2
0

aasmcpu.pas 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. OT_BITS8 = $00000001; { size, and other attributes, of the operand }
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { FPU only }
  41. OT_BITS80 = $00000010;
  42. OT_SIZE_MASK = $0000001F; { all the size attributes }
  43. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  44. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  45. OT_NEAR = $00000040;
  46. OT_SHORT = $00000080;
  47. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  48. OT_TO = $00000200; { operand is followed by a colon }
  49. { reverse effect in FADD, FSUB &c }
  50. OT_COLON = $00000400;
  51. OT_REGISTER = $00001000;
  52. OT_IMMEDIATE = $00002000;
  53. OT_IMM8 = $00002001;
  54. OT_IMM16 = $00002002;
  55. OT_IMM32 = $00002004;
  56. OT_IMM64 = $00002008;
  57. OT_IMM80 = $00002010;
  58. OT_REGMEM = $00200000; { for r/m, ie EA, operands }
  59. OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
  60. OT_REG8 = $00201001;
  61. OT_REG16 = $00201002;
  62. OT_REG32 = $00201004;
  63. OT_REG64 = $00201008;
  64. OT_XMMREG = $00201010; { Katmai registers }
  65. OT_MMXREG = $00201020; { MMX registers }
  66. OT_MEMORY = $00204000; { register number in 'basereg' }
  67. OT_MEM8 = $00204001;
  68. OT_MEM16 = $00204002;
  69. OT_MEM32 = $00204004;
  70. OT_MEM64 = $00204008;
  71. OT_MEM80 = $00204010;
  72. OT_FPUREG = $01000000; { floating point stack registers }
  73. OT_FPU0 = $01000800; { FPU stack register zero }
  74. OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
  75. { a mask for the following }
  76. OT_REG_ACCUM = $00211000; { FUNCTION_RETURN_REG: AL, AX or EAX }
  77. OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
  78. OT_REG_AX = $00211002; { ditto }
  79. OT_REG_EAX = $00211004; { and again }
  80. {$ifdef x86_64}
  81. OT_REG_RAX = $00211008;
  82. {$endif x86_64}
  83. OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
  84. OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
  85. OT_REG_CX = $00221002; { ditto }
  86. OT_REG_ECX = $00221004; { another one }
  87. {$ifdef x86_64}
  88. OT_REG_RCX = $00221008;
  89. {$endif x86_64}
  90. OT_REG_DX = $00241002;
  91. OT_REG_EDX = $00241004;
  92. OT_REG_SREG = $00081002; { any segment register }
  93. OT_REG_CS = $01081002; { CS }
  94. OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
  95. OT_REG_FSGS = $04081002; { FS, GS (386 extended registers) }
  96. OT_REG_CDT = $00101004; { CRn, DRn and TRn }
  97. OT_REG_CREG = $08101004; { CRn }
  98. OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
  99. OT_REG_DREG = $10101004; { DRn }
  100. OT_REG_TREG = $20101004; { TRn }
  101. OT_MEM_OFFS = $00604000; { special type of EA }
  102. { simple [address] offset }
  103. OT_ONENESS = $00800000; { special type of immediate operand }
  104. { so UNITY == IMMEDIATE | ONENESS }
  105. OT_UNITY = $00802000; { for shift/rotate instructions }
  106. { Size of the instruction table converted by nasmconv.pas }
  107. {$ifdef x86_64}
  108. instabentries = {$i x8664nop.inc}
  109. {$else x86_64}
  110. instabentries = {$i i386nop.inc}
  111. {$endif x86_64}
  112. maxinfolen = 11;
  113. MaxInsChanges = 3; { Max things a instruction can change }
  114. type
  115. { What an instruction can change. Needed for optimizer and spilling code.
  116. Note: The order of this enumeration is should not be changed! }
  117. TInsChange = (Ch_None,
  118. {Read from a register}
  119. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  120. {write from a register}
  121. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  122. {read and write from/to a register}
  123. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  124. {modify the contents of a register with the purpose of using
  125. this changed content afterwards (add/sub/..., but e.g. not rep
  126. or movsd)}
  127. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  128. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  129. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  130. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  131. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  132. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  133. Ch_WMemEDI,
  134. Ch_All,
  135. { x86_64 registers }
  136. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  137. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  138. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  139. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  140. );
  141. TInsProp = packed record
  142. Ch : Array[1..MaxInsChanges] of TInsChange;
  143. end;
  144. const
  145. InsProp : array[tasmop] of TInsProp =
  146. {$ifdef x86_64}
  147. {$i x8664pro.inc}
  148. {$else x86_64}
  149. {$i i386prop.inc}
  150. {$endif x86_64}
  151. type
  152. TOperandOrder = (op_intel,op_att);
  153. tinsentry=packed record
  154. opcode : tasmop;
  155. ops : byte;
  156. optypes : array[0..2] of longint;
  157. code : array[0..maxinfolen] of char;
  158. flags : cardinal;
  159. end;
  160. pinsentry=^tinsentry;
  161. { alignment for operator }
  162. tai_align = class(tai_align_abstract)
  163. reg : tregister;
  164. constructor create(b:byte);override;
  165. constructor create_op(b: byte; _op: byte);override;
  166. function calculatefillbuf(var buf : tfillbuffer):pchar;override;
  167. end;
  168. taicpu = class(tai_cpu_abstract_sym)
  169. opsize : topsize;
  170. constructor op_none(op : tasmop);
  171. constructor op_none(op : tasmop;_size : topsize);
  172. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  173. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  174. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  175. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  176. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  177. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  178. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  179. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  180. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  181. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  182. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  183. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  184. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  185. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister; const _op3 : treference);
  186. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  187. { this is for Jmp instructions }
  188. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  189. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  190. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  191. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  192. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  193. procedure changeopsize(siz:topsize);
  194. function GetString:string;
  195. procedure CheckNonCommutativeOpcodes;
  196. private
  197. FOperandOrder : TOperandOrder;
  198. procedure init(_size : topsize); { this need to be called by all constructor }
  199. public
  200. { the next will reset all instructions that can change in pass 2 }
  201. procedure ResetPass1;override;
  202. procedure ResetPass2;override;
  203. function CheckIfValid:boolean;
  204. function Pass1(objdata:TObjData):longint;override;
  205. procedure Pass2(objdata:TObjData);override;
  206. procedure SetOperandOrder(order:TOperandOrder);
  207. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  208. { register spilling code }
  209. function spilling_get_operation_type(opnr: longint): topertype;override;
  210. private
  211. { next fields are filled in pass1, so pass2 is faster }
  212. insentry : PInsEntry;
  213. insoffset : longint;
  214. LastInsOffset : longint; { need to be public to be reset }
  215. inssize : shortint;
  216. {$ifdef x86_64}
  217. rex : byte;
  218. {$endif x86_64}
  219. function InsEnd:longint;
  220. procedure create_ot(objdata:TObjData);
  221. function Matches(p:PInsEntry):boolean;
  222. function calcsize(p:PInsEntry):shortint;
  223. procedure gencode(objdata:TObjData);
  224. function NeedAddrPrefix(opidx:byte):boolean;
  225. procedure Swapoperands;
  226. function FindInsentry(objdata:TObjData):boolean;
  227. end;
  228. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  229. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  230. procedure InitAsm;
  231. procedure DoneAsm;
  232. implementation
  233. uses
  234. cutils,
  235. globals,
  236. itcpugas,
  237. symsym;
  238. {*****************************************************************************
  239. Instruction table
  240. *****************************************************************************}
  241. const
  242. {Instruction flags }
  243. IF_NONE = $00000000;
  244. IF_SM = $00000001; { size match first two operands }
  245. IF_SM2 = $00000002;
  246. IF_SB = $00000004; { unsized operands can't be non-byte }
  247. IF_SW = $00000008; { unsized operands can't be non-word }
  248. IF_SD = $00000010; { unsized operands can't be nondword }
  249. IF_SMASK = $0000001f;
