cpubase.pas 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. RS_XMM16 = $10;
  126. RS_XMM17 = $11;
  127. RS_XMM18 = $12;
  128. RS_XMM19 = $13;
  129. RS_XMM20 = $14;
  130. RS_XMM21 = $15;
  131. RS_XMM22 = $16;
  132. RS_XMM23 = $17;
  133. RS_XMM24 = $18;
  134. RS_XMM25 = $19;
  135. RS_XMM26 = $1a;
  136. RS_XMM27 = $1b;
  137. RS_XMM28 = $1c;
  138. RS_XMM29 = $1d;
  139. RS_XMM30 = $1e;
  140. RS_XMM31 = $1f;
  141. {$if defined(x86_64)}
  142. RS_RFLAGS = $06;
  143. {$elseif defined(i386)}
  144. RS_EFLAGS = $06;
  145. {$elseif defined(i8086)}
  146. RS_FLAGS = $06;
  147. {$endif}
  148. { Number of first imaginary register }
  149. {$ifdef x86_64}
  150. first_mm_imreg = $10;
  151. {$else x86_64}
  152. first_mm_imreg = $08;
  153. {$endif x86_64}
  154. { The subregister that specifies the entire register and an address }
  155. {$if defined(x86_64)}
  156. { Hammer }
  157. R_SUBWHOLE = R_SUBQ;
  158. R_SUBADDR = R_SUBQ;
  159. {$elseif defined(i386)}
  160. { i386 }
  161. R_SUBWHOLE = R_SUBD;
  162. R_SUBADDR = R_SUBD;
  163. {$elseif defined(i8086)}
  164. { i8086 }
  165. R_SUBWHOLE = R_SUBW;
  166. R_SUBADDR = R_SUBW;
  167. {$endif}
  168. { Available Registers }
  169. {$if defined(x86_64)}
  170. {$i r8664con.inc}
  171. {$elseif defined(i386)}
  172. {$i r386con.inc}
  173. {$elseif defined(i8086)}
  174. {$i r8086con.inc}
  175. {$endif}
  176. type
  177. { Number of registers used for indexing in tables }
  178. {$if defined(x86_64)}
  179. tregisterindex=0..{$i r8664nor.inc}-1;
  180. {$elseif defined(i386)}
  181. tregisterindex=0..{$i r386nor.inc}-1;
  182. {$elseif defined(i8086)}
  183. tregisterindex=0..{$i r8086nor.inc}-1;
  184. {$endif}
  185. const
  186. regnumber_table : array[tregisterindex] of tregister = (
  187. {$if defined(x86_64)}
  188. {$i r8664num.inc}
  189. {$elseif defined(i386)}
  190. {$i r386num.inc}
  191. {$elseif defined(i8086)}
  192. {$i r8086num.inc}
  193. {$endif}
  194. );
  195. regstabs_table : array[tregisterindex] of shortint = (
  196. {$if defined(x86_64)}
  197. {$i r8664stab.inc}
  198. {$elseif defined(i386)}
  199. {$i r386stab.inc}
  200. {$elseif defined(i8086)}
  201. {$i r8086stab.inc}
  202. {$endif}
  203. );
  204. regdwarf_table : array[tregisterindex] of shortint = (
  205. {$if defined(x86_64)}
  206. {$i r8664dwrf.inc}
  207. {$elseif defined(i386)}
  208. {$i r386dwrf.inc}
  209. {$elseif defined(i8086)}
  210. {$i r8086dwrf.inc}
  211. {$endif}
  212. );
  213. {$if defined(x86_64)}
  214. RS_DEFAULTFLAGS = RS_RFLAGS;
  215. NR_DEFAULTFLAGS = NR_RFLAGS;
  216. {$elseif defined(i386)}
  217. RS_DEFAULTFLAGS = RS_EFLAGS;
  218. NR_DEFAULTFLAGS = NR_EFLAGS;
  219. {$elseif defined(i8086)}
  220. RS_DEFAULTFLAGS = RS_FLAGS;
  221. NR_DEFAULTFLAGS = NR_FLAGS;
  222. {$endif}
  223. {*****************************************************************************
  224. Conditions
  225. *****************************************************************************}
  226. type
  227. TAsmCond=(C_None,
  228. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  229. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  230. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  231. );
  232. const
  233. cond2str:array[TAsmCond] of string[3]=('',
  234. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  235. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  236. 'ns','nz','o','p','pe','po','s','z'
  237. );
  238. {*****************************************************************************
  239. Flags
  240. *****************************************************************************}
  241. type
  242. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  243. F_A,F_AE,F_B,F_BE,
  244. F_S,F_NS,F_O,F_NO,
  245. { For IEEE-compliant floating-point compares,
  246. same as normal counterparts but additionally check PF }
  247. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  248. const
  249. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  250. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  251. F_E,F_NE,F_A,F_AE,F_B,F_BE
  252. );
  253. {*****************************************************************************
