cpuinfo.pas 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. {
  2. Copyright (c) 1998-2004 by Florian Klaempfl
  3. Basic Processor information
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. Unit cpuinfo;
  18. {$i fpcdefs.inc}
  19. Interface
  20. uses
  21. globtype;
  22. Type
  23. bestreal = extended;
  24. bestrealrec = TExtended80Rec;
  25. ts32real = single;
  26. ts64real = double;
  27. ts80real = extended;
  28. ts128real = type extended;
  29. ts64comp = type extended;
  30. pbestreal=^bestreal;
  31. { possible supported processors for this target }
  32. tcputype =
  33. (cpu_none,
  34. cpu_8086,
  35. cpu_186,
  36. cpu_286,
  37. cpu_386,
  38. cpu_486,
  39. cpu_Pentium,
  40. cpu_Pentium2,
  41. cpu_Pentium3,
  42. cpu_Pentium4,
  43. cpu_PentiumM
  44. );
  45. tfputype =
  46. (fpu_none,
  47. // fpu_soft,
  48. fpu_x87,
  49. fpu_sse,
  50. fpu_sse2,
  51. fpu_sse3,
  52. fpu_ssse3,
  53. fpu_sse41,
  54. fpu_sse42,
  55. fpu_avx,
  56. fpu_fma,
  57. fpu_avx2
  58. );
  59. tcontrollertype =
  60. (ct_none
  61. );
  62. tcontrollerdatatype = record
  63. controllertypestr, controllerunitstr: string[20];
  64. cputype: tcputype; fputype: tfputype;
  65. flashbase, flashsize, srambase, sramsize, eeprombase, eepromsize, bootbase, bootsize: dword;
  66. end;
  67. Const
  68. { Is there support for dealing with multiple microcontrollers available }
  69. { for this platform? }
  70. ControllerSupport = false;
  71. { We know that there are fields after sramsize
  72. but we don't care about this warning }
  73. {$PUSH}
  74. {$WARN 3177 OFF}
  75. embedded_controllers : array [tcontrollertype] of tcontrollerdatatype =
  76. (
  77. (controllertypestr:''; controllerunitstr:''; cputype:cpu_none; fputype:fpu_none; flashbase:0; flashsize:0; srambase:0; sramsize:0));
  78. {$POP}
  79. { calling conventions supported by the code generator }
  80. supported_calling_conventions : tproccalloptions = [
  81. pocall_internproc,
  82. pocall_register,
  83. pocall_safecall,
  84. pocall_stdcall,
  85. pocall_cdecl,
  86. pocall_cppdecl,
  87. pocall_pascal
  88. ];
  89. cputypestr : array[tcputype] of string[10] = ('',
  90. '8086',
  91. '80186',
  92. '80286',
  93. '80386',
  94. '80486',
  95. 'PENTIUM',
  96. 'PENTIUM2',
  97. 'PENTIUM3',
  98. 'PENTIUM4',
  99. 'PENTIUMM'
  100. );
  101. fputypestr : array[tfputype] of string[6] = (
  102. 'NONE',
  103. // 'SOFT',
  104. 'X87',
  105. 'SSE',
  106. 'SSE2',
  107. 'SSE3',
  108. 'SSSE3',
  109. 'SSE41',
  110. 'SSE42',
  111. 'AVX',
  112. 'FMA',
  113. 'AVX2'
  114. );
  115. sse_singlescalar : set of tfputype = [fpu_sse..fpu_avx2];
  116. sse_doublescalar : set of tfputype = [fpu_sse2..fpu_avx2];
  117. fpu_avx_instructionsets = [fpu_avx,fpu_fma,fpu_avx2];
  118. { Supported optimizations, only used for information }
  119. supported_optimizerswitches = genericlevel1optimizerswitches+
  120. genericlevel2optimizerswitches+
  121. genericlevel3optimizerswitches-
  122. { no need to write info about those }
  123. [cs_opt_level1,cs_opt_level2,cs_opt_level3]+
  124. [cs_opt_peephole,{$ifndef llvm}cs_opt_regvar,{$endif}cs_opt_stackframe,
  125. cs_opt_loopunroll,cs_opt_uncertain,
  126. cs_opt_tailrecursion,cs_opt_nodecse,cs_useebp,
  127. cs_opt_reorder_fields,cs_opt_fastmath];
  128. level1optimizerswitches = genericlevel1optimizerswitches;
  129. level2optimizerswitches = genericlevel2optimizerswitches + level1optimizerswitches +
  130. [cs_opt_regvar,cs_opt_stackframe,cs_opt_tailrecursion{,cs_opt_nodecse}];
  131. level3optimizerswitches = genericlevel3optimizerswitches + level2optimizerswitches;
  132. level4optimizerswitches = genericlevel4optimizerswitches + level3optimizerswitches + [cs_useebp];
  133. type
  134. tcpuflags =
  135. (CPUX86_HAS_BTX, { Bit-test instructions (BT, BTC, BTR and BTS) are available }
  136. CPUX86_HAS_CMOV, { CMOVcc instructions are available }
