aasmcpu.pas 200 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. aasmbase,aasmtai,aasmsym,
  28. ogbase;
  29. const
  30. { "mov reg,reg" source operand number }
  31. O_MOV_SOURCE = 0;
  32. { "mov reg,reg" destination operand number }
  33. O_MOV_DEST = 1;
  34. { Operand types }
  35. OT_NONE = $00000000;
  36. { Bits 0..7: sizes }
  37. OT_BITS8 = $00000001;
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { x86_64 and FPU }
  41. //OT_BITS128 = $10000000; { 16 byte SSE }
  42. //OT_BITS256 = $20000000; { 32 byte AVX }
  43. //OT_BITS512 = $40000000; { 64 byte AVX512 }
  44. OT_BITS128 = $20000000; { 16 byte SSE }
  45. OT_BITS256 = $40000000; { 32 byte AVX }
  46. OT_BITS512 = $80000000; { 64 byte AVX512 }
  47. OT_VECTORMASK = $1000000000; { OPTIONAL VECTORMASK AVX512}
  48. OT_VECTORZERO = $2000000000; { OPTIONAL ZERO-FLAG AVX512}
  49. OT_VECTORBCST = $4000000000; { BROADCAST-MEM-FLAG AVX512}
  50. OT_VECTORSAE = $8000000000; { OPTIONAL SAE-FLAG AVX512}
  51. OT_VECTORER = $10000000000; { OPTIONAL ER-FLAG-FLAG AVX512}
  52. OT_VECTOR_EXT = OT_VECTORMASK or OT_VECTORZERO or OT_VECTORBCST or OT_VECTORSAE or OT_VECTORER;
  53. OT_BITSB32 = OT_BITS32 or OT_VECTORBCST;
  54. OT_BITSB64 = OT_BITS64 or OT_VECTORBCST;
  55. OT_BITS80 = $00000010; { FPU only }
  56. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  57. OT_NEAR = $00000040;
  58. OT_SHORT = $00000080;
  59. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  60. but this requires adjusting the opcode table }
  61. //OT_SIZE_MASK = $3000001F; { all the size attributes }
  62. OT_SIZE_MASK = $E000001F; { all the size attributes }
  63. OT_NON_SIZE = longint(not(longint(OT_SIZE_MASK)));
  64. { Bits 8..11: modifiers }
  65. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  66. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  67. OT_COLON = $00000400; { operand is followed by a colon }
  68. OT_MODIFIER_MASK = $00000F00;
  69. { Bits 12..15: type of operand }
  70. OT_REGISTER = $00001000;
  71. OT_IMMEDIATE = $00002000;
  72. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  73. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  74. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  75. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  76. { Bits 20..22, 24..26: register classes
  77. otf_* consts are not used alone, only to build other constants. }
  78. otf_reg_cdt = $00100000;
  79. otf_reg_gpr = $00200000;
  80. otf_reg_sreg = $00400000;
  81. otf_reg_k = $00800000;
  82. otf_reg_fpu = $01000000;
  83. otf_reg_mmx = $02000000;
  84. otf_reg_xmm = $04000000;
  85. otf_reg_ymm = $08000000;
  86. otf_reg_zmm = $10000000;
  87. otf_reg_extra_mask = $0F000000;
  88. { Bits 16..19: subclasses, meaning depends on classes field }
  89. otf_sub0 = $00010000;
  90. otf_sub1 = $00020000;
  91. otf_sub2 = $00040000;
  92. otf_sub3 = $00080000;
  93. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  94. //OT_REG_EXTRA_MASK = $0F000000;
  95. OT_REG_EXTRA_MASK = $1F000000;
  96. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_k or otf_reg_extra_mask;
  97. { register class 0: CRx, DRx and TRx }
  98. {$ifdef x86_64}
  99. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  100. {$else x86_64}
  101. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  102. {$endif x86_64}
  103. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  104. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  105. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  106. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  107. { register class 1: general-purpose registers }
  108. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  109. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  110. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  111. OT_REG16 = OT_REG_GPR or OT_BITS16;
  112. OT_REG32 = OT_REG_GPR or OT_BITS32;
  113. OT_REG64 = OT_REG_GPR or OT_BITS64;
  114. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  115. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  116. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  117. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  118. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  119. {$ifdef x86_64}
  120. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  121. {$endif x86_64}
  122. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  123. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  124. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  125. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  126. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  127. {$ifdef x86_64}
  128. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  129. {$endif x86_64}
