aasmcpu.pas 137 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. {$ifdef i8086}
  298. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  299. {$endif i8086}
  300. private
  301. { next fields are filled in pass1, so pass2 is faster }
  302. insentry : PInsEntry;
  303. insoffset : longint;
  304. LastInsOffset : longint; { need to be public to be reset }
  305. inssize : shortint;
  306. {$ifdef x86_64}
  307. rex : byte;
  308. {$endif x86_64}
  309. function InsEnd:longint;
  310. procedure create_ot(objdata:TObjData);
  311. function Matches(p:PInsEntry):boolean;
  312. function calcsize(p:PInsEntry):shortint;
  313. procedure gencode(objdata:TObjData);
  314. function NeedAddrPrefix(opidx:byte):boolean;
  315. procedure Swapoperands;
  316. function FindInsentry(objdata:TObjData):boolean;
  317. end;
  318. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  319. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  320. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  321. procedure InitAsm;
  322. procedure DoneAsm;
  323. implementation
  324. uses
  325. cutils,
  326. globals,
  327. systems,
  328. procinfo,
  329. itcpugas,
  330. symsym,
  331. cpuinfo;
  332. {*****************************************************************************
  333. Instruction table
  334. *****************************************************************************}
  335. const
  336. {Instruction flags }
  337. IF_NONE = $00000000;
  338. IF_SM = $00000001; { size match first two operands }
  339. IF_SM2 = $00000002;
  340. IF_SB = $00000004; { unsized operands can't be non-byte }
  341. IF_SW = $00000008; { unsized operands can't be non-word }
  342. IF_SD = $00000010; { unsized operands can't be nondword }
  343. IF_SMASK = $0000001f;
  344. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  345. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  346. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  347. IF_ARMASK = $00000060; { mask for unsized argument spec }
  348. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  349. IF_PRIV = $00000100; { it's a privileged instruction }
  350. IF_SMM = $00000200; { it's only valid in SMM }
  351. IF_PROT = $00000400; { it's protected mode only }
  352. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  353. IF_UNDOC = $00001000; { it's an undocumented instruction }
  354. IF_FPU = $00002000; { it's an FPU instruction }
  355. IF_MMX = $00004000; { it's an MMX instruction }
  356. { it's a 3DNow! instruction }
  357. IF_3DNOW = $00008000;
  358. { it's a SSE (KNI, MMX2) instruction }
  359. IF_SSE = $00010000;
  360. { SSE2 instructions }
  361. IF_SSE2 = $00020000;
  362. { SSE3 instructions }
  363. IF_SSE3 = $00040000;
  364. { SSE64 instructions }
  365. IF_SSE64 = $00080000;
  366. { the mask for processor types }
  367. {IF_PMASK = longint($FF000000);}
  368. { the mask for disassembly "prefer" }
  369. {IF_PFMASK = longint($F001FF00);}
  370. { SVM instructions }
  371. IF_SVM = $00100000;
  372. { SSE4 instructions }
  373. IF_SSE4 = $00200000;
  374. { TODO: These flags were added to make x86ins.dat more readable.
  375. Values must be reassigned to make any other use of them. }
  376. IF_SSSE3 = $00200000;
  377. IF_SSE41 = $00200000;
  378. IF_SSE42 = $00200000;
  379. IF_AVX = $00200000;
  380. IF_AVX2 = $00200000;
  381. IF_BMI1 = $00200000;
  382. IF_BMI2 = $00200000;
  383. IF_16BITONLY = $00200000;
  384. IF_FMA = $00200000;
  385. IF_FMA4 = $00200000;
  386. IF_PLEVEL = $0F000000; { mask for processor level }
  387. IF_8086 = $00000000; { 8086 instruction }
  388. IF_186 = $01000000; { 186+ instruction }
  389. IF_286 = $02000000; { 286+ instruction }
  390. IF_386 = $03000000; { 386+ instruction }
  391. IF_486 = $04000000; { 486+ instruction }
  392. IF_PENT = $05000000; { Pentium instruction }
  393. IF_P6 = $06000000; { P6 instruction }
  394. IF_KATMAI = $07000000; { Katmai instructions }
  395. IF_WILLAMETTE = $08000000; { Willamette instructions }
  396. IF_PRESCOTT = $09000000; { Prescott instructions }
  397. IF_X86_64 = $0a000000;
  398. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  399. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  400. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  401. { the following are not strictly part of the processor level, because
  402. they are never used standalone, but always in combination with a
  403. separate processor level flag. Therefore, they use bits outside of
  404. IF_PLEVEL, otherwise they would mess up the processor level they're
  405. used in combination with.
  406. The following combinations are currently used:
  407. IF_AMD or IF_P6,
  408. IF_CYRIX or IF_486,
  409. IF_CYRIX or IF_PENT,
  410. IF_CYRIX or IF_P6 }
  411. IF_CYRIX = $10000000; { Cyrix-specific instruction }
  412. IF_AMD = $20000000; { AMD-specific instruction }
  413. { added flags }
  414. IF_PRE = $40000000; { it's a prefix instruction }
  415. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  416. type
  417. TInsTabCache=array[TasmOp] of longint;
  418. PInsTabCache=^TInsTabCache;
  419. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  420. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  421. const
  422. {$if defined(x86_64)}
  423. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  424. {$elseif defined(i386)}
  425. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  426. {$elseif defined(i8086)}
  427. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  428. {$endif}
  429. var
  430. InsTabCache : PInsTabCache;
  431. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  432. const
  433. {$if defined(x86_64)}
  434. { Intel style operands ! }
  435. opsize_2_type:array[0..2,topsize] of longint=(
  436. (OT_NONE,
  437. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  438. OT_BITS16,OT_BITS32,OT_BITS64,
  439. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  440. OT_BITS64,
  441. OT_NEAR,OT_FAR,OT_SHORT,
  442. OT_NONE,
  443. OT_BITS128,
  444. OT_BITS256
  445. ),
  446. (OT_NONE,
  447. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  448. OT_BITS16,OT_BITS32,OT_BITS64,
  449. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  450. OT_BITS64,
  451. OT_NEAR,OT_FAR,OT_SHORT,
  452. OT_NONE,
  453. OT_BITS128,
  454. OT_BITS256
  455. ),
  456. (OT_NONE,
  457. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  458. OT_BITS16,OT_BITS32,OT_BITS64,
  459. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  460. OT_BITS64,
  461. OT_NEAR,OT_FAR,OT_SHORT,
  462. OT_NONE,
  463. OT_BITS128,
  464. OT_BITS256
  465. )
  466. );
  467. reg_ot_table : array[tregisterindex] of longint = (
  468. {$i r8664ot.inc}
  469. );
  470. {$elseif defined(i386)}
  471. { Intel style operands ! }
  472. opsize_2_type:array[0..2,topsize] of longint=(
  473. (OT_NONE,
  474. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  475. OT_BITS16,OT_BITS32,OT_BITS64,
  476. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  477. OT_BITS64,
  478. OT_NEAR,OT_FAR,OT_SHORT,
  479. OT_NONE,
  480. OT_BITS128,
  481. OT_BITS256
  482. ),
  483. (OT_NONE,
  484. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  485. OT_BITS16,OT_BITS32,OT_BITS64,
  486. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  487. OT_BITS64,
  488. OT_NEAR,OT_FAR,OT_SHORT,
  489. OT_NONE,
  490. OT_BITS128,
  491. OT_BITS256
  492. ),
  493. (OT_NONE,
  494. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  495. OT_BITS16,OT_BITS32,OT_BITS64,
  496. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  497. OT_BITS64,
  498. OT_NEAR,OT_FAR,OT_SHORT,
  499. OT_NONE,
  500. OT_BITS128,
  501. OT_BITS256
  502. )
  503. );
  504. reg_ot_table : array[tregisterindex] of longint = (
  505. {$i r386ot.inc}
  506. );
  507. {$elseif defined(i8086)}
  508. { Intel style operands ! }
  509. opsize_2_type:array[0..2,topsize] of longint=(
  510. (OT_NONE,
  511. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  512. OT_BITS16,OT_BITS32,OT_BITS64,
  513. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  514. OT_BITS64,
  515. OT_NEAR,OT_FAR,OT_SHORT,
  516. OT_NONE,
  517. OT_BITS128,
  518. OT_BITS256
  519. ),
  520. (OT_NONE,
  521. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  522. OT_BITS16,OT_BITS32,OT_BITS64,
  523. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  524. OT_BITS64,
  525. OT_NEAR,OT_FAR,OT_SHORT,
  526. OT_NONE,
  527. OT_BITS128,
  528. OT_BITS256
  529. ),
  530. (OT_NONE,
  531. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  532. OT_BITS16,OT_BITS32,OT_BITS64,
  533. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  534. OT_BITS64,
  535. OT_NEAR,OT_FAR,OT_SHORT,
  536. OT_NONE,
  537. OT_BITS128,
  538. OT_BITS256
  539. )
  540. );
  541. reg_ot_table : array[tregisterindex] of longint = (
  542. {$i r8086ot.inc}
  543. );
  544. {$endif}
  545. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  546. begin
  547. result := InsTabMemRefSizeInfoCache^[aAsmop];
  548. end;
  549. { Operation type for spilling code }
  550. type
  551. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  552. var
  553. operation_type_table : ^toperation_type_table;
  554. {****************************************************************************
  555. TAI_ALIGN
  556. ****************************************************************************}
  557. constructor tai_align.create(b: byte);
  558. begin
  559. inherited create(b);
  560. reg:=NR_ECX;
  561. end;
  562. constructor tai_align.create_op(b: byte; _op: byte);
  563. begin
  564. inherited create_op(b,_op);
  565. reg:=NR_NO;
  566. end;
  567. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  568. const
  569. { Updated according to
  570. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  571. and
  572. Intel 64 and IA-32 Architectures Software Developer’s Manual
  573. Volume 2B: Instruction Set Reference, N-Z, January 2015
  574. }
  575. alignarray_cmovcpus:array[0..10] of string[11]=(
  576. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  577. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  578. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  579. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  580. #$0F#$1F#$80#$00#$00#$00#$00,
  581. #$66#$0F#$1F#$44#$00#$00,
  582. #$0F#$1F#$44#$00#$00,
  583. #$0F#$1F#$40#$00,
  584. #$0F#$1F#$00,
  585. #$66#$90,
  586. #$90);
  587. alignarray:array[0..5] of string[8]=(
  588. #$8D#$B4#$26#$00#$00#$00#$00,
  589. #$8D#$B6#$00#$00#$00#$00,
  590. #$8D#$74#$26#$00,
  591. #$8D#$76#$00,
  592. #$89#$F6,
  593. #$90);
  594. var
  595. bufptr : pchar;
  596. j : longint;
  597. localsize: byte;
  598. begin
  599. inherited calculatefillbuf(buf,executable);
  600. if not(use_op) and executable then
  601. begin
  602. bufptr:=pchar(@buf);
  603. { fillsize may still be used afterwards, so don't modify }
  604. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  605. localsize:=fillsize;
  606. while (localsize>0) do
  607. begin
  608. {$ifndef i8086}
  609. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  610. begin
  611. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  612. if (localsize>=length(alignarray_cmovcpus[j])) then
  613. break;
  614. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  615. inc(bufptr,length(alignarray_cmovcpus[j]));
  616. dec(localsize,length(alignarray_cmovcpus[j]));
  617. end
  618. else
  619. {$endif not i8086}
  620. begin
  621. for j:=low(alignarray) to high(alignarray) do
  622. if (localsize>=length(alignarray[j])) then
  623. break;
  624. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  625. inc(bufptr,length(alignarray[j]));
  626. dec(localsize,length(alignarray[j]));
  627. end
  628. end;
  629. end;
  630. calculatefillbuf:=pchar(@buf);
  631. end;
  632. {*****************************************************************************
  633. Taicpu Constructors
  634. *****************************************************************************}
  635. procedure taicpu.changeopsize(siz:topsize);
  636. begin
  637. opsize:=siz;
  638. end;
  639. procedure taicpu.init(_size : topsize);
  640. begin
  641. { default order is att }
  642. FOperandOrder:=op_att;
  643. segprefix:=NR_NO;
  644. opsize:=_size;
  645. insentry:=nil;
  646. LastInsOffset:=-1;
  647. InsOffset:=0;
  648. InsSize:=0;
  649. end;
  650. constructor taicpu.op_none(op : tasmop);
  651. begin
  652. inherited create(op);
  653. init(S_NO);
  654. end;
  655. constructor taicpu.op_none(op : tasmop;_size : topsize);
  656. begin
  657. inherited create(op);
  658. init(_size);
  659. end;
  660. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  661. begin
  662. inherited create(op);
  663. init(_size);
  664. ops:=1;
  665. loadreg(0,_op1);
  666. end;
  667. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  668. begin
  669. inherited create(op);
  670. init(_size);
  671. ops:=1;
  672. loadconst(0,_op1);
  673. end;
  674. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  675. begin
  676. inherited create(op);
  677. init(_size);
  678. ops:=1;
  679. loadref(0,_op1);
  680. end;
  681. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  682. begin
  683. inherited create(op);
  684. init(_size);
  685. ops:=2;
  686. loadreg(0,_op1);
  687. loadreg(1,_op2);
  688. end;
  689. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  690. begin
  691. inherited create(op);
