optcse.pas 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. {
  2. Common subexpression elimination on base blocks
  3. Copyright (c) 2005 by Florian Klaempfl
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. unit optcse;
  18. {$i fpcdefs.inc}
  19. { $define csedebug}
  20. { $define csestats}
  21. interface
  22. uses
  23. node;
  24. {
  25. the function creates non optimal code so far:
  26. - call para nodes are cse barriers because they can be reordered and thus the
  27. temp. creation can be done too late
  28. - cse's in chained expressions are not recognized: the common subexpression
  29. in (a1 and b and c) vs. (a2 and b and c) is not recognized because there is no common
  30. subtree b and c
  31. - the cse knows nothing about register pressure. In case of high register pressure, cse might
  32. have a negative impact
  33. - assignment nodes are currently cse borders: things like a[i,j]:=a[i,j]+1; are not improved
  34. - the list of cseinvariant node types and inline numbers is not complete yet
  35. Further, it could be done probably in a faster way though the complexity can't probably not reduced
  36. }
  37. function do_optcse(var rootnode : tnode) : tnode;
  38. implementation
  39. uses
  40. globtype,
  41. cclasses,
  42. verbose,
  43. nutils,
  44. nbas,nld,ninl,ncal,ncnv,nadd,
  45. pass_1,
  46. symconst,symtype,symdef,
  47. defutil,
  48. optbase;
  49. const
  50. cseinvariant : set of tnodetype = [loadn,addn,muln,subn,divn,slashn,modn,andn,orn,xorn,notn,vecn,
  51. derefn,equaln,unequaln,ltn,gtn,lten,gten,typeconvn,subscriptn,
  52. inn,symdifn,shrn,shln,ordconstn,realconstn,unaryminusn,pointerconstn,stringconstn,setconstn,
  53. isn,asn,starstarn,nothingn,temprefn {,callparan}];
  54. function searchsubdomain(var n:tnode; arg: pointer) : foreachnoderesult;
  55. begin
  56. if (n.nodetype in cseinvariant) or
  57. ((n.nodetype=inlinen) and
  58. (tinlinenode(n).inlinenumber in [in_assigned_x])
  59. ) then
  60. result:=fen_true
  61. else
  62. begin
  63. pboolean(arg)^:=false;
  64. result:=fen_norecurse_true;
  65. end;
  66. end;
  67. type
  68. tlists = record
  69. nodelist : tfplist;
  70. locationlist : tfplist;
  71. equalto : tfplist;
  72. refs : tfplist;
  73. avail : TDFASet;
  74. end;
  75. plists = ^tlists;
  76. { collectnodes needs the address of itself to call foreachnodestatic,
  77. so we need a wrapper because @<func> inside <func doesn't work }
  78. function collectnodes(var n:tnode; arg: pointer) : foreachnoderesult;forward;
  79. function collectnodes2(var n:tnode; arg: pointer) : foreachnoderesult;
  80. begin
  81. result:=collectnodes(n,arg);
  82. end;
  83. function collectnodes(var n:tnode; arg: pointer) : foreachnoderesult;
  84. procedure AddAvail(child : tnode);
  85. begin
  86. if assigned(child) and assigned(child.optinfo) then
  87. DFASetIncludeSet(n.optinfo^.avail,child.optinfo^.avail);
  88. end;
  89. var
  90. i,j : longint;
  91. begin
  92. result:=fen_false;
  93. { don't add the tree below an untyped const parameter: there is
  94. no information available that this kind of tree actually needs
  95. to be addresable, this could be improved }
  96. if ((n.nodetype=callparan) and
  97. (tcallparanode(n).left.resultdef.typ=formaldef) and
  98. (tcallparanode(n).parasym.varspez=vs_const)) then
  99. begin
  100. result:=fen_norecurse_false;
  101. exit;
  102. end;
  103. { so far, we can handle only nodes being read }
  104. if (n.flags*[nf_write,nf_modify]=[]) and
  105. { node possible to add? }
  106. assigned(n.resultdef) and (tstoreddef(n.resultdef).is_intregable or tstoreddef(n.resultdef).is_fpuregable) and
  107. { is_int/fpuregable allows arrays and records to be in registers, cse cannot handle this }
  108. not(n.resultdef.typ in [arraydef,recorddef]) and
  109. { adding tempref nodes is worthless but their complexity is probably <= 1 anyways }
  110. not(n.nodetype in [temprefn]) and
  111. { node worth to add?