  250. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  251. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  252. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  253. IF_ARMASK = $00000060; { mask for unsized argument spec }
  254. IF_PRIV = $00000100; { it's a privileged instruction }
  255. IF_SMM = $00000200; { it's only valid in SMM }
  256. IF_PROT = $00000400; { it's protected mode only }
  257. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  258. IF_UNDOC = $00001000; { it's an undocumented instruction }
  259. IF_FPU = $00002000; { it's an FPU instruction }
  260. IF_MMX = $00004000; { it's an MMX instruction }
  261. { it's a 3DNow! instruction }
  262. IF_3DNOW = $00008000;
  263. { it's a SSE (KNI, MMX2) instruction }
  264. IF_SSE = $00010000;
  265. { SSE2 instructions }
  266. IF_SSE2 = $00020000;
  267. { SSE3 instructions }
  268. IF_SSE3 = $00040000;
  269. { SSE64 instructions }
  270. IF_SSE64 = $00080000;
  271. { the mask for processor types }
  272. {IF_PMASK = longint($FF000000);}
  273. { the mask for disassembly "prefer" }
  274. {IF_PFMASK = longint($F001FF00);}
  275. { SVM instructions }
  276. IF_SVM = $00100000;
  277. { SSE4 instructions }
  278. IF_SSE4 = $00200000;
  279. IF_8086 = $00000000; { 8086 instruction }
  280. IF_186 = $01000000; { 186+ instruction }
  281. IF_286 = $02000000; { 286+ instruction }
  282. IF_386 = $03000000; { 386+ instruction }
  283. IF_486 = $04000000; { 486+ instruction }
  284. IF_PENT = $05000000; { Pentium instruction }
  285. IF_P6 = $06000000; { P6 instruction }
  286. IF_KATMAI = $07000000; { Katmai instructions }
  287. { Willamette instructions }
  288. IF_WILLAMETTE = $08000000;
  289. { Prescott instructions }
  290. IF_PRESCOTT = $09000000;
  291. IF_X86_64 = $0a000000;
  292. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  293. IF_AMD = $0c000000; { AMD-specific instruction }
  294. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  295. { added flags }
  296. IF_PRE = $40000000; { it's a prefix instruction }
  297. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  298. type
  299. TInsTabCache=array[TasmOp] of longint;
  300. PInsTabCache=^TInsTabCache;
  301. const
  302. {$ifdef x86_64}
  303. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  304. {$else x86_64}
  305. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  306. {$endif x86_64}
  307. var
  308. InsTabCache : PInsTabCache;
  309. const
  310. {$ifdef x86_64}
  311. { Intel style operands ! }
  312. opsize_2_type:array[0..2,topsize] of longint=(
  313. (OT_NONE,
  314. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  315. OT_BITS16,OT_BITS32,OT_BITS64,
  316. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  317. OT_BITS64,
  318. OT_NEAR,OT_FAR,OT_SHORT,
  319. OT_NONE,
  320. OT_NONE
  321. ),
  322. (OT_NONE,
  323. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  324. OT_BITS16,OT_BITS32,OT_BITS64,
  325. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  326. OT_BITS64,
  327. OT_NEAR,OT_FAR,OT_SHORT,
  328. OT_NONE,
  329. OT_NONE
  330. ),
  331. (OT_NONE,
  332. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  333. OT_BITS16,OT_BITS32,OT_BITS64,
  334. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  335. OT_BITS64,
  336. OT_NEAR,OT_FAR,OT_SHORT,
  337. OT_NONE,
  338. OT_NONE
  339. )
  340. );
  341. reg_ot_table : array[tregisterindex] of longint = (
  342. {$i r8664ot.inc}
  343. );
  344. {$else x86_64}
  345. { Intel style operands ! }
  346. opsize_2_type:array[0..2,topsize] of longint=(
  347. (OT_NONE,
  348. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  349. OT_BITS16,OT_BITS32,OT_BITS64,
  350. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  351. OT_BITS64,
  352. OT_NEAR,OT_FAR,OT_SHORT,
  353. OT_NONE,
  354. OT_NONE
  355. ),
  356. (OT_NONE,
  357. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  358. OT_BITS16,OT_BITS32,OT_BITS64,
  359. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  360. OT_BITS64,
  361. OT_NEAR,OT_FAR,OT_SHORT,
  362. OT_NONE,
  363. OT_NONE
  364. ),
  365. (OT_NONE,
  366. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  367. OT_BITS16,OT_BITS32,OT_BITS64,
  368. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  369. OT_BITS64,
  370. OT_NEAR,OT_FAR,OT_SHORT,
  371. OT_NONE,
  372. OT_NONE
  373. )
  374. );
  375. reg_ot_table : array[tregisterindex] of longint = (
  376. {$i r386ot.inc}
  377. );
  378. {$endif x86_64}
  379. { Operation type for spilling code }
  380. type
  381. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  382. var
  383. operation_type_table : ^toperation_type_table;
  384. {****************************************************************************
  385. TAI_ALIGN
  386. ****************************************************************************}
  387. constructor tai_align.create(b: byte);
  388. begin
  389. inherited create(b);
  390. reg:=NR_ECX;
  391. end;
  392. constructor tai_align.create_op(b: byte; _op: byte);
  393. begin
  394. inherited create_op(b,_op);
  395. reg:=NR_NO;
  396. end;
  397. function tai_align.calculatefillbuf(var buf : tfillbuffer):pchar;
  398. const
  399. {$ifdef x86_64}
  400. alignarray:array[0..3] of string[4]=(
  401. #$66#$66#$66#$90,
  402. #$66#$66#$90,
  403. #$66#$90,
  404. #$90
  405. );
  406. {$else x86_64}
  407. alignarray:array[0..5] of string[8]=(
  408. #$8D#$B4#$26#$00#$00#$00#$00,
  409. #$8D#$B6#$00#$00#$00#$00,
  410. #$8D#$74#$26#$00,
  411. #$8D#$76#$00,
  412. #$89#$F6,
  413. #$90);
  414. {$endif x86_64}
  415. var
  416. bufptr : pchar;
  417. j : longint;
  418. begin
  419. inherited calculatefillbuf(buf);
  420. if not use_op then
  421. begin
  422. bufptr:=pchar(@buf);
  423. while (fillsize>0) do
  424. begin
  425. for j:=low(alignarray) to high(alignarray) do
  426. if (fillsize>=length(alignarray[j])) then
  427. break;
  428. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  429. inc(bufptr,length(alignarray[j]));
  430. dec(fillsize,length(alignarray[j]));
  431. end;
  432. end;
  433. calculatefillbuf:=pchar(@buf);
  434. end;
  435. {*****************************************************************************
  436. Taicpu Constructors
  437. *****************************************************************************}
  438. procedure taicpu.changeopsize(siz:topsize);
  439. begin
  440. opsize:=siz;
  441. end;
  442. procedure taicpu.init(_size : topsize);
  443. begin
  444. { default order is att }
  445. FOperandOrder:=op_att;
  446. segprefix:=NR_NO;
  447. opsize:=_size;
  448. insentry:=nil;
  449. LastInsOffset:=-1;
  450. InsOffset:=0;
  451. InsSize:=0;
  452. end;
  453. constructor taicpu.op_none(op : tasmop);
  454. begin
  455. inherited create(op);
  456. init(S_NO);
  457. end;
  458. constructor taicpu.op_none(op : tasmop;_size : topsize);
  459. begin
  460. inherited create(op);
  461. init(_size);
  462. end;
  463. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  464. begin
  465. inherited create(op);
  466. init(_size);
  467. ops:=1;
  468. loadreg(0,_op1);
  469. end;
  470. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  471. begin
  472. inherited create(op);
  473. init(_size);
  474. ops:=1;
  475. loadconst(0,_op1);
  476. end;
  477. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  478. begin
  479. inherited create(op);
  480. init(_size);
  481. ops:=1;
  482. loadref(0,_op1);
  483. end;
  484. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  485. begin
  486. inherited create(op);
  487. init(_size);
  488. ops:=2;
  489. loadreg(0,_op1);
  490. loadreg(1,_op2);
  491. end;
  492. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  493. begin
  494. inherited create(op);
  495. init(_size);
  496. ops:=2;
  497. loadreg(0,_op1);
  498. loadconst(1,_op2);
  499. end;
  500. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  501. begin
  502. inherited create(op);
  503. init(_size);
  504. ops:=2;
  505. loadreg(0,_op1);
  506. loadref(1,_op2);
  507. end;
  508. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  509. begin
  510. inherited create(op);
  511. init(_size);
  512. ops:=2;
  513. loadconst(0,_op1);
  514. loadreg(1,_op2);
  515. end;
  516. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  517. begin
  518. inherited create(op);
  519. init(_size);
  520. ops:=2;
  521. loadconst(0,_op1);
  522. loadconst(1,_op2);
  523. end;
  524. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  525. begin
  526. inherited create(op);
  527. init(_size);
  528. ops:=2;
  529. loadconst(0,_op1);
  530. loadref(1,_op2);
  531. end;
  532. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  533. begin
  534. inherited create(op);
  535. init(_size);
  536. ops:=2;
  537. loadref(0,_op1);
  538. loadreg(1,_op2);
  539. end;
  540. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  541. begin
  542. inherited create(op);
  543. init(_size);
  544. ops:=3;
  545. loadreg(0,_op1);
  546. loadreg(1,_op2);
  547. loadreg(2,_op3);
  548. end;
  549. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  550. begin
  551. inherited create(op);
  552. init(_size);
