cpubase.pas 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. cutils,cclasses,
  29. globtype,globals,
  30. cgbase
  31. ;
  32. {*****************************************************************************
  33. Assembler Opcodes
  34. *****************************************************************************}
  35. type
  36. {$if defined(x86_64)}
  37. TAsmOp={$i x8664op.inc}
  38. {$elseif defined(i386)}
  39. TAsmOp={$i i386op.inc}
  40. {$elseif defined(i8086)}
  41. TAsmOp={$i i8086op.inc}
  42. {$endif}
  43. { This should define the array of instructions as string }
  44. op2strtable=array[tasmop] of string[16];
  45. const
  46. { First value of opcode enumeration }
  47. firstop = low(tasmop);
  48. { Last value of opcode enumeration }
  49. lastop = high(tasmop);
  50. {*****************************************************************************
  51. Registers
  52. *****************************************************************************}
  53. const
  54. { Integer Super registers }
  55. RS_NO = $ffffffff;
  56. RS_RAX = $00; {EAX}
  57. RS_RCX = $01; {ECX}
  58. RS_RDX = $02; {EDX}
  59. RS_RBX = $03; {EBX}
  60. RS_RSI = $04; {ESI}
  61. RS_RDI = $05; {EDI}
  62. RS_RBP = $06; {EBP}
  63. RS_RSP = $07; {ESP}
  64. RS_R8 = $08; {R8}
  65. RS_R9 = $09; {R9}
  66. RS_R10 = $0a; {R10}
  67. RS_R11 = $0b; {R11}
  68. RS_R12 = $0c; {R12}
  69. RS_R13 = $0d; {R13}
  70. RS_R14 = $0e; {R14}
  71. RS_R15 = $0f; {R15}
  72. { create aliases to allow code sharing between x86-64 and i386 }
  73. RS_EAX = RS_RAX;
  74. RS_EBX = RS_RBX;
  75. RS_ECX = RS_RCX;
  76. RS_EDX = RS_RDX;
  77. RS_ESI = RS_RSI;
  78. RS_EDI = RS_RDI;
  79. RS_EBP = RS_RBP;
  80. RS_ESP = RS_RSP;
  81. { create aliases to allow code sharing between i386 and i8086 }
  82. RS_AX = RS_RAX;
  83. RS_BX = RS_RBX;
  84. RS_CX = RS_RCX;
  85. RS_DX = RS_RDX;
  86. RS_SI = RS_RSI;
  87. RS_DI = RS_RDI;
  88. RS_BP = RS_RBP;
  89. RS_SP = RS_RSP;
  90. { Number of first imaginary register }
  91. first_int_imreg = $10;
  92. { Float Super registers }
  93. RS_ST0 = $00;
  94. RS_ST1 = $01;
  95. RS_ST2 = $02;
  96. RS_ST3 = $03;
  97. RS_ST4 = $04;
  98. RS_ST5 = $05;
  99. RS_ST6 = $06;
  100. RS_ST7 = $07;
  101. RS_ST = $08;
  102. { Number of first imaginary register }
  103. first_fpu_imreg = $09;
  104. { MM Super registers }
  105. RS_XMM0 = $00;
  106. RS_XMM1 = $01;
  107. RS_XMM2 = $02;
  108. RS_XMM3 = $03;
  109. RS_XMM4 = $04;
  110. RS_XMM5 = $05;
  111. RS_XMM6 = $06;
  112. RS_XMM7 = $07;
  113. RS_XMM8 = $08;
  114. RS_XMM9 = $09;
  115. RS_XMM10 = $0a;
  116. RS_XMM11 = $0b;
  117. RS_XMM12 = $0c;
  118. RS_XMM13 = $0d;
  119. RS_XMM14 = $0e;
  120. RS_XMM15 = $0f;
  121. RS_FLAGS = $07;
  122. { Number of first imaginary register }
  123. {$ifdef x86_64}
  124. first_mm_imreg = $10;
  125. {$else x86_64}
  126. first_mm_imreg = $08;
  127. {$endif x86_64}
  128. { The subregister that specifies the entire register and an address }
  129. {$if defined(x86_64)}
  130. { Hammer }
  131. R_SUBWHOLE = R_SUBQ;
  132. R_SUBADDR = R_SUBQ;
  133. {$elseif defined(i386)}
  134. { i386 }
  135. R_SUBWHOLE = R_SUBD;
  136. R_SUBADDR = R_SUBD;
  137. {$elseif defined(i8086)}
  138. { i8086 }
  139. R_SUBWHOLE = R_SUBW;
  140. R_SUBADDR = R_SUBW;
  141. {$endif}
  142. { Available Registers }
  143. {$if defined(x86_64)}
  144. {$i r8664con.inc}
  145. {$elseif defined(i386)}
  146. {$i r386con.inc}
  147. {$elseif defined(i8086)}
  148. {$i r8086con.inc}
  149. {$endif}
  150. type
  151. { Number of registers used for indexing in tables }
  152. {$if defined(x86_64)}
  153. tregisterindex=0..{$i r8664nor.inc}-1;
  154. {$elseif defined(i386)}
  155. tregisterindex=0..{$i r386nor.inc}-1;
  156. {$elseif defined(i8086)}
  157. tregisterindex=0..{$i r8086nor.inc}-1;
  158. {$endif}
  159. const
  160. regnumber_table : array[tregisterindex] of tregister = (
  161. {$if defined(x86_64)}
  162. {$i r8664num.inc}
  163. {$elseif defined(i386)}
  164. {$i r386num.inc}
  165. {$elseif defined(i8086)}
  166. {$i r8086num.inc}
  167. {$endif}
  168. );
  169. regstabs_table : array[tregisterindex] of shortint = (
  170. {$if defined(x86_64)}
  171. {$i r8664stab.inc}
  172. {$elseif defined(i386)}