  692. init(_size);
  693. ops:=2;
  694. loadreg(0,_op1);
  695. loadconst(1,_op2);
  696. end;
  697. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  698. begin
  699. inherited create(op);
  700. init(_size);
  701. ops:=2;
  702. loadreg(0,_op1);
  703. loadref(1,_op2);
  704. end;
  705. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  706. begin
  707. inherited create(op);
  708. init(_size);
  709. ops:=2;
  710. loadconst(0,_op1);
  711. loadreg(1,_op2);
  712. end;
  713. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  714. begin
  715. inherited create(op);
  716. init(_size);
  717. ops:=2;
  718. loadconst(0,_op1);
  719. loadconst(1,_op2);
  720. end;
  721. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  722. begin
  723. inherited create(op);
  724. init(_size);
  725. ops:=2;
  726. loadconst(0,_op1);
  727. loadref(1,_op2);
  728. end;
  729. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  730. begin
  731. inherited create(op);
  732. init(_size);
  733. ops:=2;
  734. loadref(0,_op1);
  735. loadreg(1,_op2);
  736. end;
  737. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  738. begin
  739. inherited create(op);
  740. init(_size);
  741. ops:=3;
  742. loadreg(0,_op1);
  743. loadreg(1,_op2);
  744. loadreg(2,_op3);
  745. end;
  746. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  747. begin
  748. inherited create(op);
  749. init(_size);
  750. ops:=3;
  751. loadconst(0,_op1);
  752. loadreg(1,_op2);
  753. loadreg(2,_op3);
  754. end;
  755. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  756. begin
  757. inherited create(op);
  758. init(_size);
  759. ops:=3;
  760. loadref(0,_op1);
  761. loadreg(1,_op2);
  762. loadreg(2,_op3);
  763. end;
  764. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  765. begin
  766. inherited create(op);
  767. init(_size);
  768. ops:=3;
  769. loadconst(0,_op1);
  770. loadref(1,_op2);
  771. loadreg(2,_op3);
  772. end;
  773. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  774. begin
  775. inherited create(op);
  776. init(_size);
  777. ops:=3;
  778. loadconst(0,_op1);
  779. loadreg(1,_op2);
  780. loadref(2,_op3);
  781. end;
  782. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  783. begin
  784. inherited create(op);
  785. init(_size);
  786. condition:=cond;
  787. ops:=1;
  788. loadsymbol(0,_op1,0);
  789. end;
  790. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  791. begin
  792. inherited create(op);
  793. init(_size);
  794. ops:=1;
  795. loadsymbol(0,_op1,0);
  796. end;
  797. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  798. begin
  799. inherited create(op);
  800. init(_size);
  801. ops:=1;
  802. loadsymbol(0,_op1,_op1ofs);
  803. end;
  804. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  805. begin
  806. inherited create(op);
  807. init(_size);
  808. ops:=2;
  809. loadsymbol(0,_op1,_op1ofs);
  810. loadreg(1,_op2);
  811. end;
  812. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  813. begin
  814. inherited create(op);
  815. init(_size);
  816. ops:=2;
  817. loadsymbol(0,_op1,_op1ofs);
  818. loadref(1,_op2);
  819. end;
  820. function taicpu.GetString:string;
  821. var
  822. i : longint;
  823. s : string;
  824. addsize : boolean;
  825. begin
  826. s:='['+std_op2str[opcode];
  827. for i:=0 to ops-1 do
  828. begin
  829. with oper[i]^ do
  830. begin
  831. if i=0 then
  832. s:=s+' '
  833. else
  834. s:=s+',';
  835. { type }
  836. addsize:=false;
  837. if (ot and OT_XMMREG)=OT_XMMREG then
  838. s:=s+'xmmreg'
  839. else
  840. if (ot and OT_YMMREG)=OT_YMMREG then
  841. s:=s+'ymmreg'
  842. else
  843. if (ot and OT_MMXREG)=OT_MMXREG then
  844. s:=s+'mmxreg'
  845. else
  846. if (ot and OT_FPUREG)=OT_FPUREG then
  847. s:=s+'fpureg'
  848. else
  849. if (ot and OT_REGISTER)=OT_REGISTER then
  850. begin
  851. s:=s+'reg';
  852. addsize:=true;
  853. end
  854. else
  855. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  856. begin
  857. s:=s+'imm';
  858. addsize:=true;
  859. end
  860. else
  861. if (ot and OT_MEMORY)=OT_MEMORY then
  862. begin
  863. s:=s+'mem';
  864. addsize:=true;
  865. end
  866. else
  867. s:=s+'???';
  868. { size }
  869. if addsize then
  870. begin
  871. if (ot and OT_BITS8)<>0 then
  872. s:=s+'8'
  873. else
  874. if (ot and OT_BITS16)<>0 then
  875. s:=s+'16'
  876. else
  877. if (ot and OT_BITS32)<>0 then
  878. s:=s+'32'
  879. else
  880. if (ot and OT_BITS64)<>0 then
  881. s:=s+'64'
  882. else
  883. if (ot and OT_BITS128)<>0 then
  884. s:=s+'128'
  885. else
  886. if (ot and OT_BITS256)<>0 then
  887. s:=s+'256'
  888. else
  889. s:=s+'??';
  890. { signed }
  891. if (ot and OT_SIGNED)<>0 then
  892. s:=s+'s';
  893. end;
  894. end;
  895. end;
  896. GetString:=s+']';
  897. end;
  898. procedure taicpu.Swapoperands;
  899. var
  900. p : POper;
  901. begin
  902. { Fix the operands which are in AT&T style and we need them in Intel style }
  903. case ops of
  904. 0,1:
  905. ;
  906. 2 : begin
  907. { 0,1 -> 1,0 }
  908. p:=oper[0];
  909. oper[0]:=oper[1];
  910. oper[1]:=p;
  911. end;
  912. 3 : begin
  913. { 0,1,2 -> 2,1,0 }
  914. p:=oper[0];
  915. oper[0]:=oper[2];
  916. oper[2]:=p;
  917. end;
  918. 4 : begin
  919. { 0,1,2,3 -> 3,2,1,0 }
  920. p:=oper[0];
  921. oper[0]:=oper[3];
  922. oper[3]:=p;
  923. p:=oper[1];
  924. oper[1]:=oper[2];
  925. oper[2]:=p;
  926. end;
  927. else
  928. internalerror(201108141);
  929. end;
  930. end;
  931. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  932. begin
  933. if FOperandOrder<>order then
  934. begin
  935. Swapoperands;
  936. FOperandOrder:=order;
  937. end;
  938. end;
  939. function taicpu.FixNonCommutativeOpcodes: tasmop;
  940. begin
  941. result:=opcode;
  942. { we need ATT order }
  943. SetOperandOrder(op_att);
  944. if (
  945. (ops=2) and
  946. (oper[0]^.typ=top_reg) and
  947. (oper[1]^.typ=top_reg) and
  948. { if the first is ST and the second is also a register
  949. it is necessarily ST1 .. ST7 }
  950. ((oper[0]^.reg=NR_ST) or
  951. (oper[0]^.reg=NR_ST0))
  952. ) or
  953. { ((ops=1) and
  954. (oper[0]^.typ=top_reg) and
  955. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  956. (ops=0) then
  957. begin
  958. if opcode=A_FSUBR then
  959. result:=A_FSUB
  960. else if opcode=A_FSUB then
  961. result:=A_FSUBR
  962. else if opcode=A_FDIVR then
  963. result:=A_FDIV
  964. else if opcode=A_FDIV then
  965. result:=A_FDIVR
  966. else if opcode=A_FSUBRP then
  967. result:=A_FSUBP
  968. else if opcode=A_FSUBP then
  969. result:=A_FSUBRP
  970. else if opcode=A_FDIVRP then
  971. result:=A_FDIVP
  972. else if opcode=A_FDIVP then
  973. result:=A_FDIVRP;
  974. end;
  975. if (
  976. (ops=1) and
  977. (oper[0]^.typ=top_reg) and
  978. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  979. (oper[0]^.reg<>NR_ST)
  980. ) then
  981. begin
  982. if opcode=A_FSUBRP then
  983. result:=A_FSUBP
  984. else if opcode=A_FSUBP then
  985. result:=A_FSUBRP
  986. else if opcode=A_FDIVRP then
  987. result:=A_FDIVP
  988. else if opcode=A_FDIVP then
  989. result:=A_FDIVRP;
  990. end;
  991. end;
  992. {*****************************************************************************
  993. Assembler
  994. *****************************************************************************}
  995. type
  996. ea = packed record
  997. sib_present : boolean;
  998. bytes : byte;
  999. size : byte;
  1000. modrm : byte;
  1001. sib : byte;
  1002. {$ifdef x86_64}
  1003. rex : byte;
  1004. {$endif x86_64}
  1005. end;
  1006. procedure taicpu.create_ot(objdata:TObjData);
  1007. {
  1008. this function will also fix some other fields which only needs to be once
  1009. }
  1010. var
  1011. i,l,relsize : longint;
  1012. currsym : TObjSymbol;
  1013. begin
  1014. if ops=0 then
  1015. exit;
  1016. { update oper[].ot field }
  1017. for i:=0 to ops-1 do
  1018. with oper[i]^ do
  1019. begin
  1020. case typ of
  1021. top_reg :
  1022. begin
  1023. ot:=reg_ot_table[findreg_by_number(reg)];
  1024. end;
  1025. top_ref :
  1026. begin
  1027. if (ref^.refaddr=addr_no)
  1028. {$ifdef i386}
  1029. or (
  1030. (ref^.refaddr in [addr_pic]) and
  1031. (ref^.base<>NR_NO)
  1032. )
  1033. {$endif i386}
  1034. {$ifdef x86_64}
  1035. or (
  1036. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1037. (ref^.base<>NR_NO)
  1038. )
  1039. {$endif x86_64}
  1040. then
  1041. begin
  1042. { create ot field }
  1043. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1044. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1045. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1046. ) then
  1047. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1048. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1049. (reg_ot_table[findreg_by_number(ref^.index)])
  1050. else if (ref^.base = NR_NO) and
  1051. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1052. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1053. ) then
  1054. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1055. ot := (OT_REG_GPR) or
  1056. (reg_ot_table[findreg_by_number(ref^.index)])
  1057. else if (ot and OT_SIZE_MASK)=0 then
  1058. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1059. else
  1060. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1061. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1062. ot:=ot or OT_MEM_OFFS;
  1063. { fix scalefactor }
  1064. if (ref^.index=NR_NO) then
  1065. ref^.scalefactor:=0
  1066. else
  1067. if (ref^.scalefactor=0) then
  1068. ref^.scalefactor:=1;
  1069. end
  1070. else
  1071. begin
  1072. { Jumps use a relative offset which can be 8bit,
  1073. for other opcodes we always need to generate the full
  1074. 32bit address }
  1075. if assigned(objdata) and
  1076. is_jmp then
  1077. begin
  1078. currsym:=objdata.symbolref(ref^.symbol);
  1079. l:=ref^.offset;
  1080. {$push}
  1081. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1082. if assigned(currsym) then
  1083. inc(l,currsym.address);
  1084. {$pop}
  1085. { when it is a forward jump we need to compensate the
  1086. offset of the instruction since the previous time,
  1087. because the symbol address is then still using the
  1088. 'old-style' addressing.
  1089. For backwards jumps this is not required because the
  1090. address of the symbol is already adjusted to the
  1091. new offset }
  1092. if (l>InsOffset) and (LastInsOffset<>-1) then
  1093. inc(l,InsOffset-LastInsOffset);
  1094. { instruction size will then always become 2 (PFV) }
  1095. relsize:=(InsOffset+2)-l;
  1096. if (relsize>=-128) and (relsize<=127) and
  1097. (
  1098. not assigned(currsym) or
  1099. (currsym.objsection=objdata.currobjsec)
  1100. ) then
  1101. ot:=OT_IMM8 or OT_SHORT
  1102. else
  1103. {$ifdef i8086}
  1104. ot:=OT_IMM16 or OT_NEAR;
  1105. {$else i8086}
  1106. ot:=OT_IMM32 or OT_NEAR;
  1107. {$endif i8086}
  1108. end
  1109. else
  1110. {$ifdef i8086}
  1111. if opsize=S_FAR then
  1112. ot:=OT_IMM16 or OT_FAR
  1113. else
  1114. ot:=OT_IMM16 or OT_NEAR;
  1115. {$else i8086}
  1116. ot:=OT_IMM32 or OT_NEAR;
  1117. {$endif i8086}
  1118. end;
  1119. end;
  1120. top_local :
  1121. begin
  1122. if (ot and OT_SIZE_MASK)=0 then
  1123. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1124. else
  1125. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1126. end;
  1127. top_const :
  1128. begin
  1129. // if opcode is a SSE or AVX-instruction then we need a
  1130. // special handling (opsize can different from const-size)
  1131. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1132. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1133. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1134. begin
  1135. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1136. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1137. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1138. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1139. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1140. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1141. end;
  1142. end
  1143. else
  1144. begin
  1145. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1146. { further, allow AAD and AAM with imm. operand }
  1147. if (opsize=S_NO) and not((i in [1,2,3])
  1148. {$ifndef x86_64}
  1149. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1150. {$endif x86_64}
  1151. ) then
  1152. message(asmr_e_invalid_opcode_and_operand);
  1153. if
  1154. {$ifndef i8086}
  1155. (opsize<>S_W) and
  1156. {$endif not i8086}
  1157. (aint(val)>=-128) and (val<=127) then
  1158. ot:=OT_IMM8 or OT_SIGNED
  1159. else
  1160. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1161. if (val=1) and (i=1) then
  1162. ot := ot or OT_ONENESS;
  1163. end;
  1164. end;
  1165. top_none :
  1166. begin
  1167. { generated when there was an error in the
  1168. assembler reader. It never happends when generating
  1169. assembler }
  1170. end;
  1171. else
  1172. internalerror(200402266);
  1173. end;
  1174. end;
  1175. end;
  1176. function taicpu.InsEnd:longint;
  1177. begin
  1178. InsEnd:=InsOffset+InsSize;
  1179. end;
  1180. function taicpu.Matches(p:PInsEntry):boolean;
  1181. { * IF_SM stands for Size Match: any operand whose size is not
  1182. * explicitly specified by the template is `really' intended to be
  1183. * the same size as the first size-specified operand.