  553. ops:=3;
  554. loadconst(0,_op1);
  555. loadreg(1,_op2);
  556. loadreg(2,_op3);
  557. end;
  558. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  559. begin
  560. inherited create(op);
  561. init(_size);
  562. ops:=3;
  563. loadreg(0,_op1);
  564. loadreg(1,_op2);
  565. loadref(2,_op3);
  566. end;
  567. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  568. begin
  569. inherited create(op);
  570. init(_size);
  571. ops:=3;
  572. loadconst(0,_op1);
  573. loadref(1,_op2);
  574. loadreg(2,_op3);
  575. end;
  576. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  577. begin
  578. inherited create(op);
  579. init(_size);
  580. ops:=3;
  581. loadconst(0,_op1);
  582. loadreg(1,_op2);
  583. loadref(2,_op3);
  584. end;
  585. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  586. begin
  587. inherited create(op);
  588. init(_size);
  589. condition:=cond;
  590. ops:=1;
  591. loadsymbol(0,_op1,0);
  592. end;
  593. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  594. begin
  595. inherited create(op);
  596. init(_size);
  597. ops:=1;
  598. loadsymbol(0,_op1,0);
  599. end;
  600. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  601. begin
  602. inherited create(op);
  603. init(_size);
  604. ops:=1;
  605. loadsymbol(0,_op1,_op1ofs);
  606. end;
  607. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  608. begin
  609. inherited create(op);
  610. init(_size);
  611. ops:=2;
  612. loadsymbol(0,_op1,_op1ofs);
  613. loadreg(1,_op2);
  614. end;
  615. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  616. begin
  617. inherited create(op);
  618. init(_size);
  619. ops:=2;
  620. loadsymbol(0,_op1,_op1ofs);
  621. loadref(1,_op2);
  622. end;
  623. function taicpu.GetString:string;
  624. var
  625. i : longint;
  626. s : string;
  627. addsize : boolean;
  628. begin
  629. s:='['+std_op2str[opcode];
  630. for i:=0 to ops-1 do
  631. begin
  632. with oper[i]^ do
  633. begin
  634. if i=0 then
  635. s:=s+' '
  636. else
  637. s:=s+',';
  638. { type }
  639. addsize:=false;
  640. if (ot and OT_XMMREG)=OT_XMMREG then
  641. s:=s+'xmmreg'
  642. else
  643. if (ot and OT_MMXREG)=OT_MMXREG then
  644. s:=s+'mmxreg'
  645. else
  646. if (ot and OT_FPUREG)=OT_FPUREG then
  647. s:=s+'fpureg'
  648. else
  649. if (ot and OT_REGISTER)=OT_REGISTER then
  650. begin
  651. s:=s+'reg';
  652. addsize:=true;
  653. end
  654. else
  655. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  656. begin
  657. s:=s+'imm';
  658. addsize:=true;
  659. end
  660. else
  661. if (ot and OT_MEMORY)=OT_MEMORY then
  662. begin
  663. s:=s+'mem';
  664. addsize:=true;
  665. end
  666. else
  667. s:=s+'???';
  668. { size }
  669. if addsize then
  670. begin
  671. if (ot and OT_BITS8)<>0 then
  672. s:=s+'8'
  673. else
  674. if (ot and OT_BITS16)<>0 then
  675. s:=s+'16'
  676. else
  677. if (ot and OT_BITS32)<>0 then
  678. s:=s+'32'
  679. else
  680. if (ot and OT_BITS64)<>0 then
  681. s:=s+'64'
  682. else
  683. s:=s+'??';
  684. { signed }
  685. if (ot and OT_SIGNED)<>0 then
  686. s:=s+'s';
  687. end;
  688. end;
  689. end;
  690. GetString:=s+']';
  691. end;
  692. procedure taicpu.Swapoperands;
  693. var
  694. p : POper;
  695. begin
  696. { Fix the operands which are in AT&T style and we need them in Intel style }
  697. case ops of
  698. 2 : begin
  699. { 0,1 -> 1,0 }
  700. p:=oper[0];
  701. oper[0]:=oper[1];
  702. oper[1]:=p;
  703. end;
  704. 3 : begin
  705. { 0,1,2 -> 2,1,0 }
  706. p:=oper[0];
  707. oper[0]:=oper[2];
  708. oper[2]:=p;
  709. end;
  710. end;
  711. end;
  712. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  713. begin
  714. if FOperandOrder<>order then
  715. begin
  716. Swapoperands;
  717. FOperandOrder:=order;
  718. end;
  719. end;
  720. procedure taicpu.CheckNonCommutativeOpcodes;
  721. begin
  722. { we need ATT order }
  723. SetOperandOrder(op_att);
  724. if (
  725. (ops=2) and
  726. (oper[0]^.typ=top_reg) and
  727. (oper[1]^.typ=top_reg) and
  728. { if the first is ST and the second is also a register
  729. it is necessarily ST1 .. ST7 }
  730. ((oper[0]^.reg=NR_ST) or
  731. (oper[0]^.reg=NR_ST0))
  732. ) or
  733. { ((ops=1) and
  734. (oper[0]^.typ=top_reg) and
  735. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  736. (ops=0) then
  737. begin
  738. if opcode=A_FSUBR then
  739. opcode:=A_FSUB
  740. else if opcode=A_FSUB then
  741. opcode:=A_FSUBR
  742. else if opcode=A_FDIVR then
  743. opcode:=A_FDIV
  744. else if opcode=A_FDIV then
  745. opcode:=A_FDIVR
  746. else if opcode=A_FSUBRP then
  747. opcode:=A_FSUBP
  748. else if opcode=A_FSUBP then
  749. opcode:=A_FSUBRP
  750. else if opcode=A_FDIVRP then
  751. opcode:=A_FDIVP
  752. else if opcode=A_FDIVP then
  753. opcode:=A_FDIVRP;
  754. end;
  755. if (
  756. (ops=1) and
  757. (oper[0]^.typ=top_reg) and
  758. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  759. (oper[0]^.reg<>NR_ST)
  760. ) then
  761. begin
  762. if opcode=A_FSUBRP then
  763. opcode:=A_FSUBP
  764. else if opcode=A_FSUBP then
  765. opcode:=A_FSUBRP
  766. else if opcode=A_FDIVRP then
  767. opcode:=A_FDIVP
  768. else if opcode=A_FDIVP then
  769. opcode:=A_FDIVRP;
  770. end;
  771. end;
  772. {*****************************************************************************
  773. Assembler
  774. *****************************************************************************}
  775. type
  776. ea = packed record
  777. sib_present : boolean;
  778. bytes : byte;
  779. size : byte;
  780. modrm : byte;
  781. sib : byte;
  782. {$ifdef x86_64}
  783. rex_present : boolean;
  784. rex : byte;
  785. {$endif x86_64}
  786. end;
  787. procedure taicpu.create_ot(objdata:TObjData);
  788. {
  789. this function will also fix some other fields which only needs to be once
  790. }
  791. var
  792. i,l,relsize : longint;
  793. currsym : TObjSymbol;
  794. begin
  795. if ops=0 then
  796. exit;
  797. { update oper[].ot field }
  798. for i:=0 to ops-1 do
  799. with oper[i]^ do
  800. begin
  801. case typ of
  802. top_reg :
  803. begin
  804. ot:=reg_ot_table[findreg_by_number(reg)];
  805. end;
  806. top_ref :
  807. begin
  808. if (ref^.refaddr=addr_no)
  809. {$ifdef x86_64}
  810. or (
  811. (ref^.refaddr=addr_pic) and
  812. (ref^.base<>NR_NO)
  813. )
  814. {$endif x86_64}
  815. then
  816. begin
  817. { create ot field }
  818. if (ot and OT_SIZE_MASK)=0 then
  819. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  820. else
  821. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  822. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  823. ot:=ot or OT_MEM_OFFS;
  824. { fix scalefactor }
  825. if (ref^.index=NR_NO) then
  826. ref^.scalefactor:=0
  827. else
  828. if (ref^.scalefactor=0) then
  829. ref^.scalefactor:=1;
  830. end
  831. else
  832. begin
  833. if assigned(objdata) then
  834. begin
  835. currsym:=objdata.symbolref(ref^.symbol);
  836. l:=ref^.offset;
  837. if assigned(currsym) then
  838. inc(l,currsym.address);
  839. { when it is a forward jump we need to compensate the
  840. offset of the instruction since the previous time,
  841. because the symbol address is then still using the
  842. 'old-style' addressing.
  843. For backwards jumps this is not required because the
  844. address of the symbol is already adjusted to the
  845. new offset }
  846. if (l>InsOffset) and (LastInsOffset<>-1) then
  847. inc(l,InsOffset-LastInsOffset);
  848. { instruction size will then always become 2 (PFV) }
  849. relsize:=(InsOffset+2)-l;
  850. if (relsize>=-128) and (relsize<=127) and
  851. (
  852. not assigned(currsym) or
  853. (currsym.objsection=objdata.currobjsec)
  854. ) then
  855. ot:=OT_IMM8 or OT_SHORT
  856. else
  857. ot:=OT_IMM32 or OT_NEAR;
  858. end
  859. else
  860. ot:=OT_IMM32 or OT_NEAR;
  861. end;
  862. end;
  863. top_local :
  864. begin
  865. if (ot and OT_SIZE_MASK)=0 then
  866. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  867. else
  868. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  869. end;
  870. top_const :
  871. begin
  872. { allow 2nd or 3rd operand being a constant and expect no size for shuf* etc. }
  873. if (opsize=S_NO) and not(i in [1,2]) then
  874. message(asmr_e_invalid_opcode_and_operand);
  875. if (opsize<>S_W) and (longint(val)>=-128) and (val<=127) then
  876. ot:=OT_IMM8 or OT_SIGNED
  877. else
  878. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  879. end;
  880. top_none :
  881. begin
  882. { generated when there was an error in the
  883. assembler reader. It never happends when generating
  884. assembler }
  885. end;
  886. else
  887. internalerror(200402261);
  888. end;
  889. end;
  890. end;
  891. function taicpu.InsEnd:longint;
  892. begin
  893. InsEnd:=InsOffset+InsSize;
  894. end;
  895. function taicpu.Matches(p:PInsEntry):boolean;
  896. { * IF_SM stands for Size Match: any operand whose size is not
  897. * explicitly specified by the template is `really' intended to be
  898. * the same size as the first size-specified operand.
