rgx86.pas 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. This unit implements the x86 specific class for the register
  4. allocator
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************
  17. }
  18. unit rgx86;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. cclasses,globtype,
  23. cpubase,cpuinfo,cgbase,cgutils,
  24. aasmbase,aasmtai,aasmdata,aasmsym,aasmcpu,
  25. rgobj;
  26. type
  27. trgx86 = class(trgobj)
  28. function get_spill_subreg(r : tregister) : tsubregister;override;
  29. function do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;override;
  30. end;
  31. tpushedsavedloc = record
  32. case byte of
  33. 0: (pushed: boolean);
  34. 1: (ofs: longint);
  35. end;
  36. tpushedsavedfpu = array[tsuperregister] of tpushedsavedloc;
  37. trgx86fpu = class
  38. { The "usableregsxxx" contain all registers of type "xxx" that }
  39. { aren't currently allocated to a regvar. The "unusedregsxxx" }
  40. { contain all registers of type "xxx" that aren't currently }
  41. { allocated }
  42. unusedregsfpu,usableregsfpu : Tsuperregisterset;
  43. { these counters contain the number of elements in the }
  44. { unusedregsxxx/usableregsxxx sets }
  45. countunusedregsfpu : byte;
  46. { Contains the registers which are really used by the proc itself.
  47. It doesn't take care of registers used by called procedures
  48. }
  49. used_in_proc : tcpuregisterset;
  50. {reg_pushes_other : regvarother_longintarray;
  51. is_reg_var_other : regvarother_booleanarray;
  52. regvar_loaded_other : regvarother_booleanarray;}
  53. fpuvaroffset : byte;
  54. constructor create;
  55. function getregisterfpu(list: TAsmList) : tregister;
  56. procedure ungetregisterfpu(list: TAsmList; r : tregister);
  57. { pushes and restores registers }
  58. procedure saveusedfpuregisters(list:TAsmList;
  59. var saved:Tpushedsavedfpu;
  60. const s:Tcpuregisterset);
  61. procedure restoreusedfpuregisters(list:TAsmList;
  62. const saved:Tpushedsavedfpu);
  63. { corrects the fpu stack register by ofs }
  64. function correct_fpuregister(r : tregister;ofs : byte) : tregister;
  65. end;
  66. implementation
  67. uses
  68. systems,
  69. verbose;
  70. const
  71. { This value is used in tsaved. If the array value is equal
  72. to this, then this means that this register is not used.}
  73. reg_not_saved = $7fffffff;
  74. {******************************************************************************
  75. Trgcpu
  76. ******************************************************************************}
  77. function trgx86.get_spill_subreg(r : tregister) : tsubregister;
  78. begin
  79. result:=getsubreg(r);
  80. end;
  81. function trgx86.do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;
  82. {Decide wether a "replace" spill is possible, i.e. wether we can replace a register
  83. in an instruction by a memory reference. For example, in "mov ireg26d,0", the imaginary
  84. register ireg26d can be replaced by a memory reference.}
  85. var
  86. n,replaceoper : longint;
  87. is_subh: Boolean;
  88. begin
  89. result:=false;
  90. with taicpu(instr) do
  91. begin
  92. replaceoper:=-1;
  93. case ops of
  94. 1 :
  95. begin
  96. if (oper[0]^.typ=top_reg) and
  97. (getregtype(oper[0]^.reg)=regtype) then
  98. begin
  99. if get_alias(getsupreg(oper[0]^.reg))<>orgreg then
  100. internalerror(200410101);
  101. replaceoper:=0;
  102. end;
  103. end;
  104. 2,3 :
  105. begin
  106. { avx instruction?