  1184. * Non-specification is tolerated in the input instruction, but
  1185. * _wrong_ specification is not.
  1186. *
  1187. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1188. * three-operand instructions such as SHLD: it implies that the
  1189. * first two operands must match in size, but that the third is
  1190. * required to be _unspecified_.
  1191. *
  1192. * IF_SB invokes Size Byte: operands with unspecified size in the
  1193. * template are really bytes, and so no non-byte specification in
  1194. * the input instruction will be tolerated. IF_SW similarly invokes
  1195. * Size Word, and IF_SD invokes Size Doubleword.
  1196. *
  1197. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1198. * that any operand with unspecified size in the template is
  1199. * required to have unspecified size in the instruction too...)
  1200. }
  1201. var
  1202. insot,
  1203. currot,
  1204. i,j,asize,oprs : longint;
  1205. insflags:cardinal;
  1206. siz : array[0..max_operands-1] of longint;
  1207. begin
  1208. result:=false;
  1209. { Check the opcode and operands }
  1210. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1211. exit;
  1212. {$ifdef i8086}
  1213. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1214. cpu is earlier than 386. There's another entry, later in the table for
  1215. i8086, which simulates it with i8086 instructions:
  1216. JNcc short +3
  1217. JMP near target }
  1218. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1219. ((p^.flags and IF_386)<>0) then
  1220. exit;
  1221. {$endif i8086}
  1222. for i:=0 to p^.ops-1 do
  1223. begin
  1224. insot:=p^.optypes[i];
  1225. currot:=oper[i]^.ot;
  1226. { Check the operand flags }
  1227. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1228. exit;
  1229. { Check if the passed operand size matches with one of
  1230. the supported operand sizes }
  1231. if ((insot and OT_SIZE_MASK)<>0) and
  1232. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1233. exit;
  1234. { "far" matches only with "far" }
  1235. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1236. exit;
  1237. end;
  1238. { Check operand sizes }
  1239. insflags:=p^.flags;
  1240. if insflags and IF_SMASK<>0 then
  1241. begin
  1242. { as default an untyped size can get all the sizes, this is different
  1243. from nasm, but else we need to do a lot checking which opcodes want
  1244. size or not with the automatic size generation }
  1245. asize:=-1;
  1246. if (insflags and IF_SB)<>0 then
  1247. asize:=OT_BITS8
  1248. else if (insflags and IF_SW)<>0 then
  1249. asize:=OT_BITS16
  1250. else if (insflags and IF_SD)<>0 then
  1251. asize:=OT_BITS32;
  1252. if (insflags and IF_ARMASK)<>0 then
  1253. begin
  1254. siz[0]:=-1;
  1255. siz[1]:=-1;
  1256. siz[2]:=-1;
  1257. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1258. end
  1259. else
  1260. begin
  1261. siz[0]:=asize;
  1262. siz[1]:=asize;
  1263. siz[2]:=asize;
  1264. end;
  1265. if (insflags and (IF_SM or IF_SM2))<>0 then
  1266. begin
  1267. if (insflags and IF_SM2)<>0 then
  1268. oprs:=2
  1269. else
  1270. oprs:=p^.ops;
  1271. for i:=0 to oprs-1 do
  1272. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1273. begin
  1274. for j:=0 to oprs-1 do
  1275. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1276. break;
  1277. end;
  1278. end
  1279. else
  1280. oprs:=2;
  1281. { Check operand sizes }
  1282. for i:=0 to p^.ops-1 do
  1283. begin
  1284. insot:=p^.optypes[i];
  1285. currot:=oper[i]^.ot;
  1286. if ((insot and OT_SIZE_MASK)=0) and
  1287. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1288. { Immediates can always include smaller size }
  1289. ((currot and OT_IMMEDIATE)=0) and
  1290. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1291. exit;
  1292. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1293. exit;
  1294. end;
  1295. end;
  1296. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1297. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1298. begin
  1299. for i:=0 to p^.ops-1 do
  1300. begin
  1301. insot:=p^.optypes[i];
  1302. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1303. ((insot and OT_YMMRM) = OT_YMMRM) then
  1304. begin
  1305. if (insot and OT_SIZE_MASK) = 0 then
  1306. begin
  1307. case insot and (OT_XMMRM or OT_YMMRM) of
  1308. OT_XMMRM: insot := insot or OT_BITS128;
  1309. OT_YMMRM: insot := insot or OT_BITS256;
  1310. end;
  1311. end;
  1312. end;
  1313. currot:=oper[i]^.ot;
  1314. { Check the operand flags }
  1315. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1316. exit;
  1317. { Check if the passed operand size matches with one of
  1318. the supported operand sizes }
  1319. if ((insot and OT_SIZE_MASK)<>0) and
  1320. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1321. exit;
  1322. end;
  1323. end;
  1324. result:=true;
  1325. end;
  1326. procedure taicpu.ResetPass1;
  1327. begin
  1328. { we need to reset everything here, because the choosen insentry
  1329. can be invalid for a new situation where the previously optimized
  1330. insentry is not correct }
  1331. InsEntry:=nil;
  1332. InsSize:=0;
  1333. LastInsOffset:=-1;
  1334. end;
  1335. procedure taicpu.ResetPass2;
  1336. begin
  1337. { we are here in a second pass, check if the instruction can be optimized }
  1338. if assigned(InsEntry) and
  1339. ((InsEntry^.flags and IF_PASS2)<>0) then
  1340. begin
  1341. InsEntry:=nil;
  1342. InsSize:=0;
  1343. end;
  1344. LastInsOffset:=-1;
  1345. end;
  1346. function taicpu.CheckIfValid:boolean;
  1347. begin
  1348. result:=FindInsEntry(nil);
  1349. end;
  1350. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1351. var
  1352. i : longint;
  1353. begin
  1354. result:=false;
  1355. { Things which may only be done once, not when a second pass is done to
  1356. optimize }
  1357. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1358. begin
  1359. current_filepos:=fileinfo;
  1360. { We need intel style operands }
  1361. SetOperandOrder(op_intel);
  1362. { create the .ot fields }
  1363. create_ot(objdata);
  1364. { set the file postion }
  1365. end
  1366. else
  1367. begin
  1368. { we've already an insentry so it's valid }
  1369. result:=true;
  1370. exit;
  1371. end;
  1372. { Lookup opcode in the table }
  1373. InsSize:=-1;
  1374. i:=instabcache^[opcode];
  1375. if i=-1 then
  1376. begin
  1377. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1378. exit;
  1379. end;
  1380. insentry:=@instab[i];
  1381. while (insentry^.opcode=opcode) do
  1382. begin
  1383. if matches(insentry) then
  1384. begin
  1385. result:=true;
  1386. exit;
  1387. end;
  1388. inc(insentry);
  1389. end;
  1390. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1391. { No instruction found, set insentry to nil and inssize to -1 }
  1392. insentry:=nil;
  1393. inssize:=-1;
  1394. end;
  1395. function taicpu.Pass1(objdata:TObjData):longint;
  1396. begin
  1397. Pass1:=0;
  1398. { Save the old offset and set the new offset }
  1399. InsOffset:=ObjData.CurrObjSec.Size;
  1400. { Error? }
  1401. if (Insentry=nil) and (InsSize=-1) then
  1402. exit;
  1403. { set the file postion }
  1404. current_filepos:=fileinfo;
  1405. { Get InsEntry }
  1406. if FindInsEntry(ObjData) then
  1407. begin
  1408. { Calculate instruction size }
  1409. InsSize:=calcsize(insentry);
  1410. if segprefix<>NR_NO then
  1411. inc(InsSize);
  1412. { Fix opsize if size if forced }
  1413. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1414. begin
  1415. if (insentry^.flags and IF_ARMASK)=0 then
  1416. begin
  1417. if (insentry^.flags and IF_SB)<>0 then
  1418. begin
  1419. if opsize=S_NO then
  1420. opsize:=S_B;
  1421. end
  1422. else if (insentry^.flags and IF_SW)<>0 then
  1423. begin
  1424. if opsize=S_NO then
  1425. opsize:=S_W;
  1426. end
  1427. else if (insentry^.flags and IF_SD)<>0 then
  1428. begin
  1429. if opsize=S_NO then
  1430. opsize:=S_L;
  1431. end;
  1432. end;
  1433. end;
  1434. LastInsOffset:=InsOffset;
  1435. Pass1:=InsSize;
  1436. exit;
  1437. end;
  1438. LastInsOffset:=-1;
  1439. end;
  1440. const
  1441. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1442. // es cs ss ds fs gs
  1443. $26, $2E, $36, $3E, $64, $65
  1444. );
  1445. procedure taicpu.Pass2(objdata:TObjData);
  1446. begin
  1447. { error in pass1 ? }
  1448. if insentry=nil then
  1449. exit;
  1450. current_filepos:=fileinfo;
  1451. { Segment override }
  1452. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1453. begin
  1454. {$ifdef i8086}
  1455. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  1456. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  1457. Message(asmw_e_instruction_not_supported_by_cpu);
  1458. {$endif i8086}
  1459. objdata.writebytes(segprefixes[segprefix],1);
  1460. { fix the offset for GenNode }
  1461. inc(InsOffset);
  1462. end
  1463. else if segprefix<>NR_NO then
  1464. InternalError(201001071);
  1465. { Generate the instruction }
  1466. GenCode(objdata);
  1467. end;
  1468. function taicpu.needaddrprefix(opidx:byte):boolean;
  1469. begin
  1470. result:=(oper[opidx]^.typ=top_ref) and
  1471. (oper[opidx]^.ref^.refaddr=addr_no) and
  1472. {$ifdef x86_64}
  1473. (oper[opidx]^.ref^.base<>NR_RIP) and
  1474. {$endif x86_64}
  1475. (
  1476. (
  1477. (oper[opidx]^.ref^.index<>NR_NO) and
  1478. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1479. ) or
  1480. (
  1481. (oper[opidx]^.ref^.base<>NR_NO) and
  1482. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1483. )
  1484. );
  1485. end;
  1486. procedure badreg(r:Tregister);
  1487. begin
  1488. Message1(asmw_e_invalid_register,generic_regname(r));
  1489. end;
  1490. function regval(r:Tregister):byte;
  1491. const
  1492. intsupreg2opcode: array[0..7] of byte=
  1493. // ax cx dx bx si di bp sp -- in x86reg.dat
  1494. // ax cx dx bx sp bp si di -- needed order
  1495. (0, 1, 2, 3, 6, 7, 5, 4);
  1496. maxsupreg: array[tregistertype] of tsuperregister=
  1497. {$ifdef x86_64}
  1498. (0, 16, 9, 8, 16, 32, 0, 0);
  1499. {$else x86_64}
  1500. (0, 8, 9, 8, 8, 32, 0, 0);
  1501. {$endif x86_64}
  1502. var
  1503. rs: tsuperregister;
  1504. rt: tregistertype;
  1505. begin
  1506. rs:=getsupreg(r);
  1507. rt:=getregtype(r);
  1508. if (rs>=maxsupreg[rt]) then
  1509. badreg(r);
  1510. result:=rs and 7;
  1511. if (rt=R_INTREGISTER) then
  1512. begin
  1513. if (rs<8) then
  1514. result:=intsupreg2opcode[rs];
  1515. if getsubreg(r)=R_SUBH then
  1516. inc(result,4);
  1517. end;
  1518. end;
  1519. {$if defined(x86_64)}
  1520. function rexbits(r: tregister): byte;
  1521. begin
  1522. result:=0;
  1523. case getregtype(r) of
  1524. R_INTREGISTER:
  1525. if (getsupreg(r)>=RS_R8) then
  1526. { Either B,X or R bits can be set, depending on register role in instruction.
