123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681 |
- {
- $Id$
- This file is part of the Free Pascal run time library.
- Copyright (c) 1999-2000 by Florian Klaempfl
- member of the Free Pascal development team
- See the file COPYING.FPC, included in this distribution,
- for details about the copyright.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- **********************************************************************}
- {
- This unit is an equivalent to the Delphi math unit
- (with some improvements)
- About assembler usage:
- ----------------------
- I used as few as possible assembler to allow an easy port
- to other processors. Today, I think it's wasted time to write
- assembler because different versions of a family of processors
- need different implementations.
- To improve performance, I changed all integer arguments and
- functions results to longint, because 16 bit instructions are
- lethal for a modern intel processor.
- (FK)
- What's to do:
- o a lot of function :), search for !!!!
- o some statistical functions
- o all financial functions
- o optimizations
- }
- unit math;
- interface
- {$MODE objfpc}
- uses
- sysutils;
- type
- { the original delphi functions use extended as argument, }
- { but I would prefer double, because 8 bytes is a very }
- { natural size for the processor }
- float = extended;
- tpaymenttime = (ptendofperiod,ptstartofperiod);
- einvalidargument = class(ematherror);
- { Min/max determination }
- function MinIntValue(const Data: array of Integer): Integer;
- function MaxIntValue(const Data: array of Integer): Integer;
- { Extra, not present in Delphi, but used frequently }
- function Min(Int1,Int2:Integer):Integer;
- function Min(Int1,Int2:Cardinal):Cardinal;
- function Max(Int1,Int2:Integer):Integer;
- function Max(Int1,Int2:Cardinal):Cardinal;
- { angle conversion }
- function degtorad(deg : float) : float;
- function radtodeg(rad : float) : float;
- function gradtorad(grad : float) : float;
- function radtograd(rad : float) : float;
- function degtograd(deg : float) : float;
- function gradtodeg(grad : float) : float;
- { one cycle are 2*Pi rad }
- function cycletorad(cycle : float) : float;
- function radtocycle(rad : float) : float;
- { trigoniometric functions }
- function tan(x : float) : float;
- function cotan(x : float) : float;
- procedure sincos(theta : float;var sinus,cosinus : float);
- { inverse functions }
- function arccos(x : float) : float;
- function arcsin(x : float) : float;
- { calculates arctan(x/y) and returns an angle in the correct quadrant }
- function arctan2(x,y : float) : float;
- { hyperbolic functions }
- function cosh(x : float) : float;
- function sinh(x : float) : float;
- function tanh(x : float) : float;
- { area functions }
- { delphi names: }
- function arccosh(x : float) : float;
- function arcsinh(x : float) : float;
- function arctanh(x : float) : float;
- { IMHO the function should be called as follows (FK) }
- function arcosh(x : float) : float;
- function arsinh(x : float) : float;
- function artanh(x : float) : float;
- { triangle functions }
- { returns the length of the hypotenuse of a right triangle }
- { if x and y are the other sides }
- function hypot(x,y : float) : float;
- { logarithm functions }
- function log10(x : float) : float;
- function log2(x : float) : float;
- function logn(n,x : float) : float;
- { returns natural logarithm of x+1 }