  254. Constants
  255. *****************************************************************************}
  256. const
  257. { declare aliases }
  258. LOC_SSEREGISTER = LOC_MMREGISTER;
  259. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  260. max_operands = 4;
  261. maxfpuregs = 8;
  262. {*****************************************************************************
  263. CPU Dependent Constants
  264. *****************************************************************************}
  265. {$i cpubase.inc}
  266. const
  267. {$ifdef x86_64}
  268. topsize2memsize: array[topsize] of integer =
  269. (0, 8,16,32,64,8,8,16,8,16,32,
  270. 16,32,64,
  271. 16,32,64,0,0,
  272. 64,
  273. 0,0,0,
  274. 80,
  275. 128,
  276. 256,
  277. 512
  278. );
  279. {$else}
  280. topsize2memsize: array[topsize] of integer =
  281. (0, 8,16,32,64,8,8,16,
  282. 16,32,64,
  283. 16,32,64,0,0,
  284. 64,
  285. 0,0,0,
  286. 80,
  287. 128,
  288. 256,
  289. 512
  290. );
  291. {$endif}
  292. {*****************************************************************************
  293. Helpers
  294. *****************************************************************************}
  295. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  296. function reg2opsize(r:Tregister):topsize;
  297. function reg_cgsize(const reg: tregister): tcgsize;
  298. function is_calljmp(o:tasmop):boolean;
  299. procedure inverse_flags(var f: TResFlags);
  300. function flags_to_cond(const f: TResFlags) : TAsmCond;
  301. function is_segment_reg(r:tregister):boolean;
  302. function findreg_by_number(r:Tregister):tregisterindex;
  303. function std_regnum_search(const s:string):Tregister;
  304. function std_regname(r:Tregister):string;
  305. function dwarf_reg(r:tregister):shortint;
  306. function dwarf_reg_no_error(r:tregister):shortint;
  307. function eh_return_data_regno(nr: longint): longint;
  308. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  309. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  310. { checks whether two segment registers are normally equal in the current memory model }
  311. function segment_regs_equal(r1,r2:tregister):boolean;
  312. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  313. function is_x86_string_op(op: TAsmOp): boolean;
  314. { checks whether the specified op is an x86 parameterless string instruction
  315. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  316. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  317. { checks whether the specified op is an x86 parameterized string instruction
  318. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  319. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  320. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  321. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  322. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  323. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  324. a x86 string instruction }
  325. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  326. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  327. a x86 string instruction }
  328. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  329. {$ifdef i8086}
  330. { return whether we need to add an extra FWAIT instruction before the given
  331. instruction, when we're targeting the i8087. This includes almost all x87
  332. instructions, but certain ones, which always have or have not a built in
  333. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  334. function requires_fwait_on_8087(op: TAsmOp): boolean;
  335. {$endif i8086}
  336. implementation
  337. uses
  338. globtype,
  339. rgbase,verbose;
  340. const
  341. {$if defined(x86_64)}
  342. std_regname_table : TRegNameTable = (
  343. {$i r8664std.inc}
  344. );
  345. regnumber_index : array[tregisterindex] of tregisterindex = (
  346. {$i r8664rni.inc}
  347. );
  348. std_regname_index : array[tregisterindex] of tregisterindex = (
  349. {$i r8664sri.inc}
  350. );
  351. {$elseif defined(i386)}
  352. std_regname_table : TRegNameTable = (
  353. {$i r386std.inc}
  354. );
  355. regnumber_index : array[tregisterindex] of tregisterindex = (