  1527. Set all three bits here, caller will discard unnecessary ones. }
  1528. result:=result or $47
  1529. else if (getsubreg(r)=R_SUBL) and
  1530. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1531. result:=result or $40
  1532. else if (getsubreg(r)=R_SUBH) then
  1533. { Not an actual REX bit, used to detect incompatible usage of
  1534. AH/BH/CH/DH }
  1535. result:=result or $80;
  1536. R_MMREGISTER:
  1537. if getsupreg(r)>=RS_XMM8 then
  1538. result:=result or $47;
  1539. end;
  1540. end;
  1541. function process_ea_ref(const input:toper;var output:ea;rfield:longint):boolean;
  1542. var
  1543. sym : tasmsymbol;
  1544. md,s : byte;
  1545. base,index,scalefactor,
  1546. o : longint;
  1547. ir,br : Tregister;
  1548. isub,bsub : tsubregister;
  1549. begin
  1550. result:=false;
  1551. ir:=input.ref^.index;
  1552. br:=input.ref^.base;
  1553. isub:=getsubreg(ir);
  1554. bsub:=getsubreg(br);
  1555. s:=input.ref^.scalefactor;
  1556. o:=input.ref^.offset;
  1557. sym:=input.ref^.symbol;
  1558. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1559. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1560. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1561. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1562. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1563. internalerror(200301081);
  1564. { it's direct address }
  1565. if (br=NR_NO) and (ir=NR_NO) then
  1566. begin
  1567. output.sib_present:=true;
  1568. output.bytes:=4;
  1569. output.modrm:=4 or (rfield shl 3);
  1570. output.sib:=$25;
  1571. end
  1572. else if (br=NR_RIP) and (ir=NR_NO) then
  1573. begin
  1574. { rip based }
  1575. output.sib_present:=false;
  1576. output.bytes:=4;
  1577. output.modrm:=5 or (rfield shl 3);
  1578. end
  1579. else
  1580. { it's an indirection }
  1581. begin
  1582. { 16 bit? }
  1583. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1584. (br<>NR_NO) and (bsub=R_SUBADDR)
  1585. ) then
  1586. begin
  1587. // vector memory (AVX2) =>> ignore
  1588. end
  1589. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1590. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1591. begin
  1592. message(asmw_e_16bit_32bit_not_supported);
  1593. end;
  1594. { wrong, for various reasons }
  1595. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1596. exit;
  1597. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1598. result:=true;
  1599. { base }
  1600. case br of
  1601. NR_R8D,
  1602. NR_EAX,
  1603. NR_R8,
  1604. NR_RAX : base:=0;
  1605. NR_R9D,
  1606. NR_ECX,
  1607. NR_R9,
  1608. NR_RCX : base:=1;
  1609. NR_R10D,
  1610. NR_EDX,
  1611. NR_R10,
  1612. NR_RDX : base:=2;
  1613. NR_R11D,
  1614. NR_EBX,
  1615. NR_R11,
  1616. NR_RBX : base:=3;
  1617. NR_R12D,
  1618. NR_ESP,
  1619. NR_R12,
  1620. NR_RSP : base:=4;
  1621. NR_R13D,
  1622. NR_EBP,
  1623. NR_R13,
  1624. NR_NO,
  1625. NR_RBP : base:=5;
  1626. NR_R14D,
  1627. NR_ESI,
  1628. NR_R14,
  1629. NR_RSI : base:=6;
  1630. NR_R15D,
  1631. NR_EDI,
  1632. NR_R15,
  1633. NR_RDI : base:=7;
  1634. else
  1635. exit;
  1636. end;
  1637. { index }
  1638. case ir of
  1639. NR_R8D,
  1640. NR_EAX,
  1641. NR_R8,
  1642. NR_RAX,
  1643. NR_XMM0,
  1644. NR_XMM8,
  1645. NR_YMM0,
  1646. NR_YMM8 : index:=0;
  1647. NR_R9D,
  1648. NR_ECX,
  1649. NR_R9,
  1650. NR_RCX,
  1651. NR_XMM1,
  1652. NR_XMM9,
  1653. NR_YMM1,
  1654. NR_YMM9 : index:=1;
  1655. NR_R10D,
  1656. NR_EDX,
  1657. NR_R10,
  1658. NR_RDX,
  1659. NR_XMM2,
  1660. NR_XMM10,
  1661. NR_YMM2,
  1662. NR_YMM10 : index:=2;
  1663. NR_R11D,
  1664. NR_EBX,
  1665. NR_R11,
  1666. NR_RBX,
  1667. NR_XMM3,
  1668. NR_XMM11,
  1669. NR_YMM3,
  1670. NR_YMM11 : index:=3;
  1671. NR_R12D,
  1672. NR_ESP,
  1673. NR_R12,
  1674. NR_NO,
  1675. NR_XMM4,
  1676. NR_XMM12,
  1677. NR_YMM4,
  1678. NR_YMM12 : index:=4;
  1679. NR_R13D,
  1680. NR_EBP,
  1681. NR_R13,
  1682. NR_RBP,
  1683. NR_XMM5,
  1684. NR_XMM13,
  1685. NR_YMM5,
  1686. NR_YMM13: index:=5;
  1687. NR_R14D,
  1688. NR_ESI,
  1689. NR_R14,
  1690. NR_RSI,
  1691. NR_XMM6,
  1692. NR_XMM14,
  1693. NR_YMM6,
  1694. NR_YMM14: index:=6;
  1695. NR_R15D,
  1696. NR_EDI,
  1697. NR_R15,
  1698. NR_RDI,
  1699. NR_XMM7,
  1700. NR_XMM15,
  1701. NR_YMM7,
  1702. NR_YMM15: index:=7;
  1703. else
  1704. exit;
  1705. end;
  1706. case s of
  1707. 0,
  1708. 1 : scalefactor:=0;
  1709. 2 : scalefactor:=1;
  1710. 4 : scalefactor:=2;
  1711. 8 : scalefactor:=3;
  1712. else
  1713. exit;
  1714. end;
  1715. { If rbp or r13 is used we must always include an offset }
  1716. if (br=NR_NO) or
  1717. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1718. md:=0
  1719. else
  1720. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1721. md:=1
  1722. else
  1723. md:=2;
  1724. if (br=NR_NO) or (md=2) then
  1725. output.bytes:=4
  1726. else
  1727. output.bytes:=md;
  1728. { SIB needed ? }
  1729. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1730. begin
  1731. output.sib_present:=false;
  1732. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1733. end
  1734. else
  1735. begin
  1736. output.sib_present:=true;
  1737. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1738. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1739. end;
  1740. end;
  1741. output.size:=1+ord(output.sib_present)+output.bytes;
  1742. result:=true;
  1743. end;
  1744. {$elseif defined(i386)}
  1745. function process_ea_ref(const input:toper;out output:ea;rfield:longint):boolean;
  1746. var
  1747. sym : tasmsymbol;
  1748. md,s : byte;
  1749. base,index,scalefactor,
  1750. o : longint;
  1751. ir,br : Tregister;
  1752. isub,bsub : tsubregister;
  1753. begin
  1754. result:=false;
  1755. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1756. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1757. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1758. internalerror(200301081);
  1759. ir:=input.ref^.index;
  1760. br:=input.ref^.base;
  1761. isub:=getsubreg(ir);
  1762. bsub:=getsubreg(br);
  1763. s:=input.ref^.scalefactor;
  1764. o:=input.ref^.offset;
  1765. sym:=input.ref^.symbol;
  1766. { it's direct address }
  1767. if (br=NR_NO) and (ir=NR_NO) then
  1768. begin
  1769. { it's a pure offset }
  1770. output.sib_present:=false;
  1771. output.bytes:=4;
  1772. output.modrm:=5 or (rfield shl 3);
  1773. end
  1774. else
  1775. { it's an indirection }
  1776. begin
  1777. { 16 bit address? }
  1778. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1779. (br<>NR_NO) and (bsub=R_SUBADDR)
  1780. ) then
  1781. begin
  1782. // vector memory (AVX2) =>> ignore
  1783. end
  1784. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1785. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1786. message(asmw_e_16bit_not_supported);
  1787. {$ifdef OPTEA}
  1788. { make single reg base }
  1789. if (br=NR_NO) and (s=1) then
  1790. begin
  1791. br:=ir;
  1792. ir:=NR_NO;
  1793. end;
  1794. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1795. if (br=NR_NO) and
  1796. (((s=2) and (ir<>NR_ESP)) or
  1797. (s=3) or (s=5) or (s=9)) then
  1798. begin
  1799. br:=ir;
  1800. dec(s);
  1801. end;
  1802. { swap ESP into base if scalefactor is 1 }
  1803. if (s=1) and (ir=NR_ESP) then
  1804. begin
  1805. ir:=br;
  1806. br:=NR_ESP;
  1807. end;
  1808. {$endif OPTEA}
  1809. { wrong, for various reasons }
  1810. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1811. exit;
  1812. { base }
  1813. case br of
  1814. NR_EAX : base:=0;
  1815. NR_ECX : base:=1;
  1816. NR_EDX : base:=2;
  1817. NR_EBX : base:=3;
  1818. NR_ESP : base:=4;
  1819. NR_NO,
  1820. NR_EBP : base:=5;
  1821. NR_ESI : base:=6;
  1822. NR_EDI : base:=7;
  1823. else
  1824. exit;
  1825. end;
  1826. { index }
  1827. case ir of
  1828. NR_EAX,
  1829. NR_XMM0,
  1830. NR_YMM0: index:=0;
  1831. NR_ECX,
  1832. NR_XMM1,
  1833. NR_YMM1: index:=1;
  1834. NR_EDX,
  1835. NR_XMM2,
  1836. NR_YMM2: index:=2;
  1837. NR_EBX,
  1838. NR_XMM3,
  1839. NR_YMM3: index:=3;
  1840. NR_NO,
  1841. NR_XMM4,
  1842. NR_YMM4: index:=4;
  1843. NR_EBP,
  1844. NR_XMM5,
  1845. NR_YMM5: index:=5;
  1846. NR_ESI,
  1847. NR_XMM6,
  1848. NR_YMM6: index:=6;
  1849. NR_EDI,
  1850. NR_XMM7,
  1851. NR_YMM7: index:=7;
  1852. else
  1853. exit;
  1854. end;
  1855. case s of
  1856. 0,
  1857. 1 : scalefactor:=0;
  1858. 2 : scalefactor:=1;
  1859. 4 : scalefactor:=2;
  1860. 8 : scalefactor:=3;
  1861. else
  1862. exit;
  1863. end;
  1864. if (br=NR_NO) or
  1865. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1866. md:=0
  1867. else
  1868. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1869. md:=1
  1870. else
  1871. md:=2;
  1872. if (br=NR_NO) or (md=2) then
  1873. output.bytes:=4
  1874. else
  1875. output.bytes:=md;
  1876. { SIB needed ? }
  1877. if (ir=NR_NO) and (br<>NR_ESP) then
  1878. begin
  1879. output.sib_present:=false;
  1880. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1881. end
  1882. else
  1883. begin
  1884. output.sib_present:=true;
  1885. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1886. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1887. end;
  1888. end;
  1889. if output.sib_present then
  1890. output.size:=2+output.bytes
  1891. else
  1892. output.size:=1+output.bytes;
  1893. result:=true;
  1894. end;
  1895. {$elseif defined(i8086)}
  1896. procedure maybe_swap_index_base(var br,ir:Tregister);
  1897. var
  1898. tmpreg: Tregister;
  1899. begin
  1900. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  1901. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  1902. begin
  1903. tmpreg:=br;
  1904. br:=ir;
  1905. ir:=tmpreg;
  1906. end;
  1907. end;
  1908. function process_ea_ref(const input:toper;out output:ea;rfield:longint):boolean;
  1909. var
  1910. sym : tasmsymbol;
  1911. md,s,rv : byte;
  1912. base,
  1913. o : longint;
  1914. ir,br : Tregister;
  1915. isub,bsub : tsubregister;
  1916. begin
  1917. result:=false;
  1918. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1919. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1920. internalerror(200301081);
  1921. ir:=input.ref^.index;
  1922. br:=input.ref^.base;
  1923. isub:=getsubreg(ir);
  1924. bsub:=getsubreg(br);
  1925. s:=input.ref^.scalefactor;
  1926. o:=input.ref^.offset;
  1927. sym:=input.ref^.symbol;
  1928. { it's a direct address }
  1929. if (br=NR_NO) and (ir=NR_NO) then
  1930. begin
  1931. { it's a pure offset }
  1932. output.bytes:=2;
  1933. output.modrm:=6 or (rfield shl 3);
  1934. end
  1935. else
  1936. { it's an indirection }
  1937. begin
  1938. { 32 bit address? }
  1939. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1940. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1941. message(asmw_e_32bit_not_supported);
  1942. { scalefactor can only be 1 in 16-bit addresses }