  173. {$i r386stab.inc}
  174. {$elseif defined(i8086)}
  175. {$i r8086stab.inc}
  176. {$endif}
  177. );
  178. regdwarf_table : array[tregisterindex] of shortint = (
  179. {$if defined(x86_64)}
  180. {$i r8664dwrf.inc}
  181. {$elseif defined(i386)}
  182. {$i r386dwrf.inc}
  183. {$elseif defined(i8086)}
  184. {$i r8086dwrf.inc}
  185. {$endif}
  186. );
  187. RS_DEFAULTFLAGS = RS_FLAGS;
  188. NR_DEFAULTFLAGS = NR_FLAGS;
  189. type
  190. totherregisterset = set of tregisterindex;
  191. {*****************************************************************************
  192. Conditions
  193. *****************************************************************************}
  194. type
  195. TAsmCond=(C_None,
  196. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  197. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  198. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  199. );
  200. const
  201. cond2str:array[TAsmCond] of string[3]=('',
  202. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  203. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  204. 'ns','nz','o','p','pe','po','s','z'
  205. );
  206. {*****************************************************************************
  207. Flags
  208. *****************************************************************************}
  209. type
  210. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  211. F_A,F_AE,F_B,F_BE,
  212. F_S,F_NS,F_O,F_NO,
  213. { For IEEE-compliant floating-point compares,
  214. same as normal counterparts but additionally check PF }
  215. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  216. const
  217. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  218. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  219. F_E,F_NE,F_A,F_AE,F_B,F_BE
  220. );
  221. {*****************************************************************************
  222. Constants
  223. *****************************************************************************}
  224. const
  225. { declare aliases }
  226. LOC_SSEREGISTER = LOC_MMREGISTER;
  227. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  228. max_operands = 4;
  229. maxfpuregs = 8;
  230. {*****************************************************************************
  231. CPU Dependent Constants
  232. *****************************************************************************}
  233. {$i cpubase.inc}
  234. {*****************************************************************************
  235. Helpers
  236. *****************************************************************************}
  237. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  238. function reg2opsize(r:Tregister):topsize;
  239. function reg_cgsize(const reg: tregister): tcgsize;
  240. function is_calljmp(o:tasmop):boolean;
  241. procedure inverse_flags(var f: TResFlags);
  242. function flags_to_cond(const f: TResFlags) : TAsmCond;
  243. function is_segment_reg(r:tregister):boolean;
  244. function findreg_by_number(r:Tregister):tregisterindex;
  245. function std_regnum_search(const s:string):Tregister;
  246. function std_regname(r:Tregister):string;
  247. function dwarf_reg(r:tregister):shortint;
  248. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  249. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  250. { checks whether two segment registers are normally equal in the current memory model }
  251. function segment_regs_equal(r1,r2:tregister):boolean;
  252. {$ifdef i8086}
  253. { returns the next virtual register }
  254. function GetNextReg(const r : TRegister) : TRegister;
  255. { return whether we need to add an extra FWAIT instruction before the given
  256. instruction, when we're targeting the i8087. This includes almost all x87
  257. instructions, but certain ones, which always have or have not a built in
  258. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  259. function requires_fwait_on_8087(op: TAsmOp): boolean;
  260. {$endif i8086}
  261. implementation
  262. uses
  263. rgbase,verbose;
  264. const
  265. {$if defined(x86_64)}
  266. std_regname_table : TRegNameTable = (
  267. {$i r8664std.inc}
  268. );
  269. regnumber_index : array[tregisterindex] of tregisterindex = (
  270. {$i r8664rni.inc}
  271. );
