cpubase.pas 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. cutils,cclasses,
  29. globtype,globals,
  30. cgbase
  31. ;
  32. {*****************************************************************************
  33. Assembler Opcodes
  34. *****************************************************************************}
  35. type
  36. {$if defined(x86_64)}
  37. TAsmOp={$i x8664op.inc}
  38. {$elseif defined(i386)}
  39. TAsmOp={$i i386op.inc}
  40. {$elseif defined(i8086)}
  41. TAsmOp={$i i8086op.inc}
  42. {$endif}
  43. { This should define the array of instructions as string }
  44. op2strtable=array[tasmop] of string[16];
  45. const
  46. { First value of opcode enumeration }
  47. firstop = low(tasmop);
  48. { Last value of opcode enumeration }
  49. lastop = high(tasmop);
  50. {*****************************************************************************
  51. Registers
  52. *****************************************************************************}
  53. const
  54. { Integer Super registers }
  55. RS_NO = $ffffffff;
  56. RS_RAX = $00; {EAX}
  57. RS_RCX = $01; {ECX}
  58. RS_RDX = $02; {EDX}
  59. RS_RBX = $03; {EBX}
  60. RS_RSI = $04; {ESI}
  61. RS_RDI = $05; {EDI}
  62. RS_RBP = $06; {EBP}
  63. RS_RSP = $07; {ESP}
  64. RS_R8 = $08; {R8}
  65. RS_R9 = $09; {R9}
  66. RS_R10 = $0a; {R10}
  67. RS_R11 = $0b; {R11}
  68. RS_R12 = $0c; {R12}
  69. RS_R13 = $0d; {R13}
  70. RS_R14 = $0e; {R14}
  71. RS_R15 = $0f; {R15}
  72. { create aliases to allow code sharing between x86-64 and i386 }
  73. RS_EAX = RS_RAX;
  74. RS_EBX = RS_RBX;
  75. RS_ECX = RS_RCX;
  76. RS_EDX = RS_RDX;
  77. RS_ESI = RS_RSI;
  78. RS_EDI = RS_RDI;
  79. RS_EBP = RS_RBP;
  80. RS_ESP = RS_RSP;
  81. { create aliases to allow code sharing between i386 and i8086 }
  82. RS_AX = RS_RAX;
  83. RS_BX = RS_RBX;
  84. RS_CX = RS_RCX;
  85. RS_DX = RS_RDX;
  86. RS_SI = RS_RSI;
  87. RS_DI = RS_RDI;
  88. RS_BP = RS_RBP;
  89. RS_SP = RS_RSP;
  90. { Number of first imaginary register }
  91. first_int_imreg = $10;
  92. { Float Super registers }
  93. RS_ST0 = $00;
  94. RS_ST1 = $01;
  95. RS_ST2 = $02;
  96. RS_ST3 = $03;
  97. RS_ST4 = $04;
  98. RS_ST5 = $05;
  99. RS_ST6 = $06;
  100. RS_ST7 = $07;
  101. RS_ST = $08;
  102. { Number of first imaginary register }
  103. first_fpu_imreg = $09;
  104. { MM Super registers }
  105. RS_XMM0 = $00;
  106. RS_XMM1 = $01;
  107. RS_XMM2 = $02;
  108. RS_XMM3 = $03;
  109. RS_XMM4 = $04;
  110. RS_XMM5 = $05;
  111. RS_XMM6 = $06;
  112. RS_XMM7 = $07;
  113. RS_XMM8 = $08;
  114. RS_XMM9 = $09;
  115. RS_XMM10 = $0a;
  116. RS_XMM11 = $0b;
  117. RS_XMM12 = $0c;
  118. RS_XMM13 = $0d;
  119. RS_XMM14 = $0e;
  120. RS_XMM15 = $0f;
  121. RS_FLAGS = $07;
  122. { Number of first imaginary register }
  123. {$ifdef x86_64}
  124. first_mm_imreg = $10;
  125. {$else x86_64}
  126. first_mm_imreg = $08;
  127. {$endif x86_64}
  128. { The subregister that specifies the entire register and an address }
  129. {$if defined(x86_64)}
  130. { Hammer }
  131. R_SUBWHOLE = R_SUBQ;
  132. R_SUBADDR = R_SUBQ;
  133. {$elseif defined(i386)}
  134. { i386 }
  135. R_SUBWHOLE = R_SUBD;
  136. R_SUBADDR = R_SUBD;
  137. {$elseif defined(i8086)}
  138. { i8086 }
  139. R_SUBWHOLE = R_SUBW;
  140. R_SUBADDR = R_SUBW;
  141. {$endif}
  142. { Available Registers }
  143. {$if defined(x86_64)}
  144. {$i r8664con.inc}
  145. {$elseif defined(i386)}
  146. {$i r386con.inc}
  147. {$elseif defined(i8086)}
  148. {$i r8086con.inc}
  149. {$endif}
  150. type
  151. { Number of registers used for indexing in tables }
  152. {$if defined(x86_64)}
  153. tregisterindex=0..{$i r8664nor.inc}-1;
  154. {$elseif defined(i386)}
  155. tregisterindex=0..{$i r386nor.inc}-1;
  156. {$elseif defined(i8086)}
  157. tregisterindex=0..{$i r8086nor.inc}-1;
  158. {$endif}
  159. const
  160. { TODO: Calculate bsstart}
  161. regnumber_count_bsstart = 64;
  162. regnumber_table : array[tregisterindex] of tregister = (
  163. {$if defined(x86_64)}
  164. {$i r8664num.inc}
  165. {$elseif defined(i386)}
  166. {$i r386num.inc}
  167. {$elseif defined(i8086)}
  168. {$i r8086num.inc}
  169. {$endif}
  170. );
  171. regstabs_table : array[tregisterindex] of shortint = (
  172. {$if defined(x86_64)}
  173. {$i r8664stab.inc}