- function lnxpi(x : float) : float;
- { exponential functions }
- function power(base,exponent : float) : float;
- { base^exponent }
- function intpower(base : float;exponent : longint) : float;
- { number converting }
- { rounds x towards positive infinity }
- function ceil(x : float) : longint;
- { rounds x towards negative infinity }
- function floor(x : float) : longint;
- { misc. functions }
- { splits x into mantissa and exponent (to base 2) }
- procedure frexp(x : float;var mantissa,exponent : float);
- { returns x*(2^p) }
- function ldexp(x : float;p : longint) : float;
- { statistical functions }
- function mean(const data : array of float) : float;
- function sum(const data : array of float) : float;
- function sumofsquares(const data : array of float) : float;
- { calculates the sum and the sum of squares of data }
- procedure sumsandsquares(const data : array of float;
- var sum,sumofsquares : float);
- function minvalue(const data : array of float) : float;
- function maxvalue(const data : array of float) : float;
- { calculates the standard deviation }
- function stddev(const data : array of float) : float;
- { calculates the mean and stddev }
- procedure meanandstddev(const data : array of float;
- var mean,stddev : float);
- function variance(const data : array of float) : float;
- function totalvariance(const data : array of float) : float;
- { returns random values with gaussian distribution }
- function randg(mean,stddev : float) : float;
- { I don't know what the following functions do: }
- function popnstddev(const data : array of float) : float;
- function popnvariance(const data : array of float) : float;
- procedure momentskewkurtosis(const data : array of float;
- var m1,m2,m3,m4,skew,kurtosis : float);
- { geometrical function }
- { returns the euclidean L2 norm }
- function norm(const data : array of float) : float;
- implementation
- Procedure DoMathError(Const S : String);
- begin
- writeln (StdErr,'Math Error : ',S);
- end;
- Procedure InvalidArgument;
- begin
- DoMathError ('Invalid argument');
- end;
- function degtorad(deg : float) : float;
- begin
- degtorad:=deg*(pi/180.0);
- end;
- function radtodeg(rad : float) : float;
- begin
- radtodeg:=rad*(180.0/pi);
- end;
- function gradtorad(grad : float) : float;
- begin
- gradtorad:=grad*(pi/200.0);
- end;
- function radtograd(rad : float) : float;
- begin
- radtograd:=rad*(200.0/pi);
- end;
- function degtograd(deg : float) : float;
- begin
- degtograd:=deg*(200.0/180.0);
- end;
- function gradtodeg(grad : float) : float;
- begin
- gradtodeg:=grad*(180.0/200.0);
- end;
- function cycletorad(cycle : float) : float;
- begin
- cycletorad:=(2*pi)*cycle;
- end;
- function radtocycle(rad : float) : float;
- begin
- { avoid division }
- radtocycle:=rad*(1/(2*pi));
- end;
- function tan(x : float) : float;
- begin
- Tan:=Sin(x)/Cos(x)
- end;
- function cotan(x : float) : float;
- begin
- cotan:=Cos(X)/Sin(X);
- end;
- procedure sincos(theta : float;var sinus,cosinus : float);
- begin
- {$ifndef i386}
- sinus:=sin(theta);
- cosinus:=cos(theta);
- {$else}
- asm
- fldl theta
- fsincos
- fwait
- movl cosinus,%eax
- fstpl (%eax)
- movl sinus,%eax
- fstpl (%eax)
- end;
- {$endif}
- end;
- function arccos(x : float) : float;
- { There is some discussion as to what the correct formula is
- for arccos and arcsin is, but I take the one from my book...}
- begin
