2686. else Internalerror(2014032005);
  2687. end
  2688. else Internalerror(2014032006);
  2689. end
  2690. else Internalerror(2014032007);
  2691. end
  2692. else Internalerror(2014032008);
  2693. end;
  2694. 248..250: ; // VEX flags =>> nothing todo
  2695. 31,
  2696. 48,49,50 :
  2697. begin
  2698. InternalError(777006);
  2699. end
  2700. else
  2701. begin
  2702. { rex should be written at this point }
  2703. {$ifdef x86_64}
  2704. if not(needed_VEX) then // TG
  2705. if (rex<>0) and not(rexwritten) then
  2706. internalerror(200603191);
  2707. {$endif x86_64}
  2708. if (c>=64) and (c<=151) then // 0100..0227
  2709. begin
  2710. if (c<127) then // 0177
  2711. begin
  2712. if (oper[c and 7]^.typ=top_reg) then
  2713. rfield:=regval(oper[c and 7]^.reg)
  2714. else
  2715. rfield:=regval(oper[c and 7]^.ref^.base);
  2716. end
  2717. else
  2718. rfield:=c and 7;
  2719. opidx:=(c shr 3) and 7;
  2720. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2721. Message(asmw_e_invalid_effective_address);
  2722. pb:=@bytes[0];
  2723. pb^:=ea_data.modrm;
  2724. inc(pb);
  2725. if ea_data.sib_present then
  2726. begin
  2727. pb^:=ea_data.sib;
  2728. inc(pb);
  2729. end;
  2730. s:=pb-@bytes[0];
  2731. objdata.writebytes(bytes,s);
  2732. case ea_data.bytes of
  2733. 0 : ;
  2734. 1 :
  2735. begin
  2736. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  2737. begin
  2738. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2739. {$ifdef i386}
  2740. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2741. (tf_pic_uses_got in target_info.flags) then
  2742. currabsreloc:=RELOC_GOT32
  2743. else
  2744. {$endif i386}
  2745. {$ifdef x86_64}
  2746. if oper[opidx]^.ref^.refaddr=addr_pic then
  2747. currabsreloc:=RELOC_GOTPCREL
  2748. else
  2749. {$endif x86_64}
  2750. currabsreloc:=RELOC_ABSOLUTE;
  2751. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  2752. end
  2753. else
  2754. begin
  2755. bytes[0]:=oper[opidx]^.ref^.offset;
  2756. objdata.writebytes(bytes,1);
  2757. end;
  2758. inc(s);
  2759. end;
  2760. 2,4 :
  2761. begin
  2762. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2763. currval:=oper[opidx]^.ref^.offset;
  2764. {$ifdef x86_64}
  2765. if oper[opidx]^.ref^.refaddr=addr_pic then
  2766. currabsreloc:=RELOC_GOTPCREL
  2767. else
  2768. if oper[opidx]^.ref^.base=NR_RIP then
  2769. begin
  2770. currabsreloc:=RELOC_RELATIVE;
  2771. { Adjust reloc value by number of bytes following the displacement,
  2772. but not if displacement is specified by literal constant }
  2773. if Assigned(currsym) then
  2774. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  2775. end
  2776. else
  2777. {$endif x86_64}
  2778. {$ifdef i386}
  2779. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2780. (tf_pic_uses_got in target_info.flags) then
  2781. currabsreloc:=RELOC_GOT32
  2782. else
  2783. {$endif i386}
  2784. currabsreloc:=RELOC_ABSOLUTE32;
  2785. if (currabsreloc=RELOC_ABSOLUTE32) and
  2786. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  2787. begin
  2788. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  2789. if relsym.objsection=objdata.CurrObjSec then
  2790. begin
  2791. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  2792. currabsreloc:=RELOC_RELATIVE;
  2793. end
  2794. else
  2795. begin
  2796. currabsreloc:=RELOC_PIC_PAIR;
  2797. currval:=relsym.offset;
  2798. end;
  2799. end;
  2800. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  2801. inc(s,ea_data.bytes);
  2802. end;
  2803. end;
  2804. end
  2805. else
  2806. InternalError(777007);
  2807. end;
  2808. end;
  2809. until false;
  2810. end;
  2811. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  2812. begin
  2813. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  2814. (regtype = R_INTREGISTER) and
  2815. (ops=2) and
  2816. (oper[0]^.typ=top_reg) and
  2817. (oper[1]^.typ=top_reg) and
  2818. (oper[0]^.reg=oper[1]^.reg)
  2819. ) or
  2820. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  2821. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  2822. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  2823. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  2824. (regtype = R_MMREGISTER) and