  107. currently this rule is sufficient but it might be extended }
  108. if (ops=3) and (opcode<>A_SHRD) and (opcode<>A_SHLD) then
  109. begin
  110. { avx instructions allow only the first operand (at&t counting) to be a register operand }
  111. { all operands must be registers ... }
  112. if (oper[0]^.typ=top_reg) and
  113. (oper[1]^.typ=top_reg) and
  114. (oper[2]^.typ=top_reg) and
  115. { but they must be different }
  116. ((getregtype(oper[1]^.reg)<>regtype) or
  117. (get_alias(getsupreg(oper[0]^.reg))<>get_alias(getsupreg(oper[1]^.reg)))
  118. ) and
  119. ((getregtype(oper[2]^.reg)<>regtype) or
  120. (get_alias(getsupreg(oper[0]^.reg))<>get_alias(getsupreg(oper[2]^.reg)))
  121. ) and
  122. (get_alias(getsupreg(oper[0]^.reg))=orgreg) then
  123. replaceoper:=0;
  124. end
  125. else
  126. begin
  127. { We can handle opcodes with 2 and shrd/shld the same way, where the 3rd operand is const or CL,
  128. that doesn't need spilling.
  129. However, due to AT&T order inside the compiler, the 3rd operand is
  130. numbered 0, so look at operand no. 1 and 2 if we have 3 operands by
  131. adding a "n". }
  132. n:=0;
  133. if ops=3 then
  134. n:=1;
  135. { lea is tricky: part of operand 0 can be spilled and the instruction can converted into an
  136. add, if base or index shall be spilled and the other one is equal the destination }
  137. if (opcode=A_LEA) then
  138. begin
  139. if (oper[0]^.ref^.offset=0) and
  140. (oper[0]^.ref^.scalefactor in [0,1]) and
  141. (((getregtype(oper[0]^.ref^.base)=regtype) and
  142. (get_alias(getsupreg(oper[0]^.ref^.base))=orgreg) and
  143. (getregtype(oper[0]^.ref^.index)=getregtype(oper[1]^.reg)) and
  144. (get_alias(getsupreg(oper[0]^.ref^.index))=get_alias(getsupreg(oper[1]^.reg)))) or
  145. ((getregtype(oper[0]^.ref^.index)=regtype) and
  146. (get_alias(getsupreg(oper[0]^.ref^.index))=orgreg) and
  147. (getregtype(oper[0]^.ref^.base)=getregtype(oper[1]^.reg)) and
  148. (get_alias(getsupreg(oper[0]^.ref^.base))=get_alias(getsupreg(oper[1]^.reg))))
  149. ) then
  150. replaceoper:=0;
  151. end
  152. else if (oper[n+0]^.typ=top_reg) and
  153. (oper[n+1]^.typ=top_reg) and
  154. ((getregtype(oper[n+0]^.reg)<>regtype) or
  155. (getregtype(oper[n+1]^.reg)<>regtype) or
  156. (get_alias(getsupreg(oper[n+0]^.reg))<>get_alias(getsupreg(oper[n+1]^.reg)))) then
  157. begin
  158. if (getregtype(oper[n+0]^.reg)=regtype) and
  159. (get_alias(getsupreg(oper[n+0]^.reg))=orgreg) then
  160. replaceoper:=0+n
  161. else if (getregtype(oper[n+1]^.reg)=regtype) and
  162. (get_alias(getsupreg(oper[n+1]^.reg))=orgreg) then
  163. replaceoper:=1+n;
  164. end
  165. else if (oper[n+0]^.typ=top_reg) and
  166. (oper[n+1]^.typ=top_const) then
  167. begin
  168. if (getregtype(oper[0+n]^.reg)=regtype) and
  169. (get_alias(getsupreg(oper[0+n]^.reg))=orgreg) then
  170. replaceoper:=0+n
  171. else
  172. internalerror(200704282);
  173. end
  174. else if (oper[n+0]^.typ=top_const) and
  175. (oper[n+1]^.typ=top_reg) then
  176. begin
  177. if (getregtype(oper[1+n]^.reg)=regtype) and
  178. (get_alias(getsupreg(oper[1+n]^.reg))=orgreg) then
  179. replaceoper:=1+n
  180. else
  181. internalerror(200704283);
  182. end;