  356. {$i r386rni.inc}
  357. );
  358. std_regname_index : array[tregisterindex] of tregisterindex = (
  359. {$i r386sri.inc}
  360. );
  361. {$elseif defined(i8086)}
  362. std_regname_table : TRegNameTable = (
  363. {$i r8086std.inc}
  364. );
  365. regnumber_index : array[tregisterindex] of tregisterindex = (
  366. {$i r8086rni.inc}
  367. );
  368. std_regname_index : array[tregisterindex] of tregisterindex = (
  369. {$i r8086sri.inc}
  370. );
  371. {$endif}
  372. {*****************************************************************************
  373. Helpers
  374. *****************************************************************************}
  375. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  376. begin
  377. case s of
  378. OS_8,OS_S8:
  379. cgsize2subreg:=R_SUBL;
  380. OS_16,OS_S16:
  381. cgsize2subreg:=R_SUBW;
  382. OS_32,OS_S32:
  383. cgsize2subreg:=R_SUBD;
  384. OS_64,OS_S64:
  385. cgsize2subreg:=R_SUBQ;
  386. OS_M64:
  387. cgsize2subreg:=R_SUBNONE;
  388. OS_F32,OS_F64,OS_C64:
  389. case regtype of
  390. R_FPUREGISTER:
  391. cgsize2subreg:=R_SUBWHOLE;
  392. R_MMREGISTER:
  393. case s of
  394. OS_F32:
  395. cgsize2subreg:=R_SUBMMS;
  396. OS_F64:
  397. cgsize2subreg:=R_SUBMMD;
  398. else
  399. internalerror(2009071901);
  400. end;
  401. else
  402. internalerror(2009071902);
  403. end;
  404. OS_M128,OS_MS128,OS_MF128,OS_MD128:
  405. cgsize2subreg:=R_SUBMMX;
  406. OS_M256,OS_MS256,OS_MF256,OS_MD256:
  407. cgsize2subreg:=R_SUBMMY;
  408. OS_M512,OS_MS512,OS_MF512,OS_MD512:
  409. cgsize2subreg:=R_SUBMMZ;
  410. OS_NO:
  411. { error message should have been thrown already before, so avoid only
  412. an internal error }
  413. cgsize2subreg:=R_SUBNONE;
  414. else
  415. internalerror(200301231);
  416. end;
  417. end;
  418. function reg_cgsize(const reg: tregister): tcgsize;
  419. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  420. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  421. begin
  422. case getregtype(reg) of
  423. R_INTREGISTER :
  424. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  425. R_FPUREGISTER :
  426. reg_cgsize:=OS_F80;
  427. R_MMXREGISTER:
  428. reg_cgsize:=OS_M64;
  429. R_MMREGISTER:
  430. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  431. R_SPECIALREGISTER :
  432. case reg of
  433. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  434. reg_cgsize:=OS_16;
  435. {$ifdef x86_64}
  436. NR_DR0..NR_TR7:
  437. reg_cgsize:=OS_64;
  438. {$endif x86_64}
  439. else
  440. reg_cgsize:=OS_32
  441. end;
  442. R_ADDRESSREGISTER:
  443. case reg of
  444. NR_K0..NR_K7: reg_cgsize:=OS_64;
  445. else internalerror(2003031801);
  446. end;
  447. else
  448. internalerror(2003031801);
  449. end;
  450. end;
  451. function reg2opsize(r:Tregister):topsize;
  452. const
  453. subreg2opsize : array[tsubregister] of topsize =
  454. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  455. begin
  456. reg2opsize:=S_L;
  457. case getregtype(r) of
  458. R_INTREGISTER :
  459. reg2opsize:=subreg2opsize[getsubreg(r)];
  460. R_FPUREGISTER :
  461. reg2opsize:=S_FL;
  462. R_MMXREGISTER,
  463. R_MMREGISTER :
  464. reg2opsize:=S_MD;
  465. R_SPECIALREGISTER :
  466. begin
  467. case r of
  468. NR_CS,NR_DS,NR_ES,
  469. NR_SS,NR_FS,NR_GS :
  470. reg2opsize:=S_W;
  471. else
  472. ;
  473. end;
  474. end;
  475. else
  476. internalerror(200303181);
  477. end;
  478. end;
  479. function is_calljmp(o:tasmop):boolean;
  480. begin
  481. case o of
  482. A_CALL,
  483. {$if defined(i386) or defined(i8086)}
  484. A_JCXZ,
  485. {$endif defined(i386) or defined(i8086)}
  486. A_JECXZ,
  487. {$ifdef x86_64}
  488. A_JRCXZ,
  489. {$endif x86_64}
  490. A_JMP,
  491. A_LOOP,
  492. A_LOOPE,
  493. A_LOOPNE,
  494. A_LOOPNZ,
  495. A_LOOPZ,
  496. A_LCALL,
  497. A_LJMP,
  498. A_Jcc :
  499. is_calljmp:=true;
  500. else
  501. is_calljmp:=false;
  502. end;
  503. end;
  504. procedure inverse_flags(var f: TResFlags);
  505. const
  506. inv_flags: array[TResFlags] of TResFlags =
  507. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  508. F_BE,F_B,F_AE,F_A,
  509. F_NS,F_S,F_NO,F_O,