  899. * Non-specification is tolerated in the input instruction, but
  900. * _wrong_ specification is not.
  901. *
  902. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  903. * three-operand instructions such as SHLD: it implies that the
  904. * first two operands must match in size, but that the third is
  905. * required to be _unspecified_.
  906. *
  907. * IF_SB invokes Size Byte: operands with unspecified size in the
  908. * template are really bytes, and so no non-byte specification in
  909. * the input instruction will be tolerated. IF_SW similarly invokes
  910. * Size Word, and IF_SD invokes Size Doubleword.
  911. *
  912. * (The default state if neither IF_SM nor IF_SM2 is specified is
  913. * that any operand with unspecified size in the template is
  914. * required to have unspecified size in the instruction too...)
  915. }
  916. var
  917. insot,
  918. currot,
  919. i,j,asize,oprs : longint;
  920. insflags:cardinal;
  921. siz : array[0..2] of longint;
  922. begin
  923. result:=false;
  924. { Check the opcode and operands }
  925. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  926. exit;
  927. for i:=0 to p^.ops-1 do
  928. begin
  929. insot:=p^.optypes[i];
  930. currot:=oper[i]^.ot;
  931. { Check the operand flags }
  932. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  933. exit;
  934. { Check if the passed operand size matches with one of
  935. the supported operand sizes }
  936. if ((insot and OT_SIZE_MASK)<>0) and
  937. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  938. exit;
  939. end;
  940. { Check operand sizes }
  941. insflags:=p^.flags;
  942. if insflags and IF_SMASK<>0 then
  943. begin
  944. { as default an untyped size can get all the sizes, this is different
  945. from nasm, but else we need to do a lot checking which opcodes want
  946. size or not with the automatic size generation }
  947. asize:=-1;
  948. if (insflags and IF_SB)<>0 then
  949. asize:=OT_BITS8
  950. else if (insflags and IF_SW)<>0 then
  951. asize:=OT_BITS16
  952. else if (insflags and IF_SD)<>0 then
  953. asize:=OT_BITS32;
  954. if (insflags and IF_ARMASK)<>0 then
  955. begin
  956. siz[0]:=0;
  957. siz[1]:=0;
  958. siz[2]:=0;
  959. if (insflags and IF_AR0)<>0 then
  960. siz[0]:=asize
  961. else if (insflags and IF_AR1)<>0 then
  962. siz[1]:=asize
  963. else if (insflags and IF_AR2)<>0 then
  964. siz[2]:=asize;
  965. end
  966. else
  967. begin
  968. siz[0]:=asize;
  969. siz[1]:=asize;
  970. siz[2]:=asize;
  971. end;
  972. if (insflags and (IF_SM or IF_SM2))<>0 then
  973. begin
  974. if (insflags and IF_SM2)<>0 then
  975. oprs:=2
  976. else
  977. oprs:=p^.ops;
  978. for i:=0 to oprs-1 do
  979. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  980. begin
  981. for j:=0 to oprs-1 do
  982. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  983. break;
  984. end;
  985. end
  986. else
  987. oprs:=2;
  988. { Check operand sizes }
  989. for i:=0 to p^.ops-1 do
  990. begin
  991. insot:=p^.optypes[i];
  992. currot:=oper[i]^.ot;
  993. if ((insot and OT_SIZE_MASK)=0) and
  994. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  995. { Immediates can always include smaller size }
  996. ((currot and OT_IMMEDIATE)=0) and
  997. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  998. exit;
  999. end;
  1000. end;
  1001. result:=true;
  1002. end;
  1003. procedure taicpu.ResetPass1;
  1004. begin
  1005. { we need to reset everything here, because the choosen insentry
  1006. can be invalid for a new situation where the previously optimized
  1007. insentry is not correct }
  1008. InsEntry:=nil;
  1009. InsSize:=0;
  1010. LastInsOffset:=-1;
  1011. end;
  1012. procedure taicpu.ResetPass2;
  1013. begin
  1014. { we are here in a second pass, check if the instruction can be optimized }
  1015. if assigned(InsEntry) and
  1016. ((InsEntry^.flags and IF_PASS2)<>0) then
  1017. begin
  1018. InsEntry:=nil;
  1019. InsSize:=0;
  1020. end;
  1021. LastInsOffset:=-1;
  1022. end;
  1023. function taicpu.CheckIfValid:boolean;
  1024. begin
  1025. result:=FindInsEntry(nil);
  1026. end;
  1027. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1028. var
  1029. i : longint;
  1030. begin
  1031. result:=false;
  1032. { Things which may only be done once, not when a second pass is done to
  1033. optimize }
  1034. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1035. begin
  1036. { We need intel style operands }
  1037. SetOperandOrder(op_intel);
  1038. { create the .ot fields }
  1039. create_ot(objdata);
  1040. { set the file postion }
  1041. current_filepos:=fileinfo;
  1042. end
  1043. else
  1044. begin
  1045. { we've already an insentry so it's valid }
  1046. result:=true;
  1047. exit;
  1048. end;
  1049. { Lookup opcode in the table }
  1050. InsSize:=-1;
  1051. i:=instabcache^[opcode];
  1052. if i=-1 then
  1053. begin
  1054. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1055. exit;
  1056. end;
  1057. insentry:=@instab[i];
  1058. while (insentry^.opcode=opcode) do
  1059. begin
  1060. if matches(insentry) then
  1061. begin
  1062. result:=true;
  1063. exit;
  1064. end;
  1065. inc(insentry);
  1066. end;
  1067. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1068. { No instruction found, set insentry to nil and inssize to -1 }
  1069. insentry:=nil;
  1070. inssize:=-1;
  1071. end;
  1072. function taicpu.Pass1(objdata:TObjData):longint;
  1073. begin
  1074. Pass1:=0;
  1075. { Save the old offset and set the new offset }
  1076. InsOffset:=ObjData.CurrObjSec.Size;
  1077. { Error? }
  1078. if (Insentry=nil) and (InsSize=-1) then
  1079. exit;
  1080. { set the file postion }
  1081. current_filepos:=fileinfo;
  1082. { Get InsEntry }
  1083. if FindInsEntry(ObjData) then
  1084. begin
  1085. { Calculate instruction size }
  1086. InsSize:=calcsize(insentry);
  1087. if segprefix<>NR_NO then
  1088. inc(InsSize);
  1089. { Fix opsize if size if forced }
  1090. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1091. begin
  1092. if (insentry^.flags and IF_ARMASK)=0 then
  1093. begin
  1094. if (insentry^.flags and IF_SB)<>0 then
  1095. begin
  1096. if opsize=S_NO then
  1097. opsize:=S_B;
  1098. end
  1099. else if (insentry^.flags and IF_SW)<>0 then
  1100. begin
  1101. if opsize=S_NO then
  1102. opsize:=S_W;
  1103. end
  1104. else if (insentry^.flags and IF_SD)<>0 then
  1105. begin
  1106. if opsize=S_NO then
  1107. opsize:=S_L;
  1108. end;
  1109. end;
  1110. end;
  1111. LastInsOffset:=InsOffset;
  1112. Pass1:=InsSize;
  1113. exit;
  1114. end;
  1115. LastInsOffset:=-1;
  1116. end;
  1117. procedure taicpu.Pass2(objdata:TObjData);
  1118. var
  1119. c : longint;
  1120. begin
  1121. { error in pass1 ? }
  1122. if insentry=nil then
  1123. exit;
  1124. current_filepos:=fileinfo;
  1125. { Segment override }
  1126. if (segprefix<>NR_NO) then
  1127. begin
  1128. case segprefix of
  1129. NR_CS : c:=$2e;
  1130. NR_DS : c:=$3e;
  1131. NR_ES : c:=$26;
  1132. NR_FS : c:=$64;
  1133. NR_GS : c:=$65;
  1134. NR_SS : c:=$36;
  1135. end;
  1136. objdata.writebytes(c,1);
  1137. { fix the offset for GenNode }
  1138. inc(InsOffset);
  1139. end;
  1140. { Generate the instruction }
  1141. GenCode(objdata);
  1142. end;
  1143. function taicpu.needaddrprefix(opidx:byte):boolean;
  1144. begin
  1145. result:=(oper[opidx]^.typ=top_ref) and
  1146. (oper[opidx]^.ref^.refaddr=addr_no) and
  1147. (
  1148. (
  1149. (oper[opidx]^.ref^.index<>NR_NO) and
  1150. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1151. ) or
  1152. (
  1153. (oper[opidx]^.ref^.base<>NR_NO) and
  1154. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1155. )
  1156. );
  1157. end;
  1158. function regval(r:Tregister):byte;
  1159. const
  1160. {$ifdef x86_64}
  1161. opcode_table:array[tregisterindex] of tregisterindex = (
  1162. {$i r8664op.inc}
  1163. );
  1164. {$else x86_64}
  1165. opcode_table:array[tregisterindex] of tregisterindex = (