  2825. (ops=2) and
  2826. (oper[0]^.typ=top_reg) and
  2827. (oper[1]^.typ=top_reg) and
  2828. (oper[0]^.reg=oper[1]^.reg)
  2829. );
  2830. end;
  2831. procedure build_spilling_operation_type_table;
  2832. var
  2833. opcode : tasmop;
  2834. i : integer;
  2835. begin
  2836. new(operation_type_table);
  2837. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  2838. for opcode:=low(tasmop) to high(tasmop) do
  2839. begin
  2840. for i:=1 to MaxInsChanges do
  2841. begin
  2842. case InsProp[opcode].Ch[i] of
  2843. Ch_Rop1 :
  2844. operation_type_table^[opcode,0]:=operand_read;
  2845. Ch_Wop1 :
  2846. operation_type_table^[opcode,0]:=operand_write;
  2847. Ch_RWop1,
  2848. Ch_Mop1 :
  2849. operation_type_table^[opcode,0]:=operand_readwrite;
  2850. Ch_Rop2 :
  2851. operation_type_table^[opcode,1]:=operand_read;
  2852. Ch_Wop2 :
  2853. operation_type_table^[opcode,1]:=operand_write;
  2854. Ch_RWop2,
  2855. Ch_Mop2 :
  2856. operation_type_table^[opcode,1]:=operand_readwrite;
  2857. Ch_Rop3 :
  2858. operation_type_table^[opcode,2]:=operand_read;
  2859. Ch_Wop3 :
  2860. operation_type_table^[opcode,2]:=operand_write;
  2861. Ch_RWop3,
  2862. Ch_Mop3 :
  2863. operation_type_table^[opcode,2]:=operand_readwrite;
  2864. end;
  2865. end;
  2866. end;
  2867. end;
  2868. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  2869. begin
  2870. { the information in the instruction table is made for the string copy
  2871. operation MOVSD so hack here (FK)
  2872. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  2873. so fix it here (FK)
  2874. }
  2875. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  2876. begin
  2877. case opnr of
  2878. 0:
  2879. result:=operand_read;
  2880. 1:
  2881. result:=operand_write;
  2882. else
  2883. internalerror(200506055);
  2884. end
  2885. end
  2886. { IMUL has 1, 2 and 3-operand forms }
  2887. else if opcode=A_IMUL then
  2888. begin
  2889. case ops of
  2890. 1:
  2891. if opnr=0 then
  2892. result:=operand_read
  2893. else
  2894. internalerror(2014011802);
  2895. 2:
  2896. begin
  2897. case opnr of
  2898. 0:
  2899. result:=operand_read;
  2900. 1:
  2901. result:=operand_readwrite;
  2902. else
  2903. internalerror(2014011803);
  2904. end;
  2905. end;
  2906. 3:
  2907. begin
  2908. case opnr of
  2909. 0,1:
  2910. result:=operand_read;
  2911. 2:
  2912. result:=operand_write;
  2913. else
  2914. internalerror(2014011804);
  2915. end;
  2916. end;
  2917. else
  2918. internalerror(2014011805);
  2919. end;
  2920. end
  2921. else
  2922. result:=operation_type_table^[opcode,opnr];
  2923. end;
  2924. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  2925. var
  2926. tmpref: treference;
  2927. begin
  2928. tmpref:=ref;
  2929. {$ifdef i8086}
  2930. if tmpref.segment=NR_SS then
  2931. tmpref.segment:=NR_NO;
  2932. {$endif i8086}
  2933. case getregtype(r) of
  2934. R_INTREGISTER :
  2935. begin
  2936. if getsubreg(r)=R_SUBH then
  2937. inc(tmpref.offset);
  2938. { we don't need special code here for 32 bit loads on x86_64, since
  2939. those will automatically zero-extend the upper 32 bits. }
  2940. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  2941. end;
  2942. R_MMREGISTER :
  2943. if current_settings.fputype in fpu_avx_instructionsets then
  2944. case getsubreg(r) of
  2945. R_SUBMMD:
  2946. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  2947. R_SUBMMS:
  2948. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  2949. R_SUBQ,
  2950. R_SUBMMWHOLE:
  2951. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  2952. else
  2953. internalerror(200506043);
  2954. end
  2955. else
  2956. case getsubreg(r) of
  2957. R_SUBMMD:
  2958. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  2959. R_SUBMMS:
  2960. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  2961. R_SUBQ,
  2962. R_SUBMMWHOLE:
  2963. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  2964. else
  2965. internalerror(200506043);
  2966. end;
  2967. else
  2968. internalerror(200401041);
  2969. end;
  2970. end;
  2971. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  2972. var
  2973. size: topsize;