  112. We consider every node because even loading a variables from
  113. a register instead of memory is more beneficial. This behaviour should
  114. not increase register pressure because if a variable is already
  115. in a register, the reg. allocator can merge the nodes. If a variable
  116. is loaded from memory, loading this variable and spilling another register
  117. should not add a speed penalty.
  118. Const nodes however are only considered if their complexity is >1
  119. This might be the case for the risc architectures if they need
  120. more than one instruction to load this particular value
  121. }
  122. (not(is_constnode(n)) or (node_complexity(n)>1)) then
  123. begin
  124. plists(arg)^.nodelist.Add(n);
  125. plists(arg)^.locationlist.Add(@n);
  126. plists(arg)^.refs.Add(nil);
  127. plists(arg)^.equalto.Add(pointer(-1));
  128. {
  129. { setup set of available expressions }
  130. n.allocoptinfo;
  131. n.optinfo^.avail:=nil;
  132. DFASetInclude(n.optinfo^.avail,plists(arg)^.nodelist.count-1);
  133. }
  134. DFASetInclude(plists(arg)^.avail,plists(arg)^.nodelist.count-1);
  135. for i:=0 to plists(arg)^.nodelist.count-2 do
  136. begin
  137. if tnode(plists(arg)^.nodelist[i]).isequal(n) and DFASetIn(plists(arg)^.avail,i) then
  138. begin
  139. { use always the first occurence }
  140. if ptrint(plists(arg)^.equalto[i])<>-1 then
  141. plists(arg)^.equalto[plists(arg)^.nodelist.count-1]:=plists(arg)^.equalto[i]
  142. else
  143. plists(arg)^.equalto[plists(arg)^.nodelist.count-1]:=pointer(i);
  144. plists(arg)^.refs[i]:=pointer(plists(arg)^.refs[i])+1;
  145. break;
  146. end;
  147. end;
  148. { boolean and/or require a special handling: after evaluating the and/or node,
  149. the expressions of the right side might not be available due to short boolean
  150. evaluation, so after handling the right side, mark those expressions
  151. as unavailable }
  152. if (n.nodetype in [orn,andn]) and is_boolean(taddnode(n).left.resultdef) then
  153. begin
  154. foreachnodestatic(pm_postprocess,taddnode(n).left,@collectnodes2,arg);
  155. j:=plists(arg)^.nodelist.count;
  156. foreachnodestatic(pm_postprocess,taddnode(n).right,@collectnodes2,arg);
  157. for i:=j to plists(arg)^.nodelist.count-1 do
  158. DFASetExclude(plists(arg)^.avail,i);
  159. result:=fen_norecurse_false;
  160. end;
  161. end;
  162. end;
  163. function searchcsedomain(var n: tnode; arg: pointer) : foreachnoderesult;
  164. var
  165. csedomain : boolean;
  166. lists : tlists;
  167. templist : tfplist;
  168. i : longint;
  169. def : tstoreddef;
  170. nodes : tblocknode;
  171. creates,
  172. statements : tstatementnode;
  173. hp : ttempcreatenode;
  174. begin
  175. result:=fen_false;
  176. if n.nodetype in cseinvariant then
  177. begin
  178. csedomain:=true;
  179. foreachnodestatic(pm_postprocess,n,@searchsubdomain,@csedomain);
  180. { found a cse domain }
  181. if csedomain then
  182. begin
  183. statements:=nil;
  184. result:=fen_norecurse_true;
  185. {$ifdef csedebug}
  186. writeln('============ cse domain ==================');
  187. printnode(output,n);
  188. writeln('Complexity: ',node_complexity(n));
  189. {$endif csedebug}
  190. lists.nodelist:=tfplist.create;
  191. lists.locationlist:=tfplist.create;
  192. lists.equalto:=tfplist.create;
  193. lists.refs:=tfplist.create;
  194. foreachnodestatic(pm_postprocess,n,@collectnodes,@lists);
  195. templist:=tfplist.create;
  196. templist.count:=lists.nodelist.count;
  197. { check all nodes if one is used more than once }
  198. for i:=0 to lists.nodelist.count-1 do
  199. begin
  200. { current node used more than once? }
  201. if ptrint(lists.refs[i])<>0 then
  202. begin
  203. if not(assigned(statements)) then
  204. begin
  205. nodes:=internalstatements(statements);
  206. addstatement(statements,internalstatements(creates));
  207. end;
  208. def:=tstoreddef(tnode(lists.nodelist[i]).resultdef);