  1943. if (s<>1) and (ir<>NR_NO) then
  1944. exit;
  1945. maybe_swap_index_base(br,ir);
  1946. if (br=NR_BX) and (ir=NR_SI) then
  1947. base:=0
  1948. else if (br=NR_BX) and (ir=NR_DI) then
  1949. base:=1
  1950. else if (br=NR_BP) and (ir=NR_SI) then
  1951. base:=2
  1952. else if (br=NR_BP) and (ir=NR_DI) then
  1953. base:=3
  1954. else if (br=NR_NO) and (ir=NR_SI) then
  1955. base:=4
  1956. else if (br=NR_NO) and (ir=NR_DI) then
  1957. base:=5
  1958. else if (br=NR_BP) and (ir=NR_NO) then
  1959. base:=6
  1960. else if (br=NR_BX) and (ir=NR_NO) then
  1961. base:=7
  1962. else
  1963. exit;
  1964. if (base<>6) and (o=0) and (sym=nil) then
  1965. md:=0
  1966. else if ((o>=-128) and (o<=127) and (sym=nil)) then
  1967. md:=1
  1968. else
  1969. md:=2;
  1970. output.bytes:=md;
  1971. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1972. end;
  1973. output.size:=1+output.bytes;
  1974. output.sib_present:=false;
  1975. result:=true;
  1976. end;
  1977. {$endif}
  1978. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1979. var
  1980. rv : byte;
  1981. begin
  1982. result:=false;
  1983. fillchar(output,sizeof(output),0);
  1984. {Register ?}
  1985. if (input.typ=top_reg) then
  1986. begin
  1987. rv:=regval(input.reg);
  1988. output.modrm:=$c0 or (rfield shl 3) or rv;
  1989. output.size:=1;
  1990. {$ifdef x86_64}
  1991. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1992. {$endif x86_64}
  1993. result:=true;
  1994. exit;
  1995. end;
  1996. {No register, so memory reference.}
  1997. if input.typ<>top_ref then
  1998. internalerror(200409263);
  1999. result:=process_ea_ref(input,output,rfield);
  2000. end;
  2001. function taicpu.calcsize(p:PInsEntry):shortint;
  2002. var
  2003. codes : pchar;
  2004. c : byte;
  2005. len : shortint;
  2006. ea_data : ea;
  2007. exists_vex: boolean;
  2008. exists_vex_extension: boolean;
  2009. exists_prefix_66: boolean;
  2010. exists_prefix_F2: boolean;
  2011. exists_prefix_F3: boolean;
  2012. {$ifdef x86_64}
  2013. omit_rexw : boolean;
  2014. {$endif x86_64}
  2015. begin
  2016. len:=0;
  2017. codes:=@p^.code[0];
  2018. exists_vex := false;
  2019. exists_vex_extension := false;
  2020. exists_prefix_66 := false;
  2021. exists_prefix_F2 := false;
  2022. exists_prefix_F3 := false;
  2023. {$ifdef x86_64}
  2024. rex:=0;
  2025. omit_rexw:=false;
  2026. {$endif x86_64}
  2027. repeat
  2028. c:=ord(codes^);
  2029. inc(codes);
  2030. case c of
  2031. &0 :
  2032. break;
  2033. &1,&2,&3 :
  2034. begin
  2035. inc(codes,c);
  2036. inc(len,c);
  2037. end;
  2038. &10,&11,&12 :
  2039. begin
  2040. {$ifdef x86_64}
  2041. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2042. {$endif x86_64}
  2043. inc(codes);
  2044. inc(len);
  2045. end;
  2046. &13,&23 :
  2047. begin
  2048. inc(codes);
  2049. inc(len);
  2050. end;
  2051. &4,&5,&6,&7 :
  2052. begin
  2053. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2054. inc(len,2)
  2055. else
  2056. inc(len);
  2057. end;
  2058. &14,&15,&16,
  2059. &20,&21,&22,
  2060. &24,&25,&26,&27,
  2061. &50,&51,&52 :
  2062. inc(len);
  2063. &30,&31,&32,
  2064. &37,
  2065. &60,&61,&62 :
  2066. inc(len,2);
  2067. &34,&35,&36:
  2068. begin
  2069. {$ifdef i8086}
  2070. inc(len,2);
  2071. {$else i8086}
  2072. if opsize=S_Q then
  2073. inc(len,8)
  2074. else
  2075. inc(len,4);
  2076. {$endif i8086}
  2077. end;
  2078. &44,&45,&46:
  2079. inc(len,sizeof(pint));
  2080. &54,&55,&56:
  2081. inc(len,8);
  2082. &40,&41,&42,
  2083. &70,&71,&72,
  2084. &254,&255,&256 :
  2085. inc(len,4);
  2086. &64,&65,&66:
  2087. {$ifdef i8086}
  2088. inc(len,2);
  2089. {$else i8086}
  2090. inc(len,4);
  2091. {$endif i8086}
  2092. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2093. &320,&321,&322 :
  2094. begin
  2095. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2096. {$if defined(i386) or defined(x86_64)}
  2097. OT_BITS16 :
  2098. {$elseif defined(i8086)}
  2099. OT_BITS32 :
  2100. {$endif}
  2101. inc(len);
  2102. {$ifdef x86_64}
  2103. OT_BITS64:
  2104. begin
  2105. rex:=rex or $48;
  2106. end;
  2107. {$endif x86_64}
  2108. end;
  2109. end;
  2110. &310 :
  2111. {$if defined(x86_64)}
  2112. { every insentry with code 0310 must be marked with NOX86_64 }
  2113. InternalError(2011051301);
  2114. {$elseif defined(i386)}
  2115. inc(len);
  2116. {$elseif defined(i8086)}
  2117. {nothing};
  2118. {$endif}
  2119. &311 :
  2120. {$if defined(x86_64) or defined(i8086)}
  2121. inc(len)
  2122. {$endif x86_64 or i8086}
  2123. ;
  2124. &324 :
  2125. {$ifndef i8086}
  2126. inc(len)
  2127. {$endif not i8086}
  2128. ;
  2129. &326 :
  2130. begin
  2131. {$ifdef x86_64}
  2132. rex:=rex or $48;
  2133. {$endif x86_64}
  2134. end;
  2135. &312,
  2136. &323,
  2137. &327,
  2138. &331,&332: ;
  2139. &325:
  2140. {$ifdef i8086}
  2141. inc(len)
  2142. {$endif i8086}
  2143. ;
  2144. &333:
  2145. begin
  2146. inc(len);
  2147. exists_prefix_F2 := true;
  2148. end;
  2149. &334:
  2150. begin
  2151. inc(len);
  2152. exists_prefix_F3 := true;
  2153. end;
  2154. &361:
  2155. begin
  2156. {$ifndef i8086}
  2157. inc(len);
  2158. exists_prefix_66 := true;
  2159. {$endif not i8086}
  2160. end;
  2161. &335:
  2162. {$ifdef x86_64}
  2163. omit_rexw:=true
  2164. {$endif x86_64}
  2165. ;
  2166. &100..&227 :
  2167. begin
  2168. {$ifdef x86_64}
  2169. if (c<&177) then
  2170. begin
  2171. if (oper[c and 7]^.typ=top_reg) then
  2172. begin
  2173. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2174. end;
  2175. end;
  2176. {$endif x86_64}
  2177. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2178. Message(asmw_e_invalid_effective_address)
  2179. else
  2180. inc(len,ea_data.size);
  2181. {$ifdef x86_64}
  2182. rex:=rex or ea_data.rex;
  2183. {$endif x86_64}
  2184. end;
  2185. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2186. // =>> DEFAULT = 2 Bytes
  2187. begin
  2188. if not(exists_vex) then
  2189. begin
  2190. inc(len, 2);
  2191. exists_vex := true;
  2192. end;
  2193. end;
  2194. &363: // REX.W = 1
  2195. // =>> VEX prefix length = 3
  2196. begin
  2197. if not(exists_vex_extension) then
  2198. begin
  2199. inc(len);
  2200. exists_vex_extension := true;
  2201. end;
  2202. end;
  2203. &364: ; // VEX length bit
  2204. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2205. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2206. &370: // VEX-Extension prefix $0F
  2207. // ignore for calculating length
  2208. ;
  2209. &371, // VEX-Extension prefix $0F38
  2210. &372: // VEX-Extension prefix $0F3A
  2211. begin
  2212. if not(exists_vex_extension) then
  2213. begin
  2214. inc(len);
  2215. exists_vex_extension := true;
  2216. end;
  2217. end;
  2218. &300,&301,&302:
  2219. begin
  2220. {$if defined(x86_64) or defined(i8086)}
  2221. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2222. inc(len);
  2223. {$endif x86_64 or i8086}
  2224. end;
  2225. else
  2226. InternalError(200603141);
  2227. end;
  2228. until false;
  2229. {$ifdef x86_64}
  2230. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2231. Message(asmw_e_bad_reg_with_rex);
  2232. rex:=rex and $4F; { reset extra bits in upper nibble }
  2233. if omit_rexw then
  2234. begin
  2235. if rex=$48 then { remove rex entirely? }
  2236. rex:=0
  2237. else
  2238. rex:=rex and $F7;
  2239. end;
  2240. if not(exists_vex) then
  2241. begin
  2242. if rex<>0 then
  2243. Inc(len);
  2244. end;
  2245. {$endif}
  2246. if exists_vex then
  2247. begin
  2248. if exists_prefix_66 then dec(len);
  2249. if exists_prefix_F2 then dec(len);
  2250. if exists_prefix_F3 then dec(len);
  2251. {$ifdef x86_64}
  2252. if not(exists_vex_extension) then
  2253. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2254. {$endif x86_64}
  2255. end;
  2256. calcsize:=len;
  2257. end;
  2258. procedure taicpu.GenCode(objdata:TObjData);
  2259. {
  2260. * the actual codes (C syntax, i.e. octal):
  2261. * \0 - terminates the code. (Unless it's a literal of course.)
  2262. * \1, \2, \3 - that many literal bytes follow in the code stream
  2263. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2264. * (POP is never used for CS) depending on operand 0
  2265. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2266. * on operand 0
  2267. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2268. * to the register value of operand 0, 1 or 2
  2269. * \13 - a literal byte follows in the code stream, to be added
  2270. * to the condition code value of the instruction.
  2271. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2272. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2273. * \23 - a literal byte follows in the code stream, to be added
  2274. * to the inverted condition code value of the instruction
  2275. * (inverted version of \13).
  2276. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2277. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2278. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2279. * assembly mode or the address-size override on the operand
  2280. * \37 - a word constant, from the _segment_ part of operand 0
  2281. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2282. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2283. on the address size of instruction
  2284. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2285. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2286. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2287. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2288. * assembly mode or the address-size override on the operand
  2289. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2290. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2291. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2292. * field the register value of operand b.
  2293. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2294. * field equal to digit b.
  2295. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2296. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2297. * the memory reference in operand x.
  2298. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2299. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2300. * \312 - (disassembler only) invalid with non-default address size.
  2301. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2302. * size of operand x.
  2303. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2304. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2305. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2306. * \327 - indicates that this instruction is only valid when the
  2307. * operand size is the default (instruction to disassembler,
  2308. * generates no code in the assembler)
  2309. * \331 - instruction not valid with REP prefix. Hint for
  2310. * disassembler only; for SSE instructions.