  510. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  511. begin
  512. f:=inv_flags[f];
  513. end;
  514. function flags_to_cond(const f: TResFlags) : TAsmCond;
  515. const
  516. flags_2_cond : array[TResFlags] of TAsmCond =
  517. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  518. C_None,C_None,C_None,C_None,C_None,C_None);
  519. begin
  520. result := flags_2_cond[f];
  521. if (result=C_None) then
  522. InternalError(2014041301);
  523. end;
  524. function is_segment_reg(r:tregister):boolean;
  525. begin
  526. case r of
  527. NR_CS,NR_DS,NR_ES,
  528. NR_SS,NR_FS,NR_GS :
  529. result:=true;
  530. else
  531. result:=false;
  532. end;
  533. end;
  534. function findreg_by_number(r:Tregister):tregisterindex;
  535. var
  536. hr : tregister;
  537. begin
  538. { for the name the sub reg doesn't matter }
  539. hr:=r;
  540. if (getregtype(hr)=R_MMREGISTER) and
  541. (getsubreg(hr)<>R_SUBMMY) and
  542. (getsubreg(hr)<>R_SUBMMZ) then
  543. setsubreg(hr,R_SUBMMX);
  544. //// TG TODO check
  545. //if (getregtype(hr)=R_MMREGISTER) then
  546. // case getsubreg(hr) of
  547. // R_SUBMMX: setsubreg(hr,R_SUBMMX);
  548. // R_SUBMMY: setsubreg(hr,R_SUBMMY);
  549. // R_SUBMMZ: setsubreg(hr,R_SUBMMZ);
  550. // else setsubreg(hr,R_SUBMMX);
  551. // end;
  552. result:=findreg_by_number_table(hr,regnumber_index);
  553. end;
  554. function std_regnum_search(const s:string):Tregister;
  555. begin
  556. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  557. end;
  558. function std_regname(r:Tregister):string;
  559. var
  560. p : tregisterindex;
  561. begin
  562. if (getregtype(r)=R_MMXREGISTER) or
  563. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  564. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  565. p:=findreg_by_number(r);
  566. if p<>0 then
  567. result:=std_regname_table[p]
  568. else
  569. result:=generic_regname(r);
  570. end;
  571. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  572. const
  573. inverse: array[TAsmCond] of TAsmCond=(C_None,
  574. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  575. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  576. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  577. );
  578. begin
  579. result := inverse[c];
  580. end;
  581. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  582. begin
  583. result := c1 = c2;
  584. end;
  585. function dwarf_reg(r:tregister):shortint;
  586. begin
  587. result:=regdwarf_table[findreg_by_number(r)];
  588. if result=-1 then
  589. internalerror(200603251);
  590. end;
  591. function dwarf_reg_no_error(r:tregister):shortint;
  592. begin
  593. result:=regdwarf_table[findreg_by_number(r)];
  594. end;
  595. function eh_return_data_regno(nr: longint): longint;
  596. begin
  597. case nr of
  598. 0: result:=0;
  599. {$ifdef x86_64}
  600. 1: result:=1;
  601. {$else}
  602. 1: result:=2;
  603. {$endif}
  604. else
  605. result:=-1;
  606. end;
  607. end;
  608. function segment_regs_equal(r1, r2: tregister): boolean;
  609. begin
  610. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  611. internalerror(2013062301);
  612. { every segment register is equal to itself }
  613. if r1=r2 then
  614. exit(true);
  615. {$if defined(i8086)}
  616. case current_settings.x86memorymodel of
  617. mm_tiny:
  618. begin
  619. { CS=DS=SS }
  620. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  621. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  622. exit(true);
  623. { the remaining are distinct from each other }
  624. exit(false);
  625. end;
  626. mm_small,mm_medium:
  627. begin
  628. { DS=SS }
  629. if ((r1=NR_DS) or (r1=NR_SS)) and
  630. ((r2=NR_DS) or (r2=NR_SS)) then
  631. exit(true);
  632. { the remaining are distinct from each other }
  633. exit(false);
  634. end;
  635. mm_compact,mm_large,mm_huge:
  636. { all segment registers are different in these models }
  637. exit(false);
  638. end;
  639. {$elseif defined(i386) or defined(x86_64)}
  640. { DS=SS=ES }
  641. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  642. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  643. exit(true);