  174. {$elseif defined(i386)}
  175. {$i r386stab.inc}
  176. {$elseif defined(i8086)}
  177. {$i r8086stab.inc}
  178. {$endif}
  179. );
  180. regdwarf_table : array[tregisterindex] of shortint = (
  181. {$if defined(x86_64)}
  182. {$i r8664dwrf.inc}
  183. {$elseif defined(i386)}
  184. {$i r386dwrf.inc}
  185. {$elseif defined(i8086)}
  186. {$i r8086dwrf.inc}
  187. {$endif}
  188. );
  189. RS_DEFAULTFLAGS = RS_FLAGS;
  190. NR_DEFAULTFLAGS = NR_FLAGS;
  191. type
  192. totherregisterset = set of tregisterindex;
  193. {*****************************************************************************
  194. Conditions
  195. *****************************************************************************}
  196. type
  197. TAsmCond=(C_None,
  198. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  199. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  200. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  201. );
  202. const
  203. cond2str:array[TAsmCond] of string[3]=('',
  204. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  205. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  206. 'ns','nz','o','p','pe','po','s','z'
  207. );
  208. {*****************************************************************************
  209. Flags
  210. *****************************************************************************}
  211. type
  212. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  213. F_A,F_AE,F_B,F_BE,
  214. F_S,F_NS,F_O,F_NO,
  215. { For IEEE-compliant floating-point compares,
  216. same as normal counterparts but additionally check PF }
  217. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  218. const
  219. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  220. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  221. F_E,F_NE,F_A,F_AE,F_B,F_BE
  222. );
  223. {*****************************************************************************
  224. Constants
  225. *****************************************************************************}
  226. const
  227. { declare aliases }
  228. LOC_SSEREGISTER = LOC_MMREGISTER;
  229. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  230. max_operands = 4;
  231. maxfpuregs = 8;
  232. {*****************************************************************************
  233. CPU Dependent Constants
  234. *****************************************************************************}
  235. {$i cpubase.inc}
  236. {*****************************************************************************
  237. Helpers
  238. *****************************************************************************}
  239. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  240. function reg2opsize(r:Tregister):topsize;
  241. function reg_cgsize(const reg: tregister): tcgsize;
  242. function is_calljmp(o:tasmop):boolean;
  243. procedure inverse_flags(var f: TResFlags);
  244. function flags_to_cond(const f: TResFlags) : TAsmCond;
  245. function is_segment_reg(r:tregister):boolean;
  246. function findreg_by_number(r:Tregister):tregisterindex;
  247. function std_regnum_search(const s:string):Tregister;
  248. function std_regname(r:Tregister):string;
  249. function dwarf_reg(r:tregister):shortint;
  250. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  251. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  252. { checks whether two segment registers are normally equal in the current memory model }
  253. function segment_regs_equal(r1,r2:tregister):boolean;
  254. {$ifdef i8086}
  255. { returns the next virtual register }
  256. function GetNextReg(const r : TRegister) : TRegister;
  257. { return whether we need to add an extra FWAIT instruction before the given
  258. instruction, when we're targeting the i8087. This includes almost all x87
  259. instructions, but certain ones, which always have or have not a built in
  260. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  261. function requires_fwait_on_8087(op: TAsmOp): boolean;
  262. {$endif i8086}
  263. implementation
  264. uses
  265. rgbase,verbose;
  266. const
  267. {$if defined(x86_64)}
  268. std_regname_table : TRegNameTable = (
  269. {$i r8664std.inc}
  270. );
  271. regnumber_index : array[tregisterindex] of tregisterindex = (