  1166. {$i r386op.inc}
  1167. );
  1168. {$endif x86_64}
  1169. var
  1170. regidx : tregisterindex;
  1171. begin
  1172. regidx:=findreg_by_number(r);
  1173. if regidx<>0 then
  1174. result:=opcode_table[regidx]
  1175. else
  1176. begin
  1177. Message1(asmw_e_invalid_register,generic_regname(r));
  1178. result:=0;
  1179. end;
  1180. end;
  1181. {$ifdef x86_64}
  1182. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1183. var
  1184. sym : tasmsymbol;
  1185. md,s,rv : byte;
  1186. base,index,scalefactor,
  1187. o : longint;
  1188. ir,br : Tregister;
  1189. isub,bsub : tsubregister;
  1190. begin
  1191. process_ea:=false;
  1192. fillchar(output,sizeof(output),0);
  1193. {Register ?}
  1194. if (input.typ=top_reg) then
  1195. begin
  1196. rv:=regval(input.reg);
  1197. output.modrm:=$c0 or (rfield shl 3) or rv;
  1198. output.size:=1;
  1199. if ((getregtype(input.reg)=R_INTREGISTER) and
  1200. (getsupreg(input.reg)>=RS_R8)) or
  1201. ((getregtype(input.reg)=R_MMREGISTER) and
  1202. (getsupreg(input.reg)>=RS_XMM8)) then
  1203. begin
  1204. output.rex_present:=true;
  1205. output.rex:=output.rex or $41;
  1206. inc(output.size,1);
  1207. end
  1208. else if (getregtype(input.reg)=R_INTREGISTER) and
  1209. (getsubreg(input.reg)=R_SUBL) and
  1210. (getsupreg(input.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1211. begin
  1212. output.rex_present:=true;
  1213. output.rex:=output.rex or $40;
  1214. inc(output.size,1);
  1215. end;
  1216. process_ea:=true;
  1217. exit;
  1218. end;
  1219. {No register, so memory reference.}
  1220. if input.typ<>top_ref then
  1221. internalerror(200409263);
  1222. ir:=input.ref^.index;
  1223. br:=input.ref^.base;
  1224. isub:=getsubreg(ir);
  1225. bsub:=getsubreg(br);
  1226. s:=input.ref^.scalefactor;
  1227. o:=input.ref^.offset;
  1228. sym:=input.ref^.symbol;
  1229. if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1230. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1231. internalerror(200301081);
  1232. { it's direct address }
  1233. if (br=NR_NO) and (ir=NR_NO) then
  1234. begin
  1235. output.sib_present:=true;
  1236. output.bytes:=4;
  1237. output.modrm:=4 or (rfield shl 3);
  1238. output.sib:=$25;
  1239. end
  1240. else if (br=NR_RIP) and (ir=NR_NO) then
  1241. begin
  1242. { rip based }
  1243. output.sib_present:=false;
  1244. output.bytes:=4;
  1245. output.modrm:=5 or (rfield shl 3);
  1246. end
  1247. else
  1248. { it's an indirection }
  1249. begin
  1250. { 16 bit or 32 bit address? }
  1251. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1252. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1253. message(asmw_e_16bit_32bit_not_supported);
  1254. { wrong, for various reasons }
  1255. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1256. exit;
  1257. if ((getregtype(br)=R_INTREGISTER) and
  1258. (getsupreg(br)>=RS_R8)) or
  1259. ((getregtype(br)=R_MMREGISTER) and
  1260. (getsupreg(br)>=RS_XMM8)) then
  1261. begin
  1262. output.rex_present:=true;
  1263. output.rex:=output.rex or $41;
  1264. end;
  1265. if ((getregtype(ir)=R_INTREGISTER) and
  1266. (getsupreg(ir)>=RS_R8)) or
  1267. ((getregtype(ir)=R_MMREGISTER) and
  1268. (getsupreg(ir)>=RS_XMM8)) then
  1269. begin
  1270. output.rex_present:=true;
  1271. output.rex:=output.rex or $42;
  1272. end;
  1273. process_ea:=true;
  1274. { base }
  1275. case br of
  1276. NR_R8,
  1277. NR_RAX : base:=0;
  1278. NR_R9,
  1279. NR_RCX : base:=1;
  1280. NR_R10,
  1281. NR_RDX : base:=2;
  1282. NR_R11,
  1283. NR_RBX : base:=3;
  1284. NR_R12,
  1285. NR_RSP : base:=4;
  1286. NR_R13,
  1287. NR_NO,
  1288. NR_RBP : base:=5;
  1289. NR_R14,
  1290. NR_RSI : base:=6;
  1291. NR_R15,
  1292. NR_RDI : base:=7;
  1293. else
  1294. exit;
  1295. end;
  1296. { index }
  1297. case ir of
  1298. NR_R8,
  1299. NR_RAX : index:=0;
  1300. NR_R9,
  1301. NR_RCX : index:=1;
  1302. NR_R10,
  1303. NR_RDX : index:=2;
  1304. NR_R11,
  1305. NR_RBX : index:=3;
  1306. NR_R12,
  1307. NR_NO : index:=4;
  1308. NR_R13,
  1309. NR_RBP : index:=5;
  1310. NR_R14,
  1311. NR_RSI : index:=6;
  1312. NR_R15,
  1313. NR_RDI : index:=7;
  1314. else
  1315. exit;
  1316. end;
  1317. case s of
  1318. 0,
  1319. 1 : scalefactor:=0;
  1320. 2 : scalefactor:=1;
  1321. 4 : scalefactor:=2;
  1322. 8 : scalefactor:=3;
  1323. else
  1324. exit;
  1325. end;
  1326. { If rbp or r13 is used we must always include an offset }
  1327. if (br=NR_NO) or
  1328. ((br<>NR_RBP) and (br<>NR_R13) and (o=0) and (sym=nil)) then
  1329. md:=0
  1330. else
  1331. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1332. md:=1
  1333. else
  1334. md:=2;
  1335. if (br=NR_NO) or (md=2) then
  1336. output.bytes:=4
  1337. else
  1338. output.bytes:=md;
  1339. { SIB needed ? }
  1340. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) then
  1341. begin
  1342. output.sib_present:=false;
  1343. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1344. end
  1345. else
  1346. begin
  1347. output.sib_present:=true;
  1348. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1349. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1350. end;
  1351. end;
  1352. output.size:=1+ord(output.sib_present)+ord(output.rex_present)+output.bytes;
  1353. process_ea:=true;
  1354. end;
  1355. {$else x86_64}
  1356. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1357. var
  1358. sym : tasmsymbol;
  1359. md,s,rv : byte;
  1360. base,index,scalefactor,
  1361. o : longint;
  1362. ir,br : Tregister;
  1363. isub,bsub : tsubregister;
  1364. begin
  1365. process_ea:=false;
  1366. fillchar(output,sizeof(output),0);
  1367. {Register ?}
  1368. if (input.typ=top_reg) then
  1369. begin
  1370. rv:=regval(input.reg);
  1371. output.modrm:=$c0 or (rfield shl 3) or rv;
  1372. output.size:=1;
  1373. process_ea:=true;
  1374. exit;
  1375. end;
  1376. {No register, so memory reference.}
  1377. if (input.typ<>top_ref) then
  1378. internalerror(200409262);
  1379. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1380. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1381. internalerror(200301081);
  1382. ir:=input.ref^.index;
  1383. br:=input.ref^.base;
  1384. isub:=getsubreg(ir);
  1385. bsub:=getsubreg(br);
  1386. s:=input.ref^.scalefactor;
  1387. o:=input.ref^.offset;
  1388. sym:=input.ref^.symbol;
  1389. { it's direct address }
  1390. if (br=NR_NO) and (ir=NR_NO) then
  1391. begin
  1392. { it's a pure offset }
  1393. output.sib_present:=false;
  1394. output.bytes:=4;
  1395. output.modrm:=5 or (rfield shl 3);
  1396. end
  1397. else
  1398. { it's an indirection }
  1399. begin
  1400. { 16 bit address? }
  1401. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1402. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1403. message(asmw_e_16bit_not_supported);
  1404. {$ifdef OPTEA}
  1405. { make single reg base }
  1406. if (br=NR_NO) and (s=1) then
  1407. begin
  1408. br:=ir;
  1409. ir:=NR_NO;
  1410. end;
  1411. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1412. if (br=NR_NO) and
  1413. (((s=2) and (ir<>NR_ESP)) or
  1414. (s=3) or (s=5) or (s=9)) then
  1415. begin
  1416. br:=ir;
  1417. dec(s);
  1418. end;
  1419. { swap ESP into base if scalefactor is 1 }
  1420. if (s=1) and (ir=NR_ESP) then
  1421. begin
  1422. ir:=br;
  1423. br:=NR_ESP;
  1424. end;
  1425. {$endif OPTEA}
  1426. { wrong, for various reasons }
  1427. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1428. exit;
  1429. { base }
  1430. case br of
  1431. NR_EAX : base:=0;
  1432. NR_ECX : base:=1;
  1433. NR_EDX : base:=2;
  1434. NR_EBX : base:=3;
  1435. NR_ESP : base:=4;
  1436. NR_NO,
  1437. NR_EBP : base:=5;
  1438. NR_ESI : base:=6;
  1439. NR_EDI : base:=7;
  1440. else
  1441. exit;
  1442. end;
  1443. { index }
  1444. case ir of
  1445. NR_EAX : index:=0;
  1446. NR_ECX : index:=1;
  1447. NR_EDX : index:=2;
  1448. NR_EBX : index:=3;
  1449. NR_NO : index:=4;
  1450. NR_EBP : index:=5;
  1451. NR_ESI : index:=6;