- ArcCos:=ArcTan2(Sqrt(1-x*x),x);
- end;
- function arcsin(x : float) : float;
- begin
- ArcSin:=ArcTan2(x,Sqrt(1-x*x))
- end;
- function arctan2( x,y : float) : float;
- begin
- {$ifndef i386}
- ArcTan2:=ArcTan(x/y);
- {$else}
- asm
- fldt X
- fldt Y
- fpatan
- leave
- ret $20
- end;
- {$endif}
- end;
- function cosh(x : float) : float;
- var
- temp : float;
- begin
- temp:=exp(x);
- cosh:=0.5*(temp+1.0/temp);
- end;
- function sinh(x : float) : float;
- var
- temp : float;
- begin
- temp:=exp(x);
- sinh:=0.5*(temp-1.0/temp);
- end;
- Const MaxTanh=5000; { rather arbitrary, but more or less correct }
- function tanh(x : float) : float;
- var Temp : float;
- begin
- if x>MaxTanh then exit(1.0)
- else if x<-MaxTanh then exit (-1.0);
- temp:=exp(-2*x);
- tanh:=(1-temp)/(1+temp)
- end;
- function arccosh(x : float) : float;
- begin
- arccosh:=arcosh(x);
- end;
- function arcsinh(x : float) : float;
- begin
- arcsinh:=arsinh(x);
- end;
- function arctanh(x : float) : float;
- begin
- if x>1 then InvalidArgument;
- arctanh:=artanh(x);
- end;
- function arcosh(x : float) : float;
- begin
- if x<1 then InvalidArgument;
- arcosh:=Ln(x+Sqrt(x*x-1));
- end;
- function arsinh(x : float) : float;
- begin
- arsinh:=Ln(x-Sqrt(1+x*x));
- end;
- function artanh(x : float) : float;
- begin
- If abs(x)>1 then InvalidArgument;
- artanh:=(Ln((1+x)/(1-x)))*0.5;
- end;
- function hypot(x,y : float) : float;
- begin
- hypot:=Sqrt(x*x+y*y)
- end;
- function log10(x : float) : float;
- begin
- log10:=ln(x)/ln(10);
- end;
- function log2(x : float) : float;
- begin
- log2:=ln(x)/ln(2)
- end;
- function logn(n,x : float) : float;
- begin
- if n<0 then InvalidArgument;
- logn:=ln(x)/ln(n);
- end;
- function lnxpi(x : float) : float;
- begin
- lnxpi:=ln(1+x);
- end;
- function power(base,exponent : float) : float;
- begin
- Power:=exp(exponent * ln (base));
- end;
- function intpower(base : float;exponent : longint) : float;
- var
- i : longint;
- begin
- i:=abs(exponent);
- intpower:=1.0;
- while i>0 do
- begin
- while (i and 1)=0 do
- begin
- i:=i shr 1;
- base:=sqr(base);
- end;
- i:=i-1;
- intpower:=intpower*base;
- end;
- if exponent<0 then
- intpower:=1.0/intpower;
- end;
- function ceil(x : float) : longint;
- begin
- Ceil:=Trunc(x);
- If Frac(x)>0 then
- Ceil:=Ceil+1;
- end;
- function floor(x : float) : longint;
- begin
- Floor:=Trunc(x);
- If Frac(x)<0 then
- Floor := Floor-1;
- end;
- procedure frexp(x : float;var mantissa,exponent : float);
- begin
- { !!!!!!! }
- end;
- function ldexp(x : float;p : longint) : float;
- begin
- ldexp:=x*intpower(2.0,p);
- end;
- function mean(const data : array of float) : float;
- begin
- mean:=sum(data);
- mean:=mean/(high(data)-low(data)+1);
- end;
- function sum(const data : array of float) : float;
- var
- i : longint;
- begin
- sum:=0.0;
- for i:=low(data) to high(data) do
- sum:=sum+data[i];
- end;
- function sumofsquares(const data : array of float) : float;
- var
- i : longint;
- begin
- sumofsquares:=0.0;
- for i:=low(data) to high(data) do
- sumofsquares:=sumofsquares+sqr(data[i]);
- end;
- procedure sumsandsquares(const data : array of float;
- var sum,sumofsquares : float);
- var
- i : longint;
- temp : float;
- begin
- sumofsquares:=0.0;
- sum:=0.0;
- for i:=low(data) to high(data) do
- begin
- temp:=data[i];
- sumofsquares:=sumofsquares+sqr(temp);
- sum:=sum+temp;
- end;
- end;
- function minvalue(const data : array of float) : float;