  209. templist[i]:=ctempcreatenode.create_value(def,def.size,tt_persistent,
  210. def.is_intregable or def.is_fpuregable,tnode(lists.nodelist[i]));
  211. addstatement(creates,tnode(templist[i]));
  212. hp:=ttempcreatenode(templist[i]);
  213. do_firstpass(tnode(hp));
  214. templist[i]:=hp;
  215. pnode(lists.locationlist[i])^:=ctemprefnode.create(ttempcreatenode(templist[i]));
  216. do_firstpass(pnode(lists.locationlist[i])^);
  217. {$ifdef csedebug}
  218. printnode(output,statements);
  219. {$endif csedebug}
  220. end
  221. { current node reference to another node? }
  222. else if ptrint(lists.equalto[i])<>-1 then
  223. begin
  224. {$if defined(csedebug) or defined(csestats)}
  225. printnode(output,tnode(lists.nodelist[i]));
  226. writeln(i,' equals ',ptrint(lists.equalto[i]));
  227. printnode(output,tnode(lists.nodelist[ptrint(lists.equalto[i])]));
  228. {$endif defined(csedebug) or defined(csestats)}
  229. templist[i]:=templist[ptrint(lists.equalto[i])];
  230. pnode(lists.locationlist[i])^:=ctemprefnode.create(ttempcreatenode(templist[ptrint(lists.equalto[i])]));
  231. do_firstpass(pnode(lists.locationlist[i])^);
  232. end;
  233. end;
  234. { clean up unused trees }
  235. for i:=0 to lists.nodelist.count-1 do
  236. if ptrint(lists.equalto[i])<>-1 then
  237. tnode(lists.nodelist[i]).free;
  238. {$ifdef csedebug}
  239. writeln('nodes: ',lists.nodelist.count);
  240. writeln('==========================================');
  241. {$endif csedebug}
  242. lists.nodelist.free;
  243. lists.locationlist.free;
  244. lists.equalto.free;
  245. lists.refs.free;
  246. templist.free;
  247. if assigned(statements) then
  248. begin
  249. { call para nodes need a special handling because
  250. they can be only children nodes of call nodes
  251. so the initialization code is inserted below the
  252. call para node
  253. }
  254. if n.nodetype=callparan then
  255. begin
  256. addstatement(statements,tcallparanode(n).left);
  257. tcallparanode(n).left:=nodes;
  258. do_firstpass(tcallparanode(n).left);
  259. end
  260. else
  261. begin
  262. addstatement(statements,n);
  263. n:=nodes;
  264. do_firstpass(n);
  265. end;
  266. {$ifdef csedebug}
  267. printnode(output,nodes);
  268. {$endif csedebug}
  269. end;
  270. end
  271. end;
  272. end;
  273. function do_optcse(var rootnode : tnode) : tnode;
  274. begin
  275. foreachnodestatic(pm_postprocess,rootnode,@searchcsedomain,nil);
  276. result:=nil;
  277. (*
  278. { create a linear list of nodes }
  279. { create hash values }
  280. { sort by hash values, taking care of nf_csebarrier and keeping the
  281. original order of the nodes }
  282. { compare nodes with equal hash values }
  283. { search barrier }
  284. for i:=0 to nodelist.length-1 do
  285. begin
  286. { and then search backward so we get always the largest equal trees }
  287. j:=i+1;
  288. { collect equal nodes }
  289. while (j<=nodelist.length-1) and
  290. nodelist[i].isequal(nodelist[j]) do
  291. inc(j);
  292. dec(j);
  293. if j>i then
  294. begin
  295. { cse found }
  296. { create temp. location }
  297. { replace first node by
  298. - temp. creation
  299. - expression calculation
  300. - assignment of expression to temp. }
  301. tempnode:=ctempcreatenode.create(nodelist[i].resultdef,nodelist[i].resultdef.size,tt_persistent,
  302. nodelist[i].resultdef.is_intregable or nodelist[i].resultdef.is_fpuregable);
  303. addstatement(createstatement,tempnode);
  304. addstatement(createstatement,cassignmentnode.create(ctemprefnode.create(tempnode),
  305. caddrnode.create_internal(para.left)));
  306. para.left := ctypeconvnode.create_internal(cderefnode.create(ctemprefnode.create(tempnode)),para.left.resultdef);
  307. addstatement(deletestatement,ctempdeletenode.create(tempnode));
  308. { replace next nodes by loading the temp. reference }
  309. { replace last node by loading the temp. reference and
  310. delete the temp. }
  311. end;
  312. end;
  313. *)
  314. end;
  315. end.