  1452. NR_EDI : index:=7;
  1453. else
  1454. exit;
  1455. end;
  1456. case s of
  1457. 0,
  1458. 1 : scalefactor:=0;
  1459. 2 : scalefactor:=1;
  1460. 4 : scalefactor:=2;
  1461. 8 : scalefactor:=3;
  1462. else
  1463. exit;
  1464. end;
  1465. if (br=NR_NO) or
  1466. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1467. md:=0
  1468. else
  1469. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1470. md:=1
  1471. else
  1472. md:=2;
  1473. if (br=NR_NO) or (md=2) then
  1474. output.bytes:=4
  1475. else
  1476. output.bytes:=md;
  1477. { SIB needed ? }
  1478. if (ir=NR_NO) and (br<>NR_ESP) then
  1479. begin
  1480. output.sib_present:=false;
  1481. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1482. end
  1483. else
  1484. begin
  1485. output.sib_present:=true;
  1486. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1487. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1488. end;
  1489. end;
  1490. if output.sib_present then
  1491. output.size:=2+output.bytes
  1492. else
  1493. output.size:=1+output.bytes;
  1494. process_ea:=true;
  1495. end;
  1496. {$endif x86_64}
  1497. function taicpu.calcsize(p:PInsEntry):shortint;
  1498. var
  1499. codes : pchar;
  1500. c : byte;
  1501. len : shortint;
  1502. ea_data : ea;
  1503. begin
  1504. len:=0;
  1505. codes:=@p^.code[0];
  1506. {$ifdef x86_64}
  1507. rex:=0;
  1508. {$endif x86_64}
  1509. repeat
  1510. c:=ord(codes^);
  1511. inc(codes);
  1512. case c of
  1513. 0 :
  1514. break;
  1515. 1,2,3 :
  1516. begin
  1517. inc(codes,c);
  1518. inc(len,c);
  1519. end;
  1520. 8,9,10 :
  1521. begin
  1522. {$ifdef x86_64}
  1523. if ((getregtype(oper[c-8]^.reg)=R_INTREGISTER) and
  1524. (getsupreg(oper[c-8]^.reg)>=RS_R8)) or
  1525. ((getregtype(oper[c-8]^.reg)=R_MMREGISTER) and
  1526. (getsupreg(oper[c-8]^.reg)>=RS_XMM8)) then
  1527. begin
  1528. if rex=0 then
  1529. inc(len);
  1530. rex:=rex or $41;
  1531. end
  1532. else if (getregtype(oper[c-8]^.reg)=R_INTREGISTER) and
  1533. (getsubreg(oper[c-8]^.reg)=R_SUBL) and
  1534. (getsupreg(oper[c-8]^.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1535. begin
  1536. if rex=0 then
  1537. inc(len);
  1538. rex:=rex or $40;
  1539. end;
  1540. {$endif x86_64}
  1541. inc(codes);
  1542. inc(len);
  1543. end;
  1544. 11 :
  1545. begin
  1546. inc(codes);
  1547. inc(len);
  1548. end;
  1549. 4,5,6,7 :
  1550. begin
  1551. if opsize=S_W then
  1552. inc(len,2)
  1553. else
  1554. inc(len);
  1555. end;
  1556. 15,
  1557. 12,13,14,
  1558. 16,17,18,
  1559. 20,21,22,
  1560. 40,41,42 :
  1561. inc(len);
  1562. 24,25,26,
  1563. 31,
  1564. 48,49,50 :
  1565. inc(len,2);
  1566. 28,29,30:
  1567. begin
  1568. if opsize=S_Q then
  1569. inc(len,8)
  1570. else
  1571. inc(len,4);
  1572. end;
  1573. 32,33,34,
  1574. 52,53,54,
  1575. 56,57,58 :
  1576. inc(len,4);
  1577. 192,193,194 :
  1578. if NeedAddrPrefix(c-192) then
  1579. inc(len);
  1580. 208,209,210 :
  1581. begin
  1582. case (oper[c-208]^.ot and OT_SIZE_MASK) of
  1583. OT_BITS16:
  1584. inc(len);
  1585. {$ifdef x86_64}
  1586. OT_BITS64:
  1587. begin
  1588. if rex=0 then
  1589. inc(len);
  1590. rex:=rex or $48;
  1591. end;
  1592. {$endif x86_64}
  1593. end;
  1594. end;
  1595. 200,
  1596. 212 :
  1597. inc(len);
  1598. 214 :
  1599. begin
  1600. {$ifdef x86_64}
  1601. if rex=0 then
  1602. inc(len);
  1603. rex:=rex or $48;
  1604. {$endif x86_64}
  1605. end;
  1606. 201,
  1607. 202,
  1608. 211,
  1609. 213,
  1610. 215,
  1611. 217,218: ;
  1612. 219,220 :
  1613. inc(len);
  1614. 221:
  1615. {$ifdef x86_64}
  1616. { remove rex competely? }
  1617. if rex=$48 then
  1618. begin
  1619. rex:=0;
  1620. dec(len);
  1621. end
  1622. else
  1623. rex:=rex and $f7
  1624. {$endif x86_64}
  1625. ;
  1626. 64..191 :
  1627. begin
  1628. {$ifdef x86_64}
  1629. if (c<127) then
  1630. begin
  1631. if (oper[c and 7]^.typ=top_reg) then
  1632. begin
  1633. if ((getregtype(oper[c and 7]^.reg)=R_INTREGISTER) and
  1634. (getsupreg(oper[c and 7]^.reg)>=RS_R8)) or
  1635. ((getregtype(oper[c and 7]^.reg)=R_MMREGISTER) and
  1636. (getsupreg(oper[c and 7]^.reg)>=RS_XMM8)) then
  1637. begin
  1638. if rex=0 then
  1639. inc(len);
  1640. rex:=rex or $44;
  1641. end
  1642. else if (getregtype(oper[c and 7]^.reg)=R_INTREGISTER) and
  1643. (getsubreg(oper[c and 7]^.reg)=R_SUBL) and
  1644. (getsupreg(oper[c and 7]^.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1645. begin
  1646. if rex=0 then
  1647. inc(len);
  1648. rex:=rex or $40;
  1649. end;
  1650. end;
  1651. end;
  1652. {$endif x86_64}
  1653. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  1654. Message(asmw_e_invalid_effective_address)
  1655. else
  1656. inc(len,ea_data.size);
  1657. {$ifdef x86_64}
  1658. { did we already create include a rex into the length calculation? }
  1659. if (rex<>0) and (ea_data.rex<>0) then
  1660. dec(len);
  1661. rex:=rex or ea_data.rex;
  1662. {$endif x86_64}
  1663. end;
  1664. else
  1665. InternalError(200603141);
  1666. end;
  1667. until false;
  1668. calcsize:=len;
  1669. end;
  1670. procedure taicpu.GenCode(objdata:TObjData);
  1671. {
  1672. * the actual codes (C syntax, i.e. octal):
  1673. * \0 - terminates the code. (Unless it's a literal of course.)
  1674. * \1, \2, \3 - that many literal bytes follow in the code stream
  1675. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  1676. * (POP is never used for CS) depending on operand 0
  1677. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  1678. * on operand 0
  1679. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  1680. * to the register value of operand 0, 1 or 2
  1681. * \13 - a literal byte follows in the code stream, to be added
  1682. * to the condition code value of the instruction.
  1683. * \17 - encodes the literal byte 0. (Some compilers don't take
  1684. * kindly to a zero byte in the _middle_ of a compile time
  1685. * string constant, so I had to put this hack in.)
  1686. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  1687. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  1688. * \24, \25, \26 - an unsigned byte immediate operand, from operand 0, 1 or 2
  1689. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  1690. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  1691. * assembly mode or the address-size override on the operand
  1692. * \37 - a word constant, from the _segment_ part of operand 0
  1693. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  1694. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  1695. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  1696. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  1697. * assembly mode or the address-size override on the operand
  1698. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  1699. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  1700. * field the register value of operand b.
  1701. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  1702. * field equal to digit b.
  1703. * \300,\301,\302 - might be an 0x67 or 0x48 byte, depending on the address size of
  1704. * the memory reference in operand x.
  1705. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  1706. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  1707. * \312 - indicates fixed 64-bit address size, i.e. optional 0x48.
  1708. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  1709. * size of operand x.
  1710. * \323 - insert x86_64 REX at this position.
  1711. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  1712. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  1713. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  1714. * \327 - indicates that this instruction is only valid when the
  1715. * operand size is the default (instruction to disassembler,
  1716. * generates no code in the assembler)
  1717. * \331 - instruction not valid with REP prefix. Hint for
  1718. * disassembler only; for SSE instructions.