- var
- i : longint;
- begin
- { get an initial value }
- minvalue:=data[low(data)];
- for i:=low(data) to high(data) do
- if data[i]<minvalue then
- minvalue:=data[i];
- end;
- function maxvalue(const data : array of float) : float;
- var
- i : longint;
- begin
- { get an initial value }
- maxvalue:=data[low(data)];
- for i:=low(data) to high(data) do
- if data[i]>maxvalue then
- maxvalue:=data[i];
- end;
- function stddev(const data : array of float) : float;
- begin
- StdDev:=Sqrt(Variance(Data));
- end;
- procedure meanandstddev(const data : array of float;
- var mean,stddev : float);
- begin
- end;
- function variance(const data : array of float) : float;
- begin
- Variance:=TotalVariance(Data)/(High(Data)-Low(Data));
- end;
- function totalvariance(const data : array of float) : float;
- var S,SS : Float;
- begin
- SumsAndSquares(Data,S,SS);
- TotalVariance := SS-Sqr(S)/(High(Data)-Low(Data));
- end;
- function randg(mean,stddev : float) : float;
- Var U1,S2 : Float;
- begin
- repeat
- u1:= 2*random-1;
- S2:=Sqr(U1)+sqr(2*random-1);
- until s2<1;
- randg:=Sqrt(-2*ln(S2)/S2)*u1*stddev+Mean;
- end;
- function popnstddev(const data : array of float) : float;
- begin
- PopnStdDev:=Sqrt(PopnVariance(Data));
- end;
- function popnvariance(const data : array of float) : float;
- begin
- PopnVariance:=TotalVariance(Data)/(High(Data)-Low(Data)+1);
- end;
- procedure momentskewkurtosis(const data : array of float;
- var m1,m2,m3,m4,skew,kurtosis : float);
- Var S,SS,SC,SQ,invN,Acc,M1S,S2N,S3N,temp : Float;
- I : Longint;
- begin
- invN:=1.0/(High(Data)-Low(Data)+1);
- s:=0;
- ss:=0;
- sq:=0;
- sc:=0;
- for i:=Low(Data) to High(Data) do
- begin
- temp:=Data[i]; { faster }
- S:=S+temp;
- acc:=temp*temp;
- ss:=ss+acc;
- Acc:=acc*temp;
- Sc:=sc+acc;
- acc:=acc*temp;
- sq:=sq+acc;
- end;
- M1:=s*invN;
- M1S:=M1*M1;
- S2N:=SS*invN;
- S3N:=SC*invN;
- M2:=S2N-M1S;
- M3:=S3N-(M1*3*S2N) + 2*M1S*M1;
- M4:=SQ*invN - (M1 * 4 * S3N) + (M1S*6*S2N-3*Sqr(M1S));
- Skew:=M3*power(M2,-3/2);
- Kurtosis:=M4 / Sqr(M2);
- end;
- function norm(const data : array of float) : float;
- begin
- norm:=sqrt(sumofsquares(data));
- end;
- function MinIntValue(const Data: array of Integer): Integer;
- var
- I: Integer;
- begin
- Result := Data[Low(Data)];
- For I := Succ(Low(Data)) To High(Data) Do
- If Data[I] < Result Then Result := Data[I];
- end;
- function MaxIntValue(const Data: array of Integer): Integer;
- var
- I: Integer;
- begin
- Result := Data[Low(Data)];
- For I := Succ(Low(Data)) To High(Data) Do
- If Data[I] > Result Then Result := Data[I];
- end;
- function Min(Int1,Int2:Integer):Integer;
- begin
- If Int1 < Int2 Then Result := Int1
- Else Result := Int2;
- end;
- function Min(Int1,Int2:Cardinal):Cardinal;
- begin
- If Int1 < Int2 Then Result := Int1
- Else Result := Int2;
- end;
- function Max(Int1,Int2:Integer):Integer;
- begin
- If Int1 > Int2 Then Result := Int1
- Else Result := Int2;
- end;
- function Max(Int1,Int2:Cardinal):Cardinal;
- begin
- If Int1 > Int2 Then Result := Int1
- Else Result := Int2;
- end;
- end.
- {
- $Log$
- Revision 1.15 2000-02-09 16:59:32 peter
- * truncated log
- Revision 1.14 2000/01/11 21:07:33 marco
- * Changed some (%ebp) to real parameters
- Revision 1.13 2000/01/07 16:41:43 daniel
- * copyright 2000
- Revision 1.12 1999/09/21 20:47:05 florian
- * ceil and floor still had bugs :), hopefully it's the final fix now
- }
|