  183. case replaceoper of
  184. 0 :
  185. begin
  186. { Some instructions don't allow memory references
  187. for source }
  188. case opcode of
  189. A_BT,
  190. A_BTS,
  191. A_BTC,
  192. A_BTR,
  193. { shufp* would require 16 byte alignment for memory locations so we force the source
  194. operand into a register }
  195. A_SHUFPD,
  196. A_SHUFPS :
  197. replaceoper:=-1;
  198. end;
  199. end;
  200. 1 :
  201. begin
  202. { Some instructions don't allow memory references
  203. for destination }
  204. case opcode of
  205. A_CMOVcc,
  206. A_MOVZX,
  207. A_MOVSX,
  208. A_MOVSXD,
  209. A_MULSS,
  210. A_MULSD,
  211. A_SUBSS,
  212. A_SUBSD,
  213. A_ADDSD,
  214. A_ADDSS,
  215. A_DIVSD,
  216. A_DIVSS,
  217. A_SHLD,
  218. A_SHRD,
  219. A_COMISD,
  220. A_COMISS,
  221. A_CVTDQ2PD,
  222. A_CVTDQ2PS,
  223. A_CVTPD2DQ,
  224. A_CVTPD2PI,
  225. A_CVTPD2PS,
  226. A_CVTPI2PD,
  227. A_CVTPS2DQ,
  228. A_CVTPS2PD,
  229. A_CVTSD2SI,
  230. A_CVTSD2SS,
  231. A_CVTSI2SD,
  232. A_CVTSS2SD,
  233. A_CVTTPD2PI,
  234. A_CVTTPD2DQ,
  235. A_CVTTPS2DQ,
  236. A_CVTTSD2SI,
  237. A_CVTPI2PS,
  238. A_CVTPS2PI,
  239. A_CVTSI2SS,
  240. A_CVTSS2SI,
  241. A_CVTTPS2PI,
  242. A_CVTTSS2SI,
  243. A_IMUL,
  244. A_XORPD,
  245. A_XORPS,
  246. A_ORPD,
  247. A_ORPS,
  248. A_ANDPD,
  249. A_ANDPS,
  250. A_UNPCKLPS,
  251. A_UNPCKHPS,
  252. A_SHUFPD,
  253. A_SHUFPS:
  254. replaceoper:=-1;
  255. {$ifdef x86_64}
  256. A_MOV:
  257. { 64 bit constants can only be moved into registers }
  258. if (oper[0]^.typ=top_const) and
  259. (oper[1]^.typ=top_reg) and
  260. ((oper[0]^.val<low(longint)) or
  261. (oper[0]^.val>high(longint))) then
  262. replaceoper:=-1;
  263. {$endif x86_64}
  264. end;
  265. end;
  266. end;
  267. end;
  268. end;
  269. end;
  270. {$ifdef x86_64}
  271. { 32 bit operations on 32 bit registers on x86_64 can result in
  272. zeroing the upper 32 bits of the register. This does not happen
  273. with memory operations, so we have to perform these calculations
  274. in registers. }
  275. if (opsize=S_L) then
  276. replaceoper:=-1;
  277. {$endif x86_64}
  278. { Replace register with spill reference }
  279. if replaceoper<>-1 then
  280. begin
  281. if opcode=A_LEA then
  282. begin
  283. opcode:=A_ADD;
  284. oper[0]^.ref^:=spilltemp;
  285. end
  286. else
  287. begin
  288. is_subh:=getsubreg(oper[replaceoper]^.reg)=R_SUBH;
  289. oper[replaceoper]^.typ:=top_ref;
  290. new(oper[replaceoper]^.ref);
  291. oper[replaceoper]^.ref^:=spilltemp;
  292. if is_subh then
  293. inc(oper[replaceoper]^.ref^.offset);
  294. { memory locations aren't guaranteed to be aligned }
  295. case opcode of
  296. A_MOVAPS:
  297. opcode:=A_MOVSS;
  298. A_MOVAPD:
  299. opcode:=A_MOVSD;
  300. A_VMOVAPS:
  301. opcode:=A_VMOVSS;
  302. A_VMOVAPD:
  303. opcode:=A_VMOVSD;
  304. end;
  305. end;
  306. result:=true;
  307. end;
  308. end;
  309. end;
  310. {******************************************************************************
  311. Trgx86fpu
  312. ******************************************************************************}
  313. constructor Trgx86fpu.create;
  314. begin
  315. used_in_proc:=[];
  316. unusedregsfpu:=usableregsfpu;
  317. end;