  1719. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  1720. * \333 - REP prefix (0xF3 byte); for SSE instructions. Not encoded
  1721. * \335 - removes rex size prefix, i.e. rex.w must be the last opcode
  1722. }
  1723. var
  1724. currval : aint;
  1725. currsym : tobjsymbol;
  1726. currrelreloc,
  1727. currabsreloc,
  1728. currabsreloc32 : TObjRelocationType;
  1729. {$ifdef x86_64}
  1730. rexwritten : boolean;
  1731. {$endif x86_64}
  1732. procedure getvalsym(opidx:longint);
  1733. begin
  1734. case oper[opidx]^.typ of
  1735. top_ref :
  1736. begin
  1737. currval:=oper[opidx]^.ref^.offset;
  1738. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  1739. {$ifdef x86_64}
  1740. if oper[opidx]^.ref^.refaddr=addr_pic then
  1741. begin
  1742. currrelreloc:=RELOC_PLT32;
  1743. currabsreloc:=RELOC_GOTPCREL;
  1744. currabsreloc32:=RELOC_GOTPCREL;
  1745. end
  1746. else
  1747. {$endif x86_64}
  1748. begin
  1749. currrelreloc:=RELOC_RELATIVE;
  1750. currabsreloc:=RELOC_ABSOLUTE;
  1751. currabsreloc32:=RELOC_ABSOLUTE32;
  1752. end;
  1753. end;
  1754. top_const :
  1755. begin
  1756. currval:=aint(oper[opidx]^.val);
  1757. currsym:=nil;
  1758. currabsreloc:=RELOC_ABSOLUTE;
  1759. currabsreloc32:=RELOC_ABSOLUTE32;
  1760. end;
  1761. else
  1762. Message(asmw_e_immediate_or_reference_expected);
  1763. end;
  1764. end;
  1765. {$ifdef x86_64}
  1766. procedure maybewriterex;
  1767. begin
  1768. if (rex<>0) and not(rexwritten) then
  1769. begin
  1770. rexwritten:=true;
  1771. objdata.writebytes(rex,1);
  1772. end;
  1773. end;
  1774. {$endif x86_64}
  1775. const
  1776. CondVal:array[TAsmCond] of byte=($0,
  1777. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  1778. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  1779. $0, $A, $A, $B, $8, $4);
  1780. var
  1781. c : byte;
  1782. pb : pbyte;
  1783. codes : pchar;
  1784. bytes : array[0..3] of byte;
  1785. rfield,
  1786. data,s,opidx : longint;
  1787. ea_data : ea;
  1788. begin
  1789. { safety check }
  1790. if objdata.currobjsec.size<>insoffset then
  1791. internalerror(200130121);
  1792. { load data to write }
  1793. codes:=insentry^.code;
  1794. {$ifdef x86_64}
  1795. rexwritten:=false;
  1796. {$endif x86_64}
  1797. { Force word push/pop for registers }
  1798. if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
  1799. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  1800. begin
  1801. bytes[0]:=$66;
  1802. objdata.writebytes(bytes,1);
  1803. end;
  1804. repeat
  1805. c:=ord(codes^);
  1806. inc(codes);
  1807. case c of
  1808. 0 :
  1809. break;
  1810. 1,2,3 :
  1811. begin
  1812. objdata.writebytes(codes^,c);
  1813. inc(codes,c);
  1814. end;
  1815. 4,6 :
  1816. begin
  1817. case oper[0]^.reg of
  1818. NR_CS:
  1819. bytes[0]:=$e;
  1820. NR_NO,
  1821. NR_DS:
  1822. bytes[0]:=$1e;
  1823. NR_ES:
  1824. bytes[0]:=$6;
  1825. NR_SS:
  1826. bytes[0]:=$16;
  1827. else
  1828. internalerror(777004);
  1829. end;
  1830. if c=4 then
  1831. inc(bytes[0]);
  1832. objdata.writebytes(bytes,1);
  1833. end;
  1834. 5,7 :
  1835. begin
  1836. case oper[0]^.reg of
  1837. NR_FS:
  1838. bytes[0]:=$a0;
  1839. NR_GS:
  1840. bytes[0]:=$a8;
  1841. else
  1842. internalerror(777005);
  1843. end;
  1844. if c=5 then
  1845. inc(bytes[0]);
  1846. objdata.writebytes(bytes,1);
  1847. end;
  1848. 8,9,10 :
  1849. begin
  1850. bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
  1851. inc(codes);
  1852. objdata.writebytes(bytes,1);
  1853. end;
  1854. 11 :
  1855. begin
  1856. bytes[0]:=ord(codes^)+condval[condition];
  1857. inc(codes);
  1858. objdata.writebytes(bytes,1);
  1859. end;
  1860. 15 :
  1861. begin
  1862. bytes[0]:=0;
  1863. objdata.writebytes(bytes,1);
  1864. end;
  1865. 12,13,14 :
  1866. begin
  1867. getvalsym(c-12);
  1868. if (currval<-128) or (currval>127) then
  1869. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  1870. if assigned(currsym) then
  1871. objdata.writereloc(currval,1,currsym,currabsreloc)
  1872. else
  1873. objdata.writebytes(currval,1);
  1874. end;
  1875. 16,17,18 :
  1876. begin
  1877. getvalsym(c-16);
  1878. if (currval<-256) or (currval>255) then
  1879. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  1880. if assigned(currsym) then
  1881. objdata.writereloc(currval,1,currsym,currabsreloc)
  1882. else
  1883. objdata.writebytes(currval,1);
  1884. end;
  1885. 20,21,22 :
  1886. begin
  1887. getvalsym(c-20);
  1888. if (currval<0) or (currval>255) then
  1889. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  1890. if assigned(currsym) then
  1891. objdata.writereloc(currval,1,currsym,currabsreloc)
  1892. else
  1893. objdata.writebytes(currval,1);
  1894. end;
  1895. 24,25,26 :
  1896. begin
  1897. getvalsym(c-24);
  1898. if (currval<-65536) or (currval>65535) then
  1899. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  1900. if assigned(currsym) then
  1901. objdata.writereloc(currval,2,currsym,currabsreloc)
  1902. else
  1903. objdata.writebytes(currval,2);
  1904. end;
  1905. 28,29,30 :
  1906. begin
  1907. getvalsym(c-28);
  1908. if opsize=S_Q then
  1909. begin
  1910. if assigned(currsym) then
  1911. objdata.writereloc(currval,8,currsym,currabsreloc)
  1912. else
  1913. objdata.writebytes(currval,8);
  1914. end
  1915. else
  1916. begin
  1917. if assigned(currsym) then
  1918. objdata.writereloc(currval,4,currsym,currabsreloc32)
  1919. else
  1920. objdata.writebytes(currval,4);
  1921. end
  1922. end;
  1923. 32,33,34 :
  1924. begin
  1925. getvalsym(c-32);
  1926. if assigned(currsym) then
  1927. objdata.writereloc(currval,4,currsym,currabsreloc32)
  1928. else
  1929. objdata.writebytes(currval,4);
  1930. end;
  1931. 40,41,42 :
  1932. begin
  1933. getvalsym(c-40);
  1934. data:=currval-insend;
  1935. if assigned(currsym) then
  1936. inc(data,currsym.address);
  1937. if (data>127) or (data<-128) then
  1938. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  1939. objdata.writebytes(data,1);
  1940. end;
  1941. 52,53,54 :
  1942. begin
  1943. getvalsym(c-52);
  1944. if assigned(currsym) then
  1945. objdata.writereloc(currval,4,currsym,currrelreloc)
  1946. else
  1947. objdata.writereloc(currval-insend,4,nil,currabsreloc32)
  1948. end;
  1949. 56,57,58 :
  1950. begin
  1951. getvalsym(c-56);
  1952. if assigned(currsym) then
  1953. objdata.writereloc(currval,4,currsym,currrelreloc)
  1954. else
  1955. objdata.writereloc(currval-insend,4,nil,currabsreloc32)
  1956. end;
  1957. 192,193,194 :
  1958. begin
  1959. if NeedAddrPrefix(c-192) then
  1960. begin
  1961. bytes[0]:=$67;
  1962. objdata.writebytes(bytes,1);
  1963. end;
  1964. end;
  1965. 200 :
  1966. begin
  1967. bytes[0]:=$67;
  1968. objdata.writebytes(bytes,1);
  1969. end;
  1970. 208,209,210 :
  1971. begin
  1972. case oper[c-208]^.ot and OT_SIZE_MASK of
  1973. OT_BITS16 :
  1974. begin
  1975. bytes[0]:=$66;
  1976. objdata.writebytes(bytes,1);
  1977. end;
  1978. {$ifndef x86_64}
  1979. OT_BITS64 :
  1980. Message(asmw_e_64bit_not_supported);
  1981. {$endif x86_64}
  1982. end;
  1983. {$ifdef x86_64}
  1984. maybewriterex;
  1985. {$endif x86_64}
  1986. end;
  1987. 211,
  1988. 213 :
  1989. begin
  1990. {$ifdef x86_64}
  1991. maybewriterex;
  1992. {$endif x86_64}
  1993. end;
  1994. 212 :
  1995. begin
  1996. bytes[0]:=$66;
  1997. objdata.writebytes(bytes,1);
  1998. {$ifdef x86_64}
  1999. maybewriterex;
  2000. {$endif x86_64}
  2001. end;
  2002. 214 :
  2003. begin
  2004. {$ifdef x86_64}
  2005. maybewriterex;
  2006. {$else x86_64}