  272. {$i r8664rni.inc}
  273. );
  274. std_regname_index : array[tregisterindex] of tregisterindex = (
  275. {$i r8664sri.inc}
  276. );
  277. {$elseif defined(i386)}
  278. std_regname_table : TRegNameTable = (
  279. {$i r386std.inc}
  280. );
  281. regnumber_index : array[tregisterindex] of tregisterindex = (
  282. {$i r386rni.inc}
  283. );
  284. std_regname_index : array[tregisterindex] of tregisterindex = (
  285. {$i r386sri.inc}
  286. );
  287. {$elseif defined(i8086)}
  288. std_regname_table : TRegNameTable = (
  289. {$i r8086std.inc}
  290. );
  291. regnumber_index : array[tregisterindex] of tregisterindex = (
  292. {$i r8086rni.inc}
  293. );
  294. std_regname_index : array[tregisterindex] of tregisterindex = (
  295. {$i r8086sri.inc}
  296. );
  297. {$endif}
  298. {*****************************************************************************
  299. Helpers
  300. *****************************************************************************}
  301. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  302. begin
  303. case s of
  304. OS_8,OS_S8:
  305. cgsize2subreg:=R_SUBL;
  306. OS_16,OS_S16:
  307. cgsize2subreg:=R_SUBW;
  308. OS_32,OS_S32:
  309. cgsize2subreg:=R_SUBD;
  310. OS_64,OS_S64:
  311. cgsize2subreg:=R_SUBQ;
  312. OS_M64:
  313. cgsize2subreg:=R_SUBNONE;
  314. OS_F32,OS_F64,OS_C64:
  315. case regtype of
  316. R_FPUREGISTER:
  317. cgsize2subreg:=R_SUBWHOLE;
  318. R_MMREGISTER:
  319. case s of
  320. OS_F32:
  321. cgsize2subreg:=R_SUBMMS;
  322. OS_F64:
  323. cgsize2subreg:=R_SUBMMD;
  324. else
  325. internalerror(2009071901);
  326. end;
  327. else
  328. internalerror(2009071902);
  329. end;
  330. OS_M128,OS_MS128:
  331. cgsize2subreg:=R_SUBMMX;
  332. OS_M256,OS_MS256:
  333. cgsize2subreg:=R_SUBMMY;
  334. else
  335. internalerror(200301231);
  336. end;
  337. end;
  338. function reg_cgsize(const reg: tregister): tcgsize;
  339. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  340. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256);
  341. begin
  342. case getregtype(reg) of
  343. R_INTREGISTER :
  344. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  345. R_FPUREGISTER :
  346. reg_cgsize:=OS_F80;
  347. R_MMXREGISTER:
  348. reg_cgsize:=OS_M64;
  349. R_MMREGISTER:
  350. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  351. R_SPECIALREGISTER :
  352. case reg of
  353. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  354. reg_cgsize:=OS_16;
  355. {$ifdef x86_64}
  356. NR_DR0..NR_TR7:
  357. reg_cgsize:=OS_64;
  358. {$endif x86_64}
  359. else
  360. reg_cgsize:=OS_32
  361. end
  362. else
  363. internalerror(2003031801);
  364. end;
  365. end;
  366. function reg2opsize(r:Tregister):topsize;
  367. const
  368. subreg2opsize : array[tsubregister] of topsize =
  369. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  370. begin
  371. reg2opsize:=S_L;
  372. case getregtype(r) of
  373. R_INTREGISTER :
  374. reg2opsize:=subreg2opsize[getsubreg(r)];
  375. R_FPUREGISTER :
  376. reg2opsize:=S_FL;
  377. R_MMXREGISTER,
  378. R_MMREGISTER :
  379. reg2opsize:=S_MD;
  380. R_SPECIALREGISTER :
  381. begin
  382. case r of
  383. NR_CS,NR_DS,NR_ES,
  384. NR_SS,NR_FS,NR_GS :
  385. reg2opsize:=S_W;
  386. end;
  387. end;
  388. else
  389. internalerror(200303181);
  390. end;
  391. end;
  392. function is_calljmp(o:tasmop):boolean;
  393. begin
  394. case o of
  395. A_CALL,
  396. {$if defined(i386) or defined(i8086)}
  397. A_JCXZ,
  398. {$endif defined(i386) or defined(i8086)}
  399. A_JECXZ,
  400. {$ifdef x86_64}
  401. A_JRCXZ,
  402. {$endif x86_64}
  403. A_JMP,
  404. A_LOOP,
  405. A_LOOPE,
  406. A_LOOPNE,
  407. A_LOOPNZ,
  408. A_LOOPZ,
  409. A_LCALL,
  410. A_LJMP,
  411. A_Jcc :
  412. is_calljmp:=true;
  413. else
  414. is_calljmp:=false;
  415. end;
  416. end;
  417. procedure inverse_flags(var f: TResFlags);
  418. const
  419. inv_flags: array[TResFlags] of TResFlags =
  420. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  421. F_BE,F_B,F_AE,F_A,
  422. F_NS,F_S,F_NO,F_O,
  423. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  424. begin
  425. f:=inv_flags[f];
  426. end;
  427. function flags_to_cond(const f: TResFlags) : TAsmCond;
  428. const
  429. flags_2_cond : array[TResFlags] of TAsmCond =