  2311. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2312. * \333 - 0xF3 prefix for SSE instructions
  2313. * \334 - 0xF2 prefix for SSE instructions
  2314. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2315. * \361 - 0x66 prefix for SSE instructions
  2316. * \362 - VEX prefix for AVX instructions
  2317. * \363 - VEX W1
  2318. * \364 - VEX Vector length 256
  2319. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2320. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2321. * \370 - VEX 0F-FLAG
  2322. * \371 - VEX 0F38-FLAG
  2323. * \372 - VEX 0F3A-FLAG
  2324. }
  2325. var
  2326. currval : aint;
  2327. currsym : tobjsymbol;
  2328. currrelreloc,
  2329. currabsreloc,
  2330. currabsreloc32 : TObjRelocationType;
  2331. {$ifdef x86_64}
  2332. rexwritten : boolean;
  2333. {$endif x86_64}
  2334. procedure getvalsym(opidx:longint);
  2335. begin
  2336. case oper[opidx]^.typ of
  2337. top_ref :
  2338. begin
  2339. currval:=oper[opidx]^.ref^.offset;
  2340. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2341. {$ifdef i8086}
  2342. if oper[opidx]^.ref^.refaddr=addr_seg then
  2343. begin
  2344. currrelreloc:=RELOC_SEGREL;
  2345. currabsreloc:=RELOC_SEG;
  2346. currabsreloc32:=RELOC_SEG;
  2347. end
  2348. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  2349. begin
  2350. currrelreloc:=RELOC_DGROUPREL;
  2351. currabsreloc:=RELOC_DGROUP;
  2352. currabsreloc32:=RELOC_DGROUP;
  2353. end
  2354. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  2355. begin
  2356. currrelreloc:=RELOC_FARDATASEGREL;
  2357. currabsreloc:=RELOC_FARDATASEG;
  2358. currabsreloc32:=RELOC_FARDATASEG;
  2359. end
  2360. else
  2361. {$endif i8086}
  2362. {$ifdef i386}
  2363. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2364. (tf_pic_uses_got in target_info.flags) then
  2365. begin
  2366. currrelreloc:=RELOC_PLT32;
  2367. currabsreloc:=RELOC_GOT32;
  2368. currabsreloc32:=RELOC_GOT32;
  2369. end
  2370. else
  2371. {$endif i386}
  2372. {$ifdef x86_64}
  2373. if oper[opidx]^.ref^.refaddr=addr_pic then
  2374. begin
  2375. currrelreloc:=RELOC_PLT32;
  2376. currabsreloc:=RELOC_GOTPCREL;
  2377. currabsreloc32:=RELOC_GOTPCREL;
  2378. end
  2379. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2380. begin
  2381. currrelreloc:=RELOC_RELATIVE;
  2382. currabsreloc:=RELOC_RELATIVE;
  2383. currabsreloc32:=RELOC_RELATIVE;
  2384. end
  2385. else
  2386. {$endif x86_64}
  2387. begin
  2388. currrelreloc:=RELOC_RELATIVE;
  2389. currabsreloc:=RELOC_ABSOLUTE;
  2390. currabsreloc32:=RELOC_ABSOLUTE32;
  2391. end;
  2392. end;
  2393. top_const :
  2394. begin
  2395. currval:=aint(oper[opidx]^.val);
  2396. currsym:=nil;
  2397. currabsreloc:=RELOC_ABSOLUTE;
  2398. currabsreloc32:=RELOC_ABSOLUTE32;
  2399. end;
  2400. else
  2401. Message(asmw_e_immediate_or_reference_expected);
  2402. end;
  2403. end;
  2404. {$ifdef x86_64}
  2405. procedure maybewriterex;
  2406. begin
  2407. if (rex<>0) and not(rexwritten) then
  2408. begin
  2409. rexwritten:=true;
  2410. objdata.writebytes(rex,1);
  2411. end;
  2412. end;
  2413. {$endif x86_64}
  2414. procedure write0x66prefix;
  2415. const
  2416. b66: Byte=$66;
  2417. begin
  2418. {$ifdef i8086}
  2419. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2420. Message(asmw_e_instruction_not_supported_by_cpu);
  2421. {$endif i8086}
  2422. objdata.writebytes(b66,1);
  2423. end;
  2424. procedure write0x67prefix;
  2425. const
  2426. b67: Byte=$67;
  2427. begin
  2428. {$ifdef i8086}
  2429. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  2430. Message(asmw_e_instruction_not_supported_by_cpu);
  2431. {$endif i8086}
  2432. objdata.writebytes(b67,1);
  2433. end;
  2434. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2435. begin
  2436. {$ifdef i386}
  2437. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2438. which needs a special relocation type R_386_GOTPC }
  2439. if assigned (p) and
  2440. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2441. (tf_pic_uses_got in target_info.flags) then
  2442. begin
  2443. { nothing else than a 4 byte relocation should occur
  2444. for GOT }
  2445. if len<>4 then
  2446. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2447. Reloctype:=RELOC_GOTPC;
  2448. { We need to add the offset of the relocation
  2449. of _GLOBAL_OFFSET_TABLE symbol within
  2450. the current instruction }
  2451. inc(data,objdata.currobjsec.size-insoffset);
  2452. end;
  2453. {$endif i386}
  2454. objdata.writereloc(data,len,p,Reloctype);
  2455. end;
  2456. const
  2457. CondVal:array[TAsmCond] of byte=($0,
  2458. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2459. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2460. $0, $A, $A, $B, $8, $4);
  2461. var
  2462. c : byte;
  2463. pb : pbyte;
  2464. codes : pchar;
  2465. bytes : array[0..3] of byte;
  2466. rfield,
  2467. data,s,opidx : longint;
  2468. ea_data : ea;
  2469. relsym : TObjSymbol;
  2470. needed_VEX_Extension: boolean;
  2471. needed_VEX: boolean;
  2472. opmode: integer;
  2473. VEXvvvv: byte;
  2474. VEXmmmmm: byte;
  2475. begin
  2476. { safety check }
  2477. if objdata.currobjsec.size<>longword(insoffset) then
  2478. internalerror(200130121);
  2479. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2480. currsym:=nil;
  2481. currabsreloc:=RELOC_NONE;
  2482. currabsreloc32:=RELOC_NONE;
  2483. currrelreloc:=RELOC_NONE;
  2484. currval:=0;
  2485. { check instruction's processor level }
  2486. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  2487. {$ifdef i8086}
  2488. if objdata.CPUType<>cpu_none then
  2489. begin
  2490. case insentry^.flags and IF_PLEVEL of
  2491. IF_8086:
  2492. ;
  2493. IF_186:
  2494. if objdata.CPUType<cpu_186 then
  2495. Message(asmw_e_instruction_not_supported_by_cpu);
  2496. IF_286:
  2497. if objdata.CPUType<cpu_286 then
  2498. Message(asmw_e_instruction_not_supported_by_cpu);
  2499. IF_386:
  2500. if objdata.CPUType<cpu_386 then
  2501. Message(asmw_e_instruction_not_supported_by_cpu);
  2502. IF_486,
  2503. IF_PENT:
  2504. if objdata.CPUType<cpu_Pentium then
  2505. Message(asmw_e_instruction_not_supported_by_cpu);
  2506. IF_P6:
  2507. if objdata.CPUType<cpu_Pentium2 then
  2508. Message(asmw_e_instruction_not_supported_by_cpu);
  2509. IF_KATMAI:
  2510. if objdata.CPUType<cpu_Pentium3 then
  2511. Message(asmw_e_instruction_not_supported_by_cpu);
  2512. IF_WILLAMETTE,
  2513. IF_PRESCOTT:
  2514. if objdata.CPUType<cpu_Pentium4 then
  2515. Message(asmw_e_instruction_not_supported_by_cpu);
  2516. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  2517. IF_NEC:
  2518. if objdata.CPUType>=cpu_386 then
  2519. Message(asmw_e_instruction_not_supported_by_cpu);
  2520. { todo: handle these properly }
  2521. IF_CYRIX,
  2522. IF_AMD,
  2523. IF_CENTAUR,
  2524. IF_SANDYBRIDGE:
  2525. ;
  2526. end;
  2527. end;
  2528. {$endif i8086}
  2529. { load data to write }
  2530. codes:=insentry^.code;
  2531. {$ifdef x86_64}
  2532. rexwritten:=false;
  2533. {$endif x86_64}
  2534. { Force word push/pop for registers }
  2535. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  2536. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2537. write0x66prefix;
  2538. // needed VEX Prefix (for AVX etc.)
  2539. needed_VEX := false;
  2540. needed_VEX_Extension := false;
  2541. opmode := -1;
  2542. VEXvvvv := 0;
  2543. VEXmmmmm := 0;
  2544. repeat
  2545. c:=ord(codes^);
  2546. inc(codes);
  2547. case c of
  2548. &0: break;
  2549. &1,
  2550. &2,
  2551. &3: inc(codes,c);
  2552. &74: opmode := 0;
  2553. &75: opmode := 1;
  2554. &76: opmode := 2;
  2555. &333: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2556. &334: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2557. &361: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2558. &362: needed_VEX := true;
  2559. &363: begin
  2560. needed_VEX_Extension := true;
  2561. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2562. end;
  2563. &364: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2564. &370: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2565. &371: begin
  2566. needed_VEX_Extension := true;
  2567. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2568. end;
  2569. &372: begin
  2570. needed_VEX_Extension := true;
  2571. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2572. end;
  2573. end;
  2574. until false;
  2575. if needed_VEX then
  2576. begin
  2577. if (opmode > ops) or
  2578. (opmode < -1) then
  2579. begin
  2580. Internalerror(777100);
  2581. end
  2582. else if opmode = -1 then
  2583. begin
  2584. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2585. end
  2586. else if oper[opmode]^.typ = top_reg then
  2587. begin
  2588. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2589. {$ifdef x86_64}
  2590. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2591. {$else}
  2592. VEXvvvv := VEXvvvv or (1 shl 6);
  2593. {$endif x86_64}
  2594. end
  2595. else Internalerror(777101);
  2596. if not(needed_VEX_Extension) then
  2597. begin
  2598. {$ifdef x86_64}
  2599. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2600. {$endif x86_64}
  2601. end;
  2602. if needed_VEX_Extension then
  2603. begin
  2604. // VEX-Prefix-Length = 3 Bytes
  2605. bytes[0]:=$C4;
  2606. objdata.writebytes(bytes,1);
  2607. {$ifdef x86_64}
  2608. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2609. {$else}
  2610. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2611. {$endif x86_64}
  2612. bytes[0] := VEXmmmmm;
  2613. objdata.writebytes(bytes,1);
  2614. {$ifdef x86_64}
  2615. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2616. {$endif x86_64}
  2617. bytes[0] := VEXvvvv;
  2618. objdata.writebytes(bytes,1);
  2619. end
  2620. else
  2621. begin
  2622. // VEX-Prefix-Length = 2 Bytes
  2623. bytes[0]:=$C5;
  2624. objdata.writebytes(bytes,1);
  2625. {$ifdef x86_64}
  2626. if rex and $04 = 0 then
  2627. {$endif x86_64}
  2628. begin
  2629. VEXvvvv := VEXvvvv or (1 shl 7);
  2630. end;
  2631. bytes[0] := VEXvvvv;
  2632. objdata.writebytes(bytes,1);
  2633. end;
  2634. end
  2635. else
  2636. begin
  2637. needed_VEX_Extension := false;
  2638. opmode := -1;
  2639. end;
  2640. { load data to write }
  2641. codes:=insentry^.code;
  2642. repeat
  2643. c:=ord(codes^);
  2644. inc(codes);
  2645. case c of
  2646. &0 :
  2647. break;
  2648. &1,&2,&3 :
  2649. begin
  2650. {$ifdef x86_64}
  2651. if not(needed_VEX) then // TG
  2652. maybewriterex;
  2653. {$endif x86_64}
  2654. objdata.writebytes(codes^,c);
  2655. inc(codes,c);
  2656. end;
  2657. &4,&6 :
  2658. begin
  2659. case oper[0]^.reg of
  2660. NR_CS:
  2661. bytes[0]:=$e;
  2662. NR_NO,
  2663. NR_DS:
  2664. bytes[0]:=$1e;
  2665. NR_ES:
  2666. bytes[0]:=$6;
  2667. NR_SS:
  2668. bytes[0]:=$16;
  2669. else
  2670. internalerror(777004);
  2671. end;
  2672. if c=&4 then
  2673. inc(bytes[0]);
  2674. objdata.writebytes(bytes,1);
  2675. end;
  2676. &5,&7 :
  2677. begin
  2678. case oper[0]^.reg of
  2679. NR_FS:
  2680. bytes[0]:=$a0;
  2681. NR_GS:
  2682. bytes[0]:=$a8;
  2683. else
  2684. internalerror(777005);
  2685. end;
  2686. if c=&5 then
  2687. inc(bytes[0]);
  2688. objdata.writebytes(bytes,1);
  2689. end;
  2690. &10,&11,&12 :
  2691. begin
  2692. {$ifdef x86_64}
  2693. if not(needed_VEX) then // TG
  2694. maybewriterex;
  2695. {$endif x86_64}
  2696. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  2697. inc(codes);
  2698. objdata.writebytes(bytes,1);
  2699. end;
  2700. &13 :
  2701. begin
  2702. bytes[0]:=ord(codes^)+condval[condition];
  2703. inc(codes);
  2704. objdata.writebytes(bytes,1);
  2705. end;
  2706. &14,&15,&16 :
  2707. begin
  2708. getvalsym(c-&14);
  2709. if (currval<-128) or (currval>127) then
  2710. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2711. if assigned(currsym) then
  2712. objdata_writereloc(currval,1,currsym,currabsreloc)
  2713. else
  2714. objdata.writebytes(currval,1);
  2715. end;
  2716. &20,&21,&22 :
  2717. begin
  2718. getvalsym(c-&20);
  2719. if (currval<-256) or (currval>255) then
  2720. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2721. if assigned(currsym) then
  2722. objdata_writereloc(currval,1,currsym,currabsreloc)
  2723. else
  2724. objdata.writebytes(currval,1);
  2725. end;
  2726. &23 :
  2727. begin
  2728. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  2729. inc(codes);
  2730. objdata.writebytes(bytes,1);
  2731. end;
  2732. &24,&25,&26,&27 :
  2733. begin
  2734. getvalsym(c-&24);
  2735. if (currval<0) or (currval>255) then
  2736. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2737. if assigned(currsym) then
  2738. objdata_writereloc(currval,1,currsym,currabsreloc)
  2739. else
  2740. objdata.writebytes(currval,1);
  2741. end;
  2742. &30,&31,&32 : // 030..032
  2743. begin
  2744. getvalsym(c-&30);
  2745. {$ifndef i8086}
  2746. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2747. if (currval<-65536) or (currval>65535) then
  2748. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2749. {$endif i8086}
  2750. if assigned(currsym)
  2751. {$ifdef i8086}
  2752. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  2753. {$endif i8086}
  2754. then
  2755. objdata_writereloc(currval,2,currsym,currabsreloc)
  2756. else
  2757. objdata.writebytes(currval,2);
  2758. end;
  2759. &34,&35,&36 : // 034..036
  2760. { !!! These are intended (and used in opcode table) to select depending
  2761. on address size, *not* operand size. Works by coincidence only. }
  2762. begin
  2763. getvalsym(c-&34);
  2764. {$ifdef i8086}
  2765. if assigned(currsym) then
  2766. objdata_writereloc(currval,2,currsym,currabsreloc)
  2767. else
  2768. objdata.writebytes(currval,2);
  2769. {$else i8086}
  2770. if opsize=S_Q then
  2771. begin
  2772. if assigned(currsym) then
  2773. objdata_writereloc(currval,8,currsym,currabsreloc)
  2774. else
  2775. objdata.writebytes(currval,8);
  2776. end
  2777. else
  2778. begin
  2779. if assigned(currsym) then
  2780. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2781. else
  2782. objdata.writebytes(currval,4);
  2783. end
  2784. {$endif i8086}
  2785. end;
  2786. &40,&41,&42 : // 040..042
  2787. begin
  2788. getvalsym(c-&40);
  2789. if assigned(currsym) then
  2790. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2791. else
  2792. objdata.writebytes(currval,4);
  2793. end;
  2794. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  2795. begin // address size (we support only default address sizes).