  2007. Message(asmw_e_64bit_not_supported);
  2008. {$endif x86_64}
  2009. end;
  2010. 219 :
  2011. begin
  2012. bytes[0]:=$f3;
  2013. objdata.writebytes(bytes,1);
  2014. {$ifdef x86_64}
  2015. maybewriterex;
  2016. {$endif x86_64}
  2017. end;
  2018. 220 :
  2019. begin
  2020. bytes[0]:=$f2;
  2021. objdata.writebytes(bytes,1);
  2022. end;
  2023. 221:
  2024. ;
  2025. 201,
  2026. 202,
  2027. 215,
  2028. 217,218 :
  2029. begin
  2030. { these are dissambler hints or 32 bit prefixes which
  2031. are not needed
  2032. It's usefull to write rex :) (FK) }
  2033. {$ifdef x86_64}
  2034. maybewriterex;
  2035. {$endif x86_64}
  2036. end;
  2037. 31,
  2038. 48,49,50 :
  2039. begin
  2040. InternalError(777006);
  2041. end
  2042. else
  2043. begin
  2044. { rex should be written at this point }
  2045. {$ifdef x86_64}
  2046. if (rex<>0) and not(rexwritten) then
  2047. internalerror(200603191);
  2048. {$endif x86_64}
  2049. if (c>=64) and (c<=191) then
  2050. begin
  2051. if (c<127) then
  2052. begin
  2053. if (oper[c and 7]^.typ=top_reg) then
  2054. rfield:=regval(oper[c and 7]^.reg)
  2055. else
  2056. rfield:=regval(oper[c and 7]^.ref^.base);
  2057. end
  2058. else
  2059. rfield:=c and 7;
  2060. opidx:=(c shr 3) and 7;
  2061. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2062. Message(asmw_e_invalid_effective_address);
  2063. pb:=@bytes[0];
  2064. pb^:=ea_data.modrm;
  2065. inc(pb);
  2066. if ea_data.sib_present then
  2067. begin
  2068. pb^:=ea_data.sib;
  2069. inc(pb);
  2070. end;
  2071. s:=pb-@bytes[0];
  2072. objdata.writebytes(bytes,s);
  2073. case ea_data.bytes of
  2074. 0 : ;
  2075. 1 :
  2076. begin
  2077. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  2078. begin
  2079. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2080. {$ifdef x86_64}
  2081. if oper[opidx]^.ref^.refaddr=addr_pic then
  2082. currabsreloc:=RELOC_GOTPCREL
  2083. else
  2084. {$endif x86_64}
  2085. currabsreloc:=RELOC_ABSOLUTE;
  2086. objdata.writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  2087. end
  2088. else
  2089. begin
  2090. bytes[0]:=oper[opidx]^.ref^.offset;
  2091. objdata.writebytes(bytes,1);
  2092. end;
  2093. inc(s);
  2094. end;
  2095. 2,4 :
  2096. begin
  2097. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2098. {$ifdef x86_64}
  2099. if oper[opidx]^.ref^.refaddr=addr_pic then
  2100. currabsreloc:=RELOC_GOTPCREL
  2101. else
  2102. {$endif x86_64}
  2103. currabsreloc:=RELOC_ABSOLUTE32;
  2104. objdata.writereloc(oper[opidx]^.ref^.offset,ea_data.bytes,currsym,currabsreloc);
  2105. inc(s,ea_data.bytes);
  2106. end;
  2107. end;
  2108. end
  2109. else
  2110. InternalError(777007);
  2111. end;
  2112. end;
  2113. until false;
  2114. end;
  2115. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  2116. begin
  2117. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  2118. (regtype = R_INTREGISTER) and
  2119. (ops=2) and
  2120. (oper[0]^.typ=top_reg) and
  2121. (oper[1]^.typ=top_reg) and
  2122. (oper[0]^.reg=oper[1]^.reg)
  2123. ) or
  2124. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  2125. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD)) and
  2126. (regtype = R_MMREGISTER) and
  2127. (ops=2) and
  2128. (oper[0]^.typ=top_reg) and
  2129. (oper[1]^.typ=top_reg) and
  2130. (oper[0]^.reg=oper[1]^.reg)
  2131. );
  2132. end;
  2133. procedure build_spilling_operation_type_table;
  2134. var
  2135. opcode : tasmop;
  2136. i : integer;
  2137. begin
  2138. new(operation_type_table);
  2139. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  2140. for opcode:=low(tasmop) to high(tasmop) do
  2141. begin
  2142. for i:=1 to MaxInsChanges do
  2143. begin
  2144. case InsProp[opcode].Ch[i] of
  2145. Ch_Rop1 :
  2146. operation_type_table^[opcode,0]:=operand_read;
  2147. Ch_Wop1 :
  2148. operation_type_table^[opcode,0]:=operand_write;
  2149. Ch_RWop1,
  2150. Ch_Mop1 :
  2151. operation_type_table^[opcode,0]:=operand_readwrite;
  2152. Ch_Rop2 :
  2153. operation_type_table^[opcode,1]:=operand_read;
  2154. Ch_Wop2 :
  2155. operation_type_table^[opcode,1]:=operand_write;
  2156. Ch_RWop2,
  2157. Ch_Mop2 :
  2158. operation_type_table^[opcode,1]:=operand_readwrite;
  2159. Ch_Rop3 :
  2160. operation_type_table^[opcode,2]:=operand_read;
  2161. Ch_Wop3 :
  2162. operation_type_table^[opcode,2]:=operand_write;
  2163. Ch_RWop3,
  2164. Ch_Mop3 :
  2165. operation_type_table^[opcode,2]:=operand_readwrite;
  2166. end;
  2167. end;
  2168. end;
  2169. { Special cases that can't be decoded from the InsChanges flags }
  2170. operation_type_table^[A_IMUL,1]:=operand_readwrite;
  2171. end;
  2172. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  2173. begin
  2174. { the information in the instruction table is made for the string copy
  2175. operation MOVSD so hack here (FK)
  2176. }
  2177. if (opcode=A_MOVSD) and (ops=2) then
  2178. begin
  2179. case opnr of
  2180. 0:
  2181. result:=operand_read;
  2182. 1:
  2183. result:=operand_write;
  2184. else
  2185. internalerror(200506055);
  2186. end
  2187. end
  2188. else
  2189. result:=operation_type_table^[opcode,opnr];
  2190. end;
  2191. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  2192. begin
  2193. case getregtype(r) of
  2194. R_INTREGISTER :
  2195. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),ref,r);
  2196. R_MMREGISTER :
  2197. case getsubreg(r) of
  2198. R_SUBMMD:
  2199. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),ref,r);
  2200. R_SUBMMS:
  2201. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),ref,r);
  2202. R_SUBMMWHOLE:
  2203. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,ref,r);
  2204. else
  2205. internalerror(200506043);
  2206. end;
  2207. else
  2208. internalerror(200401041);
  2209. end;
  2210. end;
  2211. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  2212. begin
  2213. case getregtype(r) of
  2214. R_INTREGISTER :
  2215. result:=taicpu.op_reg_ref(A_MOV,reg2opsize(r),r,ref);
  2216. R_MMREGISTER :
  2217. case getsubreg(r) of
  2218. R_SUBMMD:
  2219. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,ref);
  2220. R_SUBMMS:
  2221. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,ref);
  2222. R_SUBMMWHOLE:
  2223. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,ref);
  2224. else
  2225. internalerror(200506042);
  2226. end;
  2227. else
  2228. internalerror(200401041);
  2229. end;
  2230. end;
  2231. {*****************************************************************************
  2232. Instruction table
  2233. *****************************************************************************}
  2234. procedure BuildInsTabCache;
  2235. var
  2236. i : longint;
  2237. begin
  2238. new(instabcache);
  2239. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  2240. i:=0;
  2241. while (i<InsTabEntries) do
  2242. begin
  2243. if InsTabCache^[InsTab[i].OPcode]=-1 then
  2244. InsTabCache^[InsTab[i].OPcode]:=i;
  2245. inc(i);
  2246. end;
  2247. end;
  2248. procedure InitAsm;
  2249. begin
  2250. build_spilling_operation_type_table;
  2251. if not assigned(instabcache) then
  2252. BuildInsTabCache;
  2253. end;
  2254. procedure DoneAsm;
  2255. begin
  2256. if assigned(operation_type_table) then
  2257. begin
  2258. dispose(operation_type_table);
  2259. operation_type_table:=nil;
  2260. end;
  2261. if assigned(instabcache) then
  2262. begin
  2263. dispose(instabcache);
  2264. instabcache:=nil;
  2265. end;
  2266. end;
  2267. begin
  2268. cai_align:=tai_align;
  2269. cai_cpu:=taicpu;
  2270. end.