  2974. tmpref: treference;
  2975. begin
  2976. tmpref:=ref;
  2977. {$ifdef i8086}
  2978. if tmpref.segment=NR_SS then
  2979. tmpref.segment:=NR_NO;
  2980. {$endif i8086}
  2981. case getregtype(r) of
  2982. R_INTREGISTER :
  2983. begin
  2984. if getsubreg(r)=R_SUBH then
  2985. inc(tmpref.offset);
  2986. size:=reg2opsize(r);
  2987. {$ifdef x86_64}
  2988. { even if it's a 32 bit reg, we still have to spill 64 bits
  2989. because we often perform 64 bit operations on them }
  2990. if (size=S_L) then
  2991. begin
  2992. size:=S_Q;
  2993. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  2994. end;
  2995. {$endif x86_64}
  2996. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  2997. end;
  2998. R_MMREGISTER :
  2999. if current_settings.fputype in fpu_avx_instructionsets then
  3000. case getsubreg(r) of
  3001. R_SUBMMD:
  3002. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3003. R_SUBMMS:
  3004. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3005. R_SUBQ,
  3006. R_SUBMMWHOLE:
  3007. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3008. else
  3009. internalerror(200506042);
  3010. end
  3011. else
  3012. case getsubreg(r) of
  3013. R_SUBMMD:
  3014. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3015. R_SUBMMS:
  3016. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3017. R_SUBQ,
  3018. R_SUBMMWHOLE:
  3019. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3020. else
  3021. internalerror(200506042);
  3022. end;
  3023. else
  3024. internalerror(200401041);
  3025. end;
  3026. end;
  3027. {*****************************************************************************
  3028. Instruction table
  3029. *****************************************************************************}
  3030. procedure BuildInsTabCache;
  3031. var
  3032. i : longint;
  3033. begin
  3034. new(instabcache);
  3035. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3036. i:=0;
  3037. while (i<InsTabEntries) do
  3038. begin
  3039. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3040. InsTabCache^[InsTab[i].OPcode]:=i;
  3041. inc(i);
  3042. end;
  3043. end;
  3044. procedure BuildInsTabMemRefSizeInfoCache;
  3045. var
  3046. AsmOp: TasmOp;
  3047. i,j: longint;
  3048. insentry : PInsEntry;
  3049. MRefInfo: TMemRefSizeInfo;
  3050. SConstInfo: TConstSizeInfo;
  3051. actRegSize: int64;
  3052. actMemSize: int64;
  3053. actConstSize: int64;
  3054. actRegCount: integer;
  3055. actMemCount: integer;
  3056. actConstCount: integer;
  3057. actRegTypes : int64;
  3058. actRegMemTypes: int64;
  3059. NewRegSize: int64;
  3060. actVMemCount : integer;
  3061. actVMemTypes : int64;
  3062. RegMMXSizeMask: int64;
  3063. RegXMMSizeMask: int64;
  3064. RegYMMSizeMask: int64;
  3065. bitcount: integer;
  3066. function bitcnt(aValue: int64): integer;
  3067. var
  3068. i: integer;
  3069. begin
  3070. result := 0;
  3071. for i := 0 to 63 do
  3072. begin
  3073. if (aValue mod 2) = 1 then
  3074. begin
  3075. inc(result);
  3076. end;
  3077. aValue := aValue shr 1;
  3078. end;
  3079. end;
  3080. begin
  3081. new(InsTabMemRefSizeInfoCache);
  3082. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3083. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3084. begin
  3085. i := InsTabCache^[AsmOp];
  3086. if i >= 0 then
  3087. begin
  3088. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3089. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3090. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3091. insentry:=@instab[i];
  3092. RegMMXSizeMask := 0;
  3093. RegXMMSizeMask := 0;
  3094. RegYMMSizeMask := 0;
  3095. while (insentry^.opcode=AsmOp) do
  3096. begin
  3097. MRefInfo := msiUnkown;
  3098. actRegSize := 0;
  3099. actRegCount := 0;
  3100. actRegTypes := 0;
  3101. NewRegSize := 0;
  3102. actMemSize := 0;
  3103. actMemCount := 0;
  3104. actRegMemTypes := 0;
  3105. actVMemCount := 0;
  3106. actVMemTypes := 0;
  3107. actConstSize := 0;
  3108. actConstCount := 0;
  3109. for j := 0 to insentry^.ops -1 do
  3110. begin
  3111. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3112. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3113. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3114. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3115. begin