  644. { the remaining are distinct from each other }
  645. exit(false);
  646. {$endif}
  647. end;
  648. function is_x86_string_op(op: TAsmOp): boolean;
  649. begin
  650. case op of
  651. {$ifdef x86_64}
  652. A_MOVSQ,
  653. A_CMPSQ,
  654. A_SCASQ,
  655. A_LODSQ,
  656. A_STOSQ,
  657. {$endif x86_64}
  658. A_MOVSB,A_MOVSW,A_MOVSD,
  659. A_CMPSB,A_CMPSW,A_CMPSD,
  660. A_SCASB,A_SCASW,A_SCASD,
  661. A_LODSB,A_LODSW,A_LODSD,
  662. A_STOSB,A_STOSW,A_STOSD,
  663. A_INSB, A_INSW, A_INSD,
  664. A_OUTSB,A_OUTSW,A_OUTSD,
  665. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  666. result:=true;
  667. else
  668. result:=false;
  669. end;
  670. end;
  671. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  672. begin
  673. case op of
  674. {$ifdef x86_64}
  675. A_MOVSQ,
  676. A_CMPSQ,
  677. A_SCASQ,
  678. A_LODSQ,
  679. A_STOSQ,
  680. {$endif x86_64}
  681. A_MOVSB,A_MOVSW,A_MOVSD,
  682. A_CMPSB,A_CMPSW,A_CMPSD,
  683. A_SCASB,A_SCASW,A_SCASD,
  684. A_LODSB,A_LODSW,A_LODSD,
  685. A_STOSB,A_STOSW,A_STOSD,
  686. A_INSB, A_INSW, A_INSD,
  687. A_OUTSB,A_OUTSW,A_OUTSD:
  688. result:=true;
  689. else
  690. result:=false;
  691. end;
  692. end;
  693. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  694. begin
  695. case op of
  696. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  697. result:=true;
  698. else
  699. result:=false;
  700. end;
  701. end;
  702. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  703. begin
  704. case op of
  705. A_MOVS,A_CMPS,A_INS,A_OUTS:
  706. result:=2;
  707. A_SCAS,A_LODS,A_STOS:
  708. result:=1;
  709. else
  710. internalerror(2017101203);
  711. end;
  712. end;
  713. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  714. begin
  715. case op of
  716. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  717. result:=A_MOVS;
  718. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  719. result:=A_CMPS;
  720. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  721. result:=A_SCAS;
  722. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  723. result:=A_LODS;
  724. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  725. result:=A_STOS;
  726. A_INSB, A_INSW, A_INSD:
  727. result:=A_INS;
  728. A_OUTSB,A_OUTSW,A_OUTSD:
  729. result:=A_OUTS;
  730. else
  731. internalerror(2017101201);
  732. end;
  733. end;
  734. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  735. begin
  736. case op of
  737. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  738. result:=S_B;
  739. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  740. result:=S_W;
  741. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  742. result:=S_L;
  743. {$ifdef x86_64}
  744. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  745. result:=S_Q;
  746. {$endif x86_64}
  747. else
  748. internalerror(2017101202);
  749. end;
  750. end;
  751. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  752. begin
  753. case op of
  754. A_MOVS,A_OUTS:
  755. result:=1;
  756. A_CMPS,A_LODS:
  757. result:=0;
  758. A_SCAS,A_STOS,A_INS:
  759. result:=-1;
  760. else
  761. internalerror(2017101102);
  762. end;
  763. end;
  764. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  765. begin
  766. case op of
  767. A_MOVS,A_SCAS,A_STOS,A_INS:
  768. result:=0;
  769. A_CMPS:
  770. result:=1;
  771. A_LODS,A_OUTS:
  772. result:=-1;
  773. else
  774. internalerror(2017101204);
  775. end;
  776. end;
  777. {$ifdef i8086}
  778. function requires_fwait_on_8087(op: TAsmOp): boolean;
  779. begin
  780. case op of
  781. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  782. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  783. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  784. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  785. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  786. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  787. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  788. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  789. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  790. result:=true;
  791. else
  792. result:=false;
  793. end;
  794. end;
  795. {$endif i8086}
  796. end.