  318. function trgx86fpu.getregisterfpu(list: TAsmList) : tregister;
  319. begin
  320. { note: don't return R_ST0, see comments above implementation of }
  321. { a_loadfpu_* methods in cgcpu (JM) }
  322. result:=NR_ST;
  323. end;
  324. procedure trgx86fpu.ungetregisterfpu(list : TAsmList; r : tregister);
  325. begin
  326. { nothing to do, fpu stack management is handled by the load/ }
  327. { store operations in cgcpu (JM) }
  328. end;
  329. function trgx86fpu.correct_fpuregister(r : tregister;ofs : byte) : tregister;
  330. begin
  331. correct_fpuregister:=r;
  332. setsupreg(correct_fpuregister,ofs);
  333. end;
  334. procedure trgx86fpu.saveusedfpuregisters(list: TAsmList;
  335. var saved : tpushedsavedfpu;
  336. const s: tcpuregisterset);
  337. { var
  338. r : tregister;
  339. hr : treference; }
  340. begin
  341. used_in_proc:=used_in_proc+s;
  342. { TODO: firstsavefpureg}
  343. (*
  344. { don't try to save the fpu registers if not desired (e.g. for }
  345. { the 80x86) }
  346. if firstsavefpureg <> R_NO then
  347. for r.enum:=firstsavefpureg to lastsavefpureg do
  348. begin
  349. saved[r.enum].ofs:=reg_not_saved;
  350. { if the register is used by the calling subroutine and if }
  351. { it's not a regvar (those are handled separately) }
  352. if not is_reg_var_other[r.enum] and
  353. (r.enum in s) and
  354. { and is present in use }
  355. not(r.enum in unusedregsfpu) then
  356. begin
  357. { then save it }
  358. tg.GetTemp(list,extended_size,tt_persistent,hr);
  359. saved[r.enum].ofs:=hr.offset;
  360. cg.a_loadfpu_reg_ref(list,OS_FLOAT,OS_FLOAT,r,hr);
  361. cg.a_reg_dealloc(list,r);
  362. include(unusedregsfpu,r.enum);
  363. inc(countunusedregsfpu);
  364. end;
  365. end;
  366. *)
  367. end;
  368. procedure trgx86fpu.restoreusedfpuregisters(list : TAsmList;
  369. const saved : tpushedsavedfpu);
  370. {
  371. var
  372. r,r2 : tregister;
  373. hr : treference;
  374. }
  375. begin
  376. { TODO: firstsavefpureg}
  377. (*
  378. if firstsavefpureg <> R_NO then
  379. for r.enum:=lastsavefpureg downto firstsavefpureg do
  380. begin
  381. if saved[r.enum].ofs <> reg_not_saved then
  382. begin
  383. r2.enum:=R_INTREGISTER;
  384. r2.number:=NR_FRAME_POINTER_REG;
  385. reference_reset_base(hr,r2,saved[r.enum].ofs);
  386. cg.a_reg_alloc(list,r);
  387. cg.a_loadfpu_ref_reg(list,OS_FLOAT,OS_FLOAT,hr,r);
  388. if not (r.enum in unusedregsfpu) then
  389. { internalerror(10)
  390. in n386cal we always save/restore the reg *state*
  391. using save/restoreunusedstate -> the current state
  392. may not be real (JM) }
  393. else
  394. begin
  395. dec(countunusedregsfpu);
  396. exclude(unusedregsfpu,r.enum);
  397. end;
  398. tg.UnGetTemp(list,hr);
  399. end;
  400. end;
  401. *)
  402. end;
  403. (*
  404. procedure Trgx86fpu.saveotherregvars(list: TAsmList; const s: totherregisterset);
  405. var
  406. r: Tregister;
  407. begin
  408. if not(cs_opt_regvar in current_settings.optimizerswitches) then
  409. exit;
  410. if firstsavefpureg <> NR_NO then
  411. for r.enum := firstsavefpureg to lastsavefpureg do
  412. if is_reg_var_other[r.enum] and
  413. (r.enum in s) then
  414. store_regvar(list,r);
  415. end;
  416. *)
  417. end.