  3116. inc(actVMemCount);
  3117. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3118. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3119. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3120. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3121. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3122. else InternalError(777206);
  3123. end;
  3124. end
  3125. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3126. begin
  3127. inc(actRegCount);
  3128. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3129. if NewRegSize = 0 then
  3130. begin
  3131. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3132. OT_MMXREG: begin
  3133. NewRegSize := OT_BITS64;
  3134. end;
  3135. OT_XMMREG: begin
  3136. NewRegSize := OT_BITS128;
  3137. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3138. end;
  3139. OT_YMMREG: begin
  3140. NewRegSize := OT_BITS256;
  3141. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3142. end;
  3143. else NewRegSize := not(0);
  3144. end;
  3145. end;
  3146. actRegSize := actRegSize or NewRegSize;
  3147. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3148. end
  3149. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3150. begin
  3151. inc(actMemCount);
  3152. actMemSize := actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3153. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3154. begin
  3155. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3156. end;
  3157. end
  3158. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3159. begin
  3160. inc(actConstCount);
  3161. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3162. end
  3163. end;
  3164. if actConstCount > 0 then
  3165. begin
  3166. case actConstSize of
  3167. 0: SConstInfo := csiNoSize;
  3168. OT_BITS8: SConstInfo := csiMem8;
  3169. OT_BITS16: SConstInfo := csiMem16;
  3170. OT_BITS32: SConstInfo := csiMem32;
  3171. OT_BITS64: SConstInfo := csiMem64;
  3172. else SConstInfo := csiMultiple;
  3173. end;
  3174. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3175. begin
  3176. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3177. end
  3178. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3179. begin
  3180. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3181. end;
  3182. end;
  3183. if actVMemCount > 0 then
  3184. begin
  3185. if actVMemCount = 1 then
  3186. begin
  3187. if actVMemTypes > 0 then
  3188. begin
  3189. case actVMemTypes of
  3190. OT_XMEM32: MRefInfo := msiXMem32;
  3191. OT_XMEM64: MRefInfo := msiXMem64;
  3192. OT_YMEM32: MRefInfo := msiYMem32;
  3193. OT_YMEM64: MRefInfo := msiYMem64;
  3194. else InternalError(777208);
  3195. end;
  3196. case actRegTypes of
  3197. OT_XMMREG: case MRefInfo of
  3198. msiXMem32,
  3199. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3200. msiYMem32,
  3201. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3202. else InternalError(777210);
  3203. end;
  3204. OT_YMMREG: case MRefInfo of
  3205. msiXMem32,
  3206. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3207. msiYMem32,
  3208. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3209. else InternalError(777211);
  3210. end;
  3211. //else InternalError(777209);
  3212. end;
  3213. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3214. begin
  3215. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3216. end
  3217. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3218. begin
  3219. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3220. begin
  3221. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3222. end
  3223. else InternalError(777212);
  3224. end;
  3225. end;
  3226. end
  3227. else InternalError(777207);
  3228. end
  3229. else
  3230. case actMemCount of
  3231. 0: ; // nothing todo
  3232. 1: begin
  3233. MRefInfo := msiUnkown;
  3234. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3235. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3236. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3237. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3238. end;
  3239. case actMemSize of
  3240. 0: MRefInfo := msiNoSize;
  3241. OT_BITS8: MRefInfo := msiMem8;