  272. std_regname_index : array[tregisterindex] of tregisterindex = (
  273. {$i r8664sri.inc}
  274. );
  275. {$elseif defined(i386)}
  276. std_regname_table : TRegNameTable = (
  277. {$i r386std.inc}
  278. );
  279. regnumber_index : array[tregisterindex] of tregisterindex = (
  280. {$i r386rni.inc}
  281. );
  282. std_regname_index : array[tregisterindex] of tregisterindex = (
  283. {$i r386sri.inc}
  284. );
  285. {$elseif defined(i8086)}
  286. std_regname_table : TRegNameTable = (
  287. {$i r8086std.inc}
  288. );
  289. regnumber_index : array[tregisterindex] of tregisterindex = (
  290. {$i r8086rni.inc}
  291. );
  292. std_regname_index : array[tregisterindex] of tregisterindex = (
  293. {$i r8086sri.inc}
  294. );
  295. {$endif}
  296. {*****************************************************************************
  297. Helpers
  298. *****************************************************************************}
  299. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  300. begin
  301. case s of
  302. OS_8,OS_S8:
  303. cgsize2subreg:=R_SUBL;
  304. OS_16,OS_S16:
  305. cgsize2subreg:=R_SUBW;
  306. OS_32,OS_S32:
  307. cgsize2subreg:=R_SUBD;
  308. OS_64,OS_S64:
  309. cgsize2subreg:=R_SUBQ;
  310. OS_M64:
  311. cgsize2subreg:=R_SUBNONE;
  312. OS_F32,OS_F64,OS_C64:
  313. case regtype of
  314. R_FPUREGISTER:
  315. cgsize2subreg:=R_SUBWHOLE;
  316. R_MMREGISTER:
  317. case s of
  318. OS_F32:
  319. cgsize2subreg:=R_SUBMMS;
  320. OS_F64:
  321. cgsize2subreg:=R_SUBMMD;
  322. else
  323. internalerror(2009071901);
  324. end;
  325. else
  326. internalerror(2009071902);
  327. end;
  328. OS_M128,OS_MS128:
  329. cgsize2subreg:=R_SUBMMX;
  330. OS_M256,OS_MS256:
  331. cgsize2subreg:=R_SUBMMY;
  332. else
  333. internalerror(200301231);
  334. end;
  335. end;
  336. function reg_cgsize(const reg: tregister): tcgsize;
  337. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  338. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256);
  339. begin
  340. case getregtype(reg) of
  341. R_INTREGISTER :
  342. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  343. R_FPUREGISTER :
  344. reg_cgsize:=OS_F80;
  345. R_MMXREGISTER:
  346. reg_cgsize:=OS_M64;
  347. R_MMREGISTER:
  348. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  349. R_SPECIALREGISTER :
  350. case reg of
  351. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  352. reg_cgsize:=OS_16;
  353. {$ifdef x86_64}
  354. NR_DR0..NR_TR7:
  355. reg_cgsize:=OS_64;
  356. {$endif x86_64}
  357. else
  358. reg_cgsize:=OS_32
  359. end
  360. else
  361. internalerror(2003031801);
  362. end;
  363. end;
  364. function reg2opsize(r:Tregister):topsize;
  365. const
  366. subreg2opsize : array[tsubregister] of topsize =
  367. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  368. begin
  369. reg2opsize:=S_L;
  370. case getregtype(r) of
  371. R_INTREGISTER :
  372. reg2opsize:=subreg2opsize[getsubreg(r)];
  373. R_FPUREGISTER :
  374. reg2opsize:=S_FL;
  375. R_MMXREGISTER,
  376. R_MMREGISTER :
  377. reg2opsize:=S_MD;
  378. R_SPECIALREGISTER :
  379. begin
  380. case r of
  381. NR_CS,NR_DS,NR_ES,
  382. NR_SS,NR_FS,NR_GS :
  383. reg2opsize:=S_W;
  384. end;
  385. end;
  386. else
  387. internalerror(200303181);
  388. end;
  389. end;
  390. function is_calljmp(o:tasmop):boolean;
  391. begin
  392. case o of
  393. A_CALL,
  394. {$if defined(i386) or defined(i8086)}
  395. A_JCXZ,
  396. {$endif defined(i386) or defined(i8086)}
  397. A_JECXZ,
  398. {$ifdef x86_64}
  399. A_JRCXZ,
  400. {$endif x86_64}
  401. A_JMP,
  402. A_LOOP,
  403. A_LOOPE,
  404. A_LOOPNE,
  405. A_LOOPNZ,
  406. A_LOOPZ,
  407. A_LCALL,
  408. A_LJMP,
  409. A_Jcc :
  410. is_calljmp:=true;
  411. else
  412. is_calljmp:=false;
  413. end;
  414. end;
  415. procedure inverse_flags(var f: TResFlags);
  416. const
  417. inv_flags: array[TResFlags] of TResFlags =
  418. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  419. F_BE,F_B,F_AE,F_A,
  420. F_NS,F_S,F_NO,F_O,
  421. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  422. begin
  423. f:=inv_flags[f];
  424. end;
  425. function flags_to_cond(const f: TResFlags) : TAsmCond;
  426. const
  427. flags_2_cond : array[TResFlags] of TAsmCond =