  430. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  431. C_None,C_None,C_None,C_None,C_None,C_None);
  432. begin
  433. result := flags_2_cond[f];
  434. if (result=C_None) then
  435. InternalError(2014041301);
  436. end;
  437. function is_segment_reg(r:tregister):boolean;
  438. begin
  439. result:=false;
  440. case r of
  441. NR_CS,NR_DS,NR_ES,
  442. NR_SS,NR_FS,NR_GS :
  443. result:=true;
  444. end;
  445. end;
  446. function findreg_by_number(r:Tregister):tregisterindex;
  447. var
  448. hr : tregister;
  449. begin
  450. { for the name the sub reg doesn't matter }
  451. hr:=r;
  452. if (getregtype(hr)=R_MMREGISTER) and
  453. (getsubreg(hr)<>R_SUBMMY) then
  454. setsubreg(hr,R_SUBMMX);
  455. result:=findreg_by_number_table(hr,regnumber_index);
  456. end;
  457. function std_regnum_search(const s:string):Tregister;
  458. begin
  459. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  460. end;
  461. function std_regname(r:Tregister):string;
  462. var
  463. p : tregisterindex;
  464. begin
  465. if getregtype(r) in [R_MMREGISTER,R_MMXREGISTER] then
  466. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  467. p:=findreg_by_number(r);
  468. if p<>0 then
  469. result:=std_regname_table[p]
  470. else
  471. result:=generic_regname(r);
  472. end;
  473. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  474. const
  475. inverse: array[TAsmCond] of TAsmCond=(C_None,
  476. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  477. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  478. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  479. );
  480. begin
  481. result := inverse[c];
  482. end;
  483. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  484. begin
  485. result := c1 = c2;
  486. end;
  487. function dwarf_reg(r:tregister):shortint;
  488. begin
  489. result:=regdwarf_table[findreg_by_number(r)];
  490. if result=-1 then
  491. internalerror(200603251);
  492. end;
  493. function segment_regs_equal(r1, r2: tregister): boolean;
  494. begin
  495. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  496. internalerror(2013062301);
  497. { every segment register is equal to itself }
  498. if r1=r2 then
  499. exit(true);
  500. {$if defined(i8086)}
  501. case current_settings.x86memorymodel of
  502. mm_tiny:
  503. begin
  504. { CS=DS=SS }
  505. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  506. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  507. exit(true);
  508. { the remaining are distinct from each other }
  509. exit(false);
  510. end;
  511. mm_small,mm_medium:
  512. begin
  513. { DS=SS }
  514. if ((r1=NR_DS) or (r1=NR_SS)) and
  515. ((r2=NR_DS) or (r2=NR_SS)) then
  516. exit(true);
  517. { the remaining are distinct from each other }
  518. exit(false);
  519. end;
  520. mm_compact,mm_large,mm_huge:
  521. { all segment registers are different in these models }
  522. exit(false);
  523. else
  524. internalerror(2013062302);
  525. end;
  526. {$elseif defined(i386) or defined(x86_64)}
  527. { DS=SS=ES }
  528. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  529. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  530. exit(true);
  531. { the remaining are distinct from each other }
  532. exit(false);
  533. {$endif}
  534. end;
  535. {$ifdef i8086}
  536. function GetNextReg(const r: TRegister): TRegister;
  537. begin
  538. if getsupreg(r)<first_int_imreg then
  539. internalerror(2013051401);
  540. result:=TRegister(longint(r)+1);
  541. end;
  542. function requires_fwait_on_8087(op: TAsmOp): boolean;
  543. begin
  544. case op of
  545. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  546. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  547. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  548. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  549. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  550. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  551. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  552. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  553. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  554. result:=true;
  555. else
  556. result:=false;
  557. end;
  558. end;
  559. {$endif i8086}
  560. end.