  137. CPUX86_HAS_SSEUNIT, { SSE instructions are available }
  138. CPUX86_HAS_SSE2, { SSE2 instructions are available }
  139. CPUX86_HAS_BSWAP { BSWAP is available }
  140. );
  141. { Instruction optimisation hints }
  142. TCPUOptimizeFlags =
  143. (CPUX86_HINT_FAST_BT_REG_IMM, { BT instructions with register source and immediate indices are at least as fast as logical instructions }
  144. CPUX86_HINT_FAST_BT_REG_REG, { BT instructions with register source and register indices are at least as fast as equivalent logical instructions }
  145. CPUX86_HINT_FAST_BTX_REG_IMM, { BTC/R/S instructions with register source and immediate indices are at least as fast as logical instructions }
  146. CPUX86_HINT_FAST_BTX_REG_REG, { BTC/R/S instructions with register source and register indices are at least as fast as equivalent logical instructions }
  147. CPUX86_HINT_FAST_BT_MEM_IMM, { BT instructions with memory sources and inmediate indices are at least as fast as logical instructions }
  148. CPUX86_HINT_FAST_BT_MEM_REG, { BT instructions with memory sources and register indices and a register index are at least as fast as equivalent logical instructions }
  149. CPUX86_HINT_FAST_BTX_MEM_IMM, { BTC/R/S instructions with memory sources and immediate indices are at least as fast as logical instructions }
  150. CPUX86_HINT_FAST_BTX_MEM_REG, { BTC/R/S instructions with memory sources and register indices are at least as fast as equivalent logical instructions }
  151. CPUX86_HINT_FAST_XCHG, { XCHG %reg,%reg executes in 2 cycles or less }
  152. CPUX86_HINT_FAST_3COMP_ADDR, { A 3-component address (base, index and offset) has the same latency as the 2-component version (most notable with LEA instructions) }
  153. CPUX86_HINT_FAST_3COMP_ADDR_16{ As above, but with 16-bit addresses }
  154. );
  155. const
  156. cpu_capabilities : array[tcputype] of set of tcpuflags = (
  157. { cpu_none } [],
  158. { cpu_8086 } [],
  159. { cpu_186 } [],
  160. { cpu_286 } [],
  161. { cpu_386 } [CPUX86_HAS_BTX],
  162. { cpu_486 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX],
  163. { cpu_Pentium } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX],
  164. { cpu_Pentium2 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV],
  165. { cpu_Pentium3 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV,CPUX86_HAS_SSEUNIT],
  166. { cpu_Pentium4 } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV,CPUX86_HAS_SSEUNIT,CPUX86_HAS_SSE2],
  167. { cpu_PentiumM } [CPUX86_HAS_BSWAP,CPUX86_HAS_BTX,CPUX86_HAS_CMOV,CPUX86_HAS_SSEUNIT,CPUX86_HAS_SSE2]
  168. );
  169. cpu_optimization_hints : array[TCPUType] of set of TCPUOptimizeFlags = (
  170. { cpu_none } [],
  171. { cpu_8086 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  172. { cpu_186 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  173. { cpu_286 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  174. { cpu_386 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  175. { cpu_486 } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  176. { cpu_Pentium } [CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  177. { cpu_Pentium2 } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM,CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  178. { cpu_Pentium3 } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM,CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16],
  179. { cpu_Pentium4 } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM],
  180. { cpu_PentiumM } [CPUX86_HINT_FAST_BT_REG_IMM,CPUX86_HINT_FAST_BTX_REG_IMM,CPUX86_HINT_FAST_XCHG,CPUX86_HINT_FAST_3COMP_ADDR,CPUX86_HINT_FAST_3COMP_ADDR_16]
  181. );
  182. x86_near_code_models = [mm_tiny,mm_small,mm_compact];
  183. x86_far_code_models = [mm_medium,mm_large,mm_huge];
  184. x86_near_data_models = [mm_tiny,mm_small,mm_medium];
  185. x86_far_data_models = [mm_compact,mm_large,mm_huge];
  186. Implementation
  187. end.