  3242. OT_BITS16: MRefInfo := msiMem16;
  3243. OT_BITS32: MRefInfo := msiMem32;
  3244. OT_BITS64: MRefInfo := msiMem64;
  3245. OT_BITS128: MRefInfo := msiMem128;
  3246. OT_BITS256: MRefInfo := msiMem256;
  3247. OT_BITS80,
  3248. OT_FAR,
  3249. OT_NEAR,
  3250. OT_SHORT: ; // ignore
  3251. else begin
  3252. bitcount := bitcnt(actMemSize);
  3253. if bitcount > 1 then MRefInfo := msiMultiple
  3254. else InternalError(777203);
  3255. end;
  3256. end;
  3257. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3258. begin
  3259. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3260. end
  3261. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3262. begin
  3263. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3264. begin
  3265. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3266. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3267. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3268. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3269. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3270. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3271. else MemRefSize := msiMultiple;
  3272. end;
  3273. end;
  3274. if actRegCount > 0 then
  3275. begin
  3276. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3277. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3278. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3279. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3280. else begin
  3281. RegMMXSizeMask := not(0);
  3282. RegXMMSizeMask := not(0);
  3283. RegYMMSizeMask := not(0);
  3284. end;
  3285. end;
  3286. end;
  3287. end;
  3288. else InternalError(777202);
  3289. end;
  3290. inc(insentry);
  3291. end;
  3292. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3293. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3294. begin
  3295. case RegXMMSizeMask of
  3296. OT_BITS16: case RegYMMSizeMask of
  3297. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3298. end;
  3299. OT_BITS32: case RegYMMSizeMask of
  3300. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3301. end;
  3302. OT_BITS64: case RegYMMSizeMask of
  3303. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3304. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3305. end;
  3306. OT_BITS128: begin
  3307. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3308. begin
  3309. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3310. case RegYMMSizeMask of
  3311. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3312. end;
  3313. end
  3314. else if RegMMXSizeMask = 0 then
  3315. begin
  3316. case RegYMMSizeMask of
  3317. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3318. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3319. end;
  3320. end
  3321. else if RegYMMSizeMask = 0 then
  3322. begin
  3323. case RegMMXSizeMask of
  3324. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3325. end;
  3326. end
  3327. else InternalError(777205);
  3328. end;
  3329. end;
  3330. end;
  3331. end;
  3332. end;
  3333. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3334. begin
  3335. // only supported intructiones with SSE- or AVX-operands
  3336. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3337. begin
  3338. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3339. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3340. end;
  3341. end;
  3342. end;
  3343. procedure InitAsm;
  3344. begin
  3345. build_spilling_operation_type_table;
  3346. if not assigned(instabcache) then
  3347. BuildInsTabCache;
  3348. if not assigned(InsTabMemRefSizeInfoCache) then
  3349. BuildInsTabMemRefSizeInfoCache;
  3350. end;
  3351. procedure DoneAsm;
  3352. begin
  3353. if assigned(operation_type_table) then
  3354. begin
  3355. dispose(operation_type_table);
  3356. operation_type_table:=nil;
  3357. end;
  3358. if assigned(instabcache) then
  3359. begin
  3360. dispose(instabcache);
  3361. instabcache:=nil;
  3362. end;
  3363. if assigned(InsTabMemRefSizeInfoCache) then
  3364. begin
  3365. dispose(InsTabMemRefSizeInfoCache);
  3366. InsTabMemRefSizeInfoCache:=nil;
  3367. end;
  3368. end;
  3369. begin
  3370. cai_align:=tai_align;
  3371. cai_cpu:=taicpu;
  3372. end.