  2796. getvalsym(c-&44);
  2797. {$if defined(x86_64)}
  2798. if assigned(currsym) then
  2799. objdata_writereloc(currval,8,currsym,currabsreloc)
  2800. else
  2801. objdata.writebytes(currval,8);
  2802. {$elseif defined(i386)}
  2803. if assigned(currsym) then
  2804. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2805. else
  2806. objdata.writebytes(currval,4);
  2807. {$elseif defined(i8086)}
  2808. if assigned(currsym) then
  2809. objdata_writereloc(currval,2,currsym,currabsreloc)
  2810. else
  2811. objdata.writebytes(currval,2);
  2812. {$endif}
  2813. end;
  2814. &50,&51,&52 : // 050..052 - byte relative operand
  2815. begin
  2816. getvalsym(c-&50);
  2817. data:=currval-insend;
  2818. {$push}
  2819. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2820. if assigned(currsym) then
  2821. inc(data,currsym.address);
  2822. {$pop}
  2823. if (data>127) or (data<-128) then
  2824. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2825. objdata.writebytes(data,1);
  2826. end;
  2827. &54,&55,&56: // 054..056 - qword immediate operand
  2828. begin
  2829. getvalsym(c-&54);
  2830. if assigned(currsym) then
  2831. objdata_writereloc(currval,8,currsym,currabsreloc)
  2832. else
  2833. objdata.writebytes(currval,8);
  2834. end;
  2835. &60,&61,&62 :
  2836. begin
  2837. getvalsym(c-&60);
  2838. {$ifdef i8086}
  2839. if assigned(currsym) then
  2840. objdata_writereloc(currval,2,currsym,currrelreloc)
  2841. else
  2842. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2843. {$else i8086}
  2844. InternalError(777006);
  2845. {$endif i8086}
  2846. end;
  2847. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  2848. begin
  2849. getvalsym(c-&64);
  2850. {$ifdef i8086}
  2851. if assigned(currsym) then
  2852. objdata_writereloc(currval,2,currsym,currrelreloc)
  2853. else
  2854. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  2855. {$else i8086}
  2856. if assigned(currsym) then
  2857. objdata_writereloc(currval,4,currsym,currrelreloc)
  2858. else
  2859. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2860. {$endif i8086}
  2861. end;
  2862. &70,&71,&72 : // 070..072 - long relative operand
  2863. begin
  2864. getvalsym(c-&70);
  2865. if assigned(currsym) then
  2866. objdata_writereloc(currval,4,currsym,currrelreloc)
  2867. else
  2868. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2869. end;
  2870. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  2871. // ignore
  2872. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2873. begin
  2874. getvalsym(c-&254);
  2875. {$ifdef x86_64}
  2876. { for i386 as aint type is longint the
  2877. following test is useless }
  2878. if (currval<low(longint)) or (currval>high(longint)) then
  2879. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2880. {$endif x86_64}
  2881. if assigned(currsym) then
  2882. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2883. else
  2884. objdata.writebytes(currval,4);
  2885. end;
  2886. &300,&301,&302:
  2887. begin
  2888. {$if defined(x86_64) or defined(i8086)}
  2889. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2890. write0x67prefix;
  2891. {$endif x86_64 or i8086}
  2892. end;
  2893. &310 : { fixed 16-bit addr }
  2894. {$if defined(x86_64)}
  2895. { every insentry having code 0310 must be marked with NOX86_64 }
  2896. InternalError(2011051302);
  2897. {$elseif defined(i386)}
  2898. write0x67prefix;
  2899. {$elseif defined(i8086)}
  2900. {nothing};
  2901. {$endif}
  2902. &311 : { fixed 32-bit addr }
  2903. {$if defined(x86_64) or defined(i8086)}
  2904. write0x67prefix
  2905. {$endif x86_64 or i8086}
  2906. ;
  2907. &320,&321,&322 :
  2908. begin
  2909. case oper[c-&320]^.ot and OT_SIZE_MASK of
  2910. {$if defined(i386) or defined(x86_64)}
  2911. OT_BITS16 :
  2912. {$elseif defined(i8086)}
  2913. OT_BITS32 :
  2914. {$endif}
  2915. write0x66prefix;
  2916. {$ifndef x86_64}
  2917. OT_BITS64 :
  2918. Message(asmw_e_64bit_not_supported);
  2919. {$endif x86_64}
  2920. end;
  2921. end;
  2922. &323 : {no action needed};
  2923. &325:
  2924. {$ifdef i8086}
  2925. write0x66prefix;
  2926. {$else i8086}
  2927. {no action needed};
  2928. {$endif i8086}
  2929. &324,
  2930. &361:
  2931. begin
  2932. {$ifndef i8086}
  2933. if not(needed_VEX) then
  2934. write0x66prefix;
  2935. {$endif not i8086}
  2936. end;
  2937. &326 :
  2938. begin
  2939. {$ifndef x86_64}
  2940. Message(asmw_e_64bit_not_supported);
  2941. {$endif x86_64}
  2942. end;
  2943. &333 :
  2944. begin
  2945. if not(needed_VEX) then
  2946. begin
  2947. bytes[0]:=$f3;
  2948. objdata.writebytes(bytes,1);
  2949. end;
  2950. end;
  2951. &334 :
  2952. begin
  2953. if not(needed_VEX) then
  2954. begin
  2955. bytes[0]:=$f2;
  2956. objdata.writebytes(bytes,1);
  2957. end;
  2958. end;
  2959. &335:
  2960. ;
  2961. &312,
  2962. &327,
  2963. &331,&332 :
  2964. begin
  2965. { these are dissambler hints or 32 bit prefixes which
  2966. are not needed }
  2967. end;
  2968. &362..&364: ; // VEX flags =>> nothing todo
  2969. &366: begin
  2970. if needed_VEX then
  2971. begin
  2972. if ops = 4 then
  2973. begin
  2974. if (oper[2]^.typ=top_reg) then
  2975. begin
  2976. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2977. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2978. begin
  2979. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2980. objdata.writebytes(bytes,1);
  2981. end
  2982. else Internalerror(2014032001);
  2983. end
  2984. else Internalerror(2014032002);
  2985. end
  2986. else Internalerror(2014032003);
  2987. end
  2988. else Internalerror(2014032004);
  2989. end;
  2990. &367: begin
  2991. if needed_VEX then
  2992. begin
  2993. if ops = 4 then
  2994. begin
  2995. if (oper[3]^.typ=top_reg) then
  2996. begin
  2997. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2998. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2999. begin
  3000. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  3001. objdata.writebytes(bytes,1);
  3002. end
  3003. else Internalerror(2014032005);
  3004. end
  3005. else Internalerror(2014032006);
  3006. end
  3007. else Internalerror(2014032007);
  3008. end
  3009. else Internalerror(2014032008);
  3010. end;
  3011. &370..&372: ; // VEX flags =>> nothing todo
  3012. &37:
  3013. begin
  3014. {$ifdef i8086}
  3015. if assigned(currsym) then
  3016. objdata_writereloc(0,2,currsym,RELOC_SEG)
  3017. else
  3018. InternalError(2015041503);
  3019. {$else i8086}
  3020. InternalError(777006);
  3021. {$endif i8086}
  3022. end;
  3023. else
  3024. begin
  3025. { rex should be written at this point }
  3026. {$ifdef x86_64}
  3027. if not(needed_VEX) then // TG
  3028. if (rex<>0) and not(rexwritten) then
  3029. internalerror(200603191);
  3030. {$endif x86_64}
  3031. if (c>=&100) and (c<=&227) then // 0100..0227
  3032. begin
  3033. if (c<&177) then // 0177
  3034. begin
  3035. if (oper[c and 7]^.typ=top_reg) then
  3036. rfield:=regval(oper[c and 7]^.reg)
  3037. else
  3038. rfield:=regval(oper[c and 7]^.ref^.base);
  3039. end
  3040. else
  3041. rfield:=c and 7;
  3042. opidx:=(c shr 3) and 7;
  3043. if not process_ea(oper[opidx]^,ea_data,rfield) then
  3044. Message(asmw_e_invalid_effective_address);
  3045. pb:=@bytes[0];
  3046. pb^:=ea_data.modrm;
  3047. inc(pb);
  3048. if ea_data.sib_present then
  3049. begin
  3050. pb^:=ea_data.sib;
  3051. inc(pb);
  3052. end;
  3053. s:=pb-@bytes[0];
  3054. objdata.writebytes(bytes,s);
  3055. case ea_data.bytes of
  3056. 0 : ;
  3057. 1 :
  3058. begin
  3059. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  3060. begin
  3061. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3062. {$ifdef i386}
  3063. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3064. (tf_pic_uses_got in target_info.flags) then
  3065. currabsreloc:=RELOC_GOT32
  3066. else
  3067. {$endif i386}
  3068. {$ifdef x86_64}
  3069. if oper[opidx]^.ref^.refaddr=addr_pic then
  3070. currabsreloc:=RELOC_GOTPCREL
  3071. else
  3072. {$endif x86_64}
  3073. currabsreloc:=RELOC_ABSOLUTE;
  3074. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  3075. end
  3076. else
  3077. begin
  3078. bytes[0]:=oper[opidx]^.ref^.offset;
  3079. objdata.writebytes(bytes,1);
  3080. end;
  3081. inc(s);
  3082. end;
  3083. 2,4 :
  3084. begin
  3085. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  3086. currval:=oper[opidx]^.ref^.offset;
  3087. {$ifdef x86_64}
  3088. if oper[opidx]^.ref^.refaddr=addr_pic then
  3089. currabsreloc:=RELOC_GOTPCREL
  3090. else
  3091. if oper[opidx]^.ref^.base=NR_RIP then
  3092. begin
  3093. currabsreloc:=RELOC_RELATIVE;
  3094. { Adjust reloc value by number of bytes following the displacement,
  3095. but not if displacement is specified by literal constant }
  3096. if Assigned(currsym) then
  3097. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  3098. end
  3099. else
  3100. {$endif x86_64}
  3101. {$ifdef i386}
  3102. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3103. (tf_pic_uses_got in target_info.flags) then
  3104. currabsreloc:=RELOC_GOT32
  3105. else
  3106. {$endif i386}
  3107. {$ifdef i8086}
  3108. if ea_data.bytes=2 then
  3109. currabsreloc:=RELOC_ABSOLUTE
  3110. else
  3111. {$endif i8086}
  3112. currabsreloc:=RELOC_ABSOLUTE32;
  3113. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  3114. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  3115. begin
  3116. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  3117. if relsym.objsection=objdata.CurrObjSec then
  3118. begin
  3119. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  3120. {$ifdef i8086}
  3121. if ea_data.bytes=4 then
  3122. currabsreloc:=RELOC_RELATIVE32
  3123. else
  3124. {$endif i8086}
  3125. currabsreloc:=RELOC_RELATIVE;
  3126. end
  3127. else
  3128. begin
  3129. currabsreloc:=RELOC_PIC_PAIR;
  3130. currval:=relsym.offset;
  3131. end;
  3132. end;
  3133. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  3134. inc(s,ea_data.bytes);
  3135. end;
  3136. end;
  3137. end
  3138. else
  3139. InternalError(777007);
  3140. end;
  3141. end;
  3142. until false;
  3143. end;
  3144. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  3145. begin
  3146. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  3147. (regtype = R_INTREGISTER) and
  3148. (ops=2) and
  3149. (oper[0]^.typ=top_reg) and
  3150. (oper[1]^.typ=top_reg) and
  3151. (oper[0]^.reg=oper[1]^.reg)
  3152. ) or
  3153. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  3154. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  3155. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  3156. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  3157. (regtype = R_MMREGISTER) and
  3158. (ops=2) and
  3159. (oper[0]^.typ=top_reg) and
  3160. (oper[1]^.typ=top_reg) and
  3161. (oper[0]^.reg=oper[1]^.reg)
  3162. );
  3163. end;
  3164. procedure build_spilling_operation_type_table;
  3165. var
  3166. opcode : tasmop;
  3167. i : integer;
  3168. begin
  3169. new(operation_type_table);
  3170. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  3171. for opcode:=low(tasmop) to high(tasmop) do
  3172. begin
  3173. for i:=1 to MaxInsChanges do
  3174. begin
  3175. case InsProp[opcode].Ch[i] of
  3176. Ch_Rop1 :
  3177. operation_type_table^[opcode,0]:=operand_read;
  3178. Ch_Wop1 :
  3179. operation_type_table^[opcode,0]:=operand_write;
  3180. Ch_RWop1,
  3181. Ch_Mop1 :
  3182. operation_type_table^[opcode,0]:=operand_readwrite;
  3183. Ch_Rop2 :
  3184. operation_type_table^[opcode,1]:=operand_read;
  3185. Ch_Wop2 :
  3186. operation_type_table^[opcode,1]:=operand_write;
  3187. Ch_RWop2,
  3188. Ch_Mop2 :
  3189. operation_type_table^[opcode,1]:=operand_readwrite;
  3190. Ch_Rop3 :
  3191. operation_type_table^[opcode,2]:=operand_read;
  3192. Ch_Wop3 :
  3193. operation_type_table^[opcode,2]:=operand_write;
  3194. Ch_RWop3,
  3195. Ch_Mop3 :
  3196. operation_type_table^[opcode,2]:=operand_readwrite;
  3197. end;
  3198. end;
  3199. end;
  3200. end;
  3201. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  3202. begin
  3203. { the information in the instruction table is made for the string copy
  3204. operation MOVSD so hack here (FK)
  3205. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  3206. so fix it here (FK)
  3207. }
  3208. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  3209. begin
  3210. case opnr of
  3211. 0:
  3212. result:=operand_read;
  3213. 1:
  3214. result:=operand_write;
  3215. else
  3216. internalerror(200506055);
  3217. end
  3218. end
  3219. { IMUL has 1, 2 and 3-operand forms }
  3220. else if opcode=A_IMUL then
  3221. begin
  3222. case ops of
  3223. 1:
  3224. if opnr=0 then
  3225. result:=operand_read
  3226. else
  3227. internalerror(2014011802);
  3228. 2:
  3229. begin
  3230. case opnr of
  3231. 0:
  3232. result:=operand_read;
  3233. 1:
  3234. result:=operand_readwrite;
  3235. else
  3236. internalerror(2014011803);
  3237. end;
  3238. end;
  3239. 3:
  3240. begin
  3241. case opnr of
  3242. 0,1:
  3243. result:=operand_read;
  3244. 2:
  3245. result:=operand_write;
  3246. else
  3247. internalerror(2014011804);
  3248. end;
  3249. end;
  3250. else
  3251. internalerror(2014011805);
  3252. end;
  3253. end
  3254. else
  3255. result:=operation_type_table^[opcode,opnr];
  3256. end;
  3257. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  3258. var
  3259. tmpref: treference;
  3260. begin
  3261. tmpref:=ref;
  3262. {$ifdef i8086}
  3263. if tmpref.segment=NR_SS then
  3264. tmpref.segment:=NR_NO;
  3265. {$endif i8086}
  3266. case getregtype(r) of
  3267. R_INTREGISTER :
  3268. begin
  3269. if getsubreg(r)=R_SUBH then
  3270. inc(tmpref.offset);
  3271. { we don't need special code here for 32 bit loads on x86_64, since
  3272. those will automatically zero-extend the upper 32 bits. }