  428. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  429. C_None,C_None,C_None,C_None,C_None,C_None);
  430. begin
  431. result := flags_2_cond[f];
  432. if (result=C_None) then
  433. InternalError(2014041301);
  434. end;
  435. function is_segment_reg(r:tregister):boolean;
  436. begin
  437. result:=false;
  438. case r of
  439. NR_CS,NR_DS,NR_ES,
  440. NR_SS,NR_FS,NR_GS :
  441. result:=true;
  442. end;
  443. end;
  444. function findreg_by_number(r:Tregister):tregisterindex;
  445. var
  446. hr : tregister;
  447. begin
  448. { for the name the sub reg doesn't matter }
  449. hr:=r;
  450. if (getregtype(hr)=R_MMREGISTER) and
  451. (getsubreg(hr)<>R_SUBMMY) then
  452. setsubreg(hr,R_SUBMMX);
  453. result:=findreg_by_number_table(hr,regnumber_index);
  454. end;
  455. function std_regnum_search(const s:string):Tregister;
  456. begin
  457. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  458. end;
  459. function std_regname(r:Tregister):string;
  460. var
  461. p : tregisterindex;
  462. begin
  463. if getregtype(r) in [R_MMREGISTER,R_MMXREGISTER] then
  464. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  465. p:=findreg_by_number(r);
  466. if p<>0 then
  467. result:=std_regname_table[p]
  468. else
  469. result:=generic_regname(r);
  470. end;
  471. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  472. const
  473. inverse: array[TAsmCond] of TAsmCond=(C_None,
  474. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  475. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  476. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  477. );
  478. begin
  479. result := inverse[c];
  480. end;
  481. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  482. begin
  483. result := c1 = c2;
  484. end;
  485. function dwarf_reg(r:tregister):shortint;
  486. begin
  487. result:=regdwarf_table[findreg_by_number(r)];
  488. if result=-1 then
  489. internalerror(200603251);
  490. end;
  491. function segment_regs_equal(r1, r2: tregister): boolean;
  492. begin
  493. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  494. internalerror(2013062301);
  495. { every segment register is equal to itself }
  496. if r1=r2 then
  497. exit(true);
  498. {$if defined(i8086)}
  499. case current_settings.x86memorymodel of
  500. mm_tiny:
  501. begin
  502. { CS=DS=SS }
  503. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  504. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  505. exit(true);
  506. { the remaining are distinct from each other }
  507. exit(false);
  508. end;
  509. mm_small,mm_medium:
  510. begin
  511. { DS=SS }
  512. if ((r1=NR_DS) or (r1=NR_SS)) and
  513. ((r2=NR_DS) or (r2=NR_SS)) then
  514. exit(true);
  515. { the remaining are distinct from each other }
  516. exit(false);
  517. end;
  518. mm_compact,mm_large,mm_huge:
  519. { all segment registers are different in these models }
  520. exit(false);
  521. else
  522. internalerror(2013062302);
  523. end;
  524. {$elseif defined(i386) or defined(x86_64)}
  525. { DS=SS=ES }
  526. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  527. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  528. exit(true);
  529. { the remaining are distinct from each other }
  530. exit(false);
  531. {$endif}
  532. end;
  533. {$ifdef i8086}
  534. function GetNextReg(const r: TRegister): TRegister;
  535. begin
  536. if getsupreg(r)<first_int_imreg then
  537. internalerror(2013051401);
  538. result:=TRegister(longint(r)+1);
  539. end;
  540. function requires_fwait_on_8087(op: TAsmOp): boolean;
  541. begin
  542. case op of
  543. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  544. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  545. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  546. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  547. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  548. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  549. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  550. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  551. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  552. result:=true;
  553. else
  554. result:=false;
  555. end;
  556. end;
  557. {$endif i8086}
  558. end.