  3273. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  3274. end;
  3275. R_MMREGISTER :
  3276. if current_settings.fputype in fpu_avx_instructionsets then
  3277. case getsubreg(r) of
  3278. R_SUBMMD:
  3279. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  3280. R_SUBMMS:
  3281. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  3282. R_SUBQ,
  3283. R_SUBMMWHOLE:
  3284. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  3285. else
  3286. internalerror(200506043);
  3287. end
  3288. else
  3289. case getsubreg(r) of
  3290. R_SUBMMD:
  3291. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  3292. R_SUBMMS:
  3293. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  3294. R_SUBQ,
  3295. R_SUBMMWHOLE:
  3296. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3297. else
  3298. internalerror(200506043);
  3299. end;
  3300. else
  3301. internalerror(200401041);
  3302. end;
  3303. end;
  3304. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3305. var
  3306. size: topsize;
  3307. tmpref: treference;
  3308. begin
  3309. tmpref:=ref;
  3310. {$ifdef i8086}
  3311. if tmpref.segment=NR_SS then
  3312. tmpref.segment:=NR_NO;
  3313. {$endif i8086}
  3314. case getregtype(r) of
  3315. R_INTREGISTER :
  3316. begin
  3317. if getsubreg(r)=R_SUBH then
  3318. inc(tmpref.offset);
  3319. size:=reg2opsize(r);
  3320. {$ifdef x86_64}
  3321. { even if it's a 32 bit reg, we still have to spill 64 bits
  3322. because we often perform 64 bit operations on them }
  3323. if (size=S_L) then
  3324. begin
  3325. size:=S_Q;
  3326. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3327. end;
  3328. {$endif x86_64}
  3329. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3330. end;
  3331. R_MMREGISTER :
  3332. if current_settings.fputype in fpu_avx_instructionsets then
  3333. case getsubreg(r) of
  3334. R_SUBMMD:
  3335. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3336. R_SUBMMS:
  3337. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3338. R_SUBQ,
  3339. R_SUBMMWHOLE:
  3340. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3341. else
  3342. internalerror(200506042);
  3343. end
  3344. else
  3345. case getsubreg(r) of
  3346. R_SUBMMD:
  3347. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3348. R_SUBMMS:
  3349. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3350. R_SUBQ,
  3351. R_SUBMMWHOLE:
  3352. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3353. else
  3354. internalerror(200506042);
  3355. end;
  3356. else
  3357. internalerror(200401041);
  3358. end;
  3359. end;
  3360. {$ifdef i8086}
  3361. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  3362. var
  3363. r: treference;
  3364. begin
  3365. reference_reset_symbol(r,s,0,1);
  3366. r.refaddr:=addr_seg;
  3367. loadref(opidx,r);
  3368. end;
  3369. {$endif i8086}
  3370. {*****************************************************************************
  3371. Instruction table
  3372. *****************************************************************************}
  3373. procedure BuildInsTabCache;
  3374. var
  3375. i : longint;
  3376. begin
  3377. new(instabcache);
  3378. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3379. i:=0;
  3380. while (i<InsTabEntries) do
  3381. begin
  3382. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3383. InsTabCache^[InsTab[i].OPcode]:=i;
  3384. inc(i);
  3385. end;
  3386. end;
  3387. procedure BuildInsTabMemRefSizeInfoCache;
  3388. var
  3389. AsmOp: TasmOp;
  3390. i,j: longint;
  3391. insentry : PInsEntry;
  3392. MRefInfo: TMemRefSizeInfo;
  3393. SConstInfo: TConstSizeInfo;
  3394. actRegSize: int64;
  3395. actMemSize: int64;
  3396. actConstSize: int64;
  3397. actRegCount: integer;
  3398. actMemCount: integer;
  3399. actConstCount: integer;
  3400. actRegTypes : int64;
  3401. actRegMemTypes: int64;
  3402. NewRegSize: int64;
  3403. actVMemCount : integer;
  3404. actVMemTypes : int64;
  3405. RegMMXSizeMask: int64;
  3406. RegXMMSizeMask: int64;
  3407. RegYMMSizeMask: int64;
  3408. bitcount: integer;
  3409. function bitcnt(aValue: int64): integer;
  3410. var
  3411. i: integer;
  3412. begin
  3413. result := 0;
  3414. for i := 0 to 63 do
  3415. begin
  3416. if (aValue mod 2) = 1 then
  3417. begin
  3418. inc(result);
  3419. end;
  3420. aValue := aValue shr 1;
  3421. end;
  3422. end;
  3423. begin
  3424. new(InsTabMemRefSizeInfoCache);
  3425. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3426. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3427. begin
  3428. i := InsTabCache^[AsmOp];
  3429. if i >= 0 then
  3430. begin
  3431. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3432. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3433. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3434. insentry:=@instab[i];
  3435. RegMMXSizeMask := 0;
  3436. RegXMMSizeMask := 0;
  3437. RegYMMSizeMask := 0;
  3438. while (insentry^.opcode=AsmOp) do
  3439. begin
  3440. MRefInfo := msiUnkown;
  3441. actRegSize := 0;
  3442. actRegCount := 0;
  3443. actRegTypes := 0;
  3444. NewRegSize := 0;
  3445. actMemSize := 0;
  3446. actMemCount := 0;
  3447. actRegMemTypes := 0;
  3448. actVMemCount := 0;
  3449. actVMemTypes := 0;
  3450. actConstSize := 0;
  3451. actConstCount := 0;
  3452. for j := 0 to insentry^.ops -1 do
  3453. begin
  3454. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3455. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3456. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3457. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3458. begin
  3459. inc(actVMemCount);
  3460. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3461. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3462. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3463. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3464. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3465. else InternalError(777206);
  3466. end;
  3467. end
  3468. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3469. begin
  3470. inc(actRegCount);
  3471. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3472. if NewRegSize = 0 then
  3473. begin
  3474. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3475. OT_MMXREG: begin
  3476. NewRegSize := OT_BITS64;
  3477. end;
  3478. OT_XMMREG: begin
  3479. NewRegSize := OT_BITS128;
  3480. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3481. end;
  3482. OT_YMMREG: begin
  3483. NewRegSize := OT_BITS256;
  3484. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3485. end;
  3486. else NewRegSize := not(0);
  3487. end;
  3488. end;
  3489. actRegSize := actRegSize or NewRegSize;
  3490. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3491. end
  3492. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3493. begin
  3494. inc(actMemCount);
  3495. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3496. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3497. begin
  3498. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3499. end;
  3500. end
  3501. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3502. begin
  3503. inc(actConstCount);
  3504. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3505. end
  3506. end;
  3507. if actConstCount > 0 then
  3508. begin
  3509. case actConstSize of
  3510. 0: SConstInfo := csiNoSize;
  3511. OT_BITS8: SConstInfo := csiMem8;
  3512. OT_BITS16: SConstInfo := csiMem16;
  3513. OT_BITS32: SConstInfo := csiMem32;
  3514. OT_BITS64: SConstInfo := csiMem64;
  3515. else SConstInfo := csiMultiple;
  3516. end;
  3517. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3518. begin
  3519. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3520. end
  3521. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3522. begin
  3523. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3524. end;
  3525. end;
  3526. if actVMemCount > 0 then
  3527. begin
  3528. if actVMemCount = 1 then
  3529. begin
  3530. if actVMemTypes > 0 then
  3531. begin
  3532. case actVMemTypes of
  3533. OT_XMEM32: MRefInfo := msiXMem32;
  3534. OT_XMEM64: MRefInfo := msiXMem64;
  3535. OT_YMEM32: MRefInfo := msiYMem32;
  3536. OT_YMEM64: MRefInfo := msiYMem64;
  3537. else InternalError(777208);
  3538. end;
  3539. case actRegTypes of
  3540. OT_XMMREG: case MRefInfo of
  3541. msiXMem32,
  3542. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3543. msiYMem32,
  3544. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3545. else InternalError(777210);
  3546. end;
  3547. OT_YMMREG: case MRefInfo of
  3548. msiXMem32,
  3549. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3550. msiYMem32,
  3551. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3552. else InternalError(777211);
  3553. end;
  3554. //else InternalError(777209);
  3555. end;
  3556. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3557. begin
  3558. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3559. end
  3560. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3561. begin
  3562. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3563. begin
  3564. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3565. end
  3566. else InternalError(777212);
  3567. end;
  3568. end;
  3569. end
  3570. else InternalError(777207);
  3571. end
  3572. else
  3573. case actMemCount of
  3574. 0: ; // nothing todo
  3575. 1: begin
  3576. MRefInfo := msiUnkown;
  3577. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3578. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3579. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3580. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3581. end;
  3582. case actMemSize of
  3583. 0: MRefInfo := msiNoSize;
  3584. OT_BITS8: MRefInfo := msiMem8;
  3585. OT_BITS16: MRefInfo := msiMem16;
  3586. OT_BITS32: MRefInfo := msiMem32;
  3587. OT_BITS64: MRefInfo := msiMem64;
  3588. OT_BITS128: MRefInfo := msiMem128;
  3589. OT_BITS256: MRefInfo := msiMem256;
  3590. OT_BITS80,
  3591. OT_FAR,
  3592. OT_NEAR,
  3593. OT_SHORT: ; // ignore
  3594. else
  3595. begin
  3596. bitcount := bitcnt(actMemSize);
  3597. if bitcount > 1 then MRefInfo := msiMultiple
  3598. else InternalError(777203);
  3599. end;
  3600. end;
  3601. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3602. begin
  3603. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3604. end
  3605. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3606. begin
  3607. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3608. begin
  3609. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3610. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3611. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3612. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3613. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3614. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3615. else MemRefSize := msiMultiple;
  3616. end;
  3617. end;
  3618. if actRegCount > 0 then
  3619. begin
  3620. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3621. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3622. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3623. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3624. else begin
  3625. RegMMXSizeMask := not(0);
  3626. RegXMMSizeMask := not(0);
  3627. RegYMMSizeMask := not(0);
  3628. end;
  3629. end;
  3630. end;
  3631. end;
  3632. else InternalError(777202);
  3633. end;
  3634. inc(insentry);
  3635. end;
  3636. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3637. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3638. begin
  3639. case RegXMMSizeMask of
  3640. OT_BITS16: case RegYMMSizeMask of
  3641. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3642. end;
  3643. OT_BITS32: case RegYMMSizeMask of
  3644. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3645. end;
  3646. OT_BITS64: case RegYMMSizeMask of
  3647. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3648. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3649. end;
  3650. OT_BITS128: begin
  3651. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3652. begin
  3653. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3654. case RegYMMSizeMask of
  3655. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3656. end;
  3657. end
  3658. else if RegMMXSizeMask = 0 then
  3659. begin
  3660. case RegYMMSizeMask of
  3661. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3662. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3663. end;
  3664. end
  3665. else if RegYMMSizeMask = 0 then
  3666. begin
  3667. case RegMMXSizeMask of
  3668. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3669. end;
  3670. end
  3671. else InternalError(777205);
  3672. end;
  3673. end;
  3674. end;
  3675. end;
  3676. end;
  3677. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3678. begin
  3679. // only supported intructiones with SSE- or AVX-operands
  3680. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3681. begin
  3682. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3683. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3684. end;
  3685. end;
  3686. end;
  3687. procedure InitAsm;
  3688. begin
  3689. build_spilling_operation_type_table;
  3690. if not assigned(instabcache) then
  3691. BuildInsTabCache;
  3692. if not assigned(InsTabMemRefSizeInfoCache) then
  3693. BuildInsTabMemRefSizeInfoCache;
  3694. end;
  3695. procedure DoneAsm;
  3696. begin
  3697. if assigned(operation_type_table) then
  3698. begin
  3699. dispose(operation_type_table);
  3700. operation_type_table:=nil;
  3701. end;
  3702. if assigned(instabcache) then
  3703. begin
  3704. dispose(instabcache);
  3705. instabcache:=nil;
  3706. end;
  3707. if assigned(InsTabMemRefSizeInfoCache) then
  3708. begin
  3709. dispose(InsTabMemRefSizeInfoCache);
  3710. InsTabMemRefSizeInfoCache:=nil;
  3711. end;
  3712. end;
  3713. begin
  3714. cai_align:=tai_align;
  3715. cai_cpu:=taicpu;
  3716. end.