  130. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  131. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  132. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  133. { register class 2: Segment registers }
  134. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  135. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  136. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  137. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  138. { register class 3: FPU registers }
  139. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  140. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  141. { register class 4: MMX (both reg and r/m) }
  142. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  143. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  144. { register class 5: XMM (both reg and r/m) }
  145. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  146. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  147. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  148. OT_XMEM32_M = OT_XMEM32 or OT_VECTORMASK;
  149. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  150. OT_XMEM64_M = OT_XMEM64 or OT_VECTORMASK;
  151. OT_XMMREG_M = OT_XMMREG or OT_VECTORMASK;
  152. OT_XMMREG_MZ = OT_XMMREG or OT_VECTORMASK or OT_VECTORZERO;
  153. OT_XMMRM_MZ = OT_XMMRM or OT_VECTORMASK or OT_VECTORZERO;
  154. OT_XMMREG_SAE = OT_XMMREG or OT_VECTORSAE;
  155. OT_XMMRM_SAE = OT_XMMRM or OT_VECTORSAE;
  156. OT_XMMREG_ER = OT_XMMREG or OT_VECTORER;
  157. OT_XMMRM_ER = OT_XMMRM or OT_VECTORER;
  158. { register class 5: YMM (both reg and r/m) }
  159. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  160. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  161. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  162. OT_YMEM32_M = OT_YMEM32 or OT_VECTORMASK;
  163. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  164. OT_YMEM64_M = OT_YMEM64 or OT_VECTORMASK;
  165. OT_YMMREG_M = OT_YMMREG or OT_VECTORMASK;
  166. OT_YMMREG_MZ = OT_YMMREG or OT_VECTORMASK or OT_VECTORZERO;
  167. OT_YMMRM_MZ = OT_YMMRM or OT_VECTORMASK or OT_VECTORZERO;
  168. OT_YMMREG_SAE = OT_YMMREG or OT_VECTORSAE;
  169. OT_YMMRM_SAE = OT_YMMRM or OT_VECTORSAE;
  170. OT_YMMREG_ER = OT_YMMREG or OT_VECTORER;
  171. OT_YMMRM_ER = OT_YMMRM or OT_VECTORER;
  172. { register class 5: ZMM (both reg and r/m) }
  173. OT_ZMMREG = OT_REGNORM or otf_reg_zmm;
  174. OT_ZMMRM = OT_REGMEM or otf_reg_zmm;
  175. OT_ZMEM32 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS32;
  176. OT_ZMEM32_M = OT_ZMEM32 or OT_VECTORMASK;
  177. OT_ZMEM64 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS64;
  178. OT_ZMEM64_M = OT_ZMEM64 or OT_VECTORMASK;
  179. OT_ZMMREG_M = OT_ZMMREG or OT_VECTORMASK;
  180. OT_ZMMREG_MZ = OT_ZMMREG or OT_VECTORMASK or OT_VECTORZERO;
  181. OT_ZMMRM_MZ = OT_ZMMRM or OT_VECTORMASK or OT_VECTORZERO;
  182. OT_ZMMREG_SAE = OT_ZMMREG or OT_VECTORSAE;
  183. OT_ZMMRM_SAE = OT_ZMMRM or OT_VECTORSAE;
  184. OT_ZMMREG_ER = OT_ZMMREG or OT_VECTORER;
  185. OT_ZMMRM_ER = OT_ZMMRM or OT_VECTORER;
  186. OT_KREG = OT_REGNORM or otf_reg_k;
  187. OT_KREG_M = OT_KREG or OT_VECTORMASK;
  188. { Vector-Memory operands }
  189. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64 or OT_ZMEM32 or OT_ZMEM64;
  190. { Memory operands }
  191. OT_MEM8 = OT_MEMORY or OT_BITS8;
  192. OT_MEM16 = OT_MEMORY or OT_BITS16;
  193. OT_MEM16_M = OT_MEM16 or OT_VECTORMASK;
  194. OT_MEM32 = OT_MEMORY or OT_BITS32;
  195. OT_MEM32_M = OT_MEMORY or OT_BITS32 or OT_VECTORMASK;
  196. OT_BMEM32 = OT_MEMORY or OT_BITS32 or OT_VECTORBCST;
  197. OT_BMEM32_SAE= OT_MEMORY or OT_BITS32 or OT_VECTORBCST or OT_VECTORSAE;
  198. OT_MEM64 = OT_MEMORY or OT_BITS64;
  199. OT_MEM64_M = OT_MEMORY or OT_BITS64 or OT_VECTORMASK;
  200. OT_BMEM64 = OT_MEMORY or OT_BITS64 or OT_VECTORBCST;
  201. OT_BMEM64_SAE= OT_MEMORY or OT_BITS64 or OT_VECTORBCST or OT_VECTORSAE;
  202. OT_MEM128 = OT_MEMORY or OT_BITS128;
  203. OT_MEM128_M = OT_MEMORY or OT_BITS128 or OT_VECTORMASK;
  204. OT_MEM256 = OT_MEMORY or OT_BITS256;
  205. OT_MEM256_M = OT_MEMORY or OT_BITS256 or OT_VECTORMASK;
  206. OT_MEM512 = OT_MEMORY or OT_BITS512;
  207. OT_MEM512_M = OT_MEMORY or OT_BITS512 or OT_VECTORMASK;
  208. OT_MEM80 = OT_MEMORY or OT_BITS80;
  209. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  210. { simple [address] offset }
  211. { Matches any type of r/m operand }
  212. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK;
  213. { Immediate operands }
  214. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  215. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  216. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  217. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  218. OT_ONENESS = otf_sub0; { special type of immediate operand }
  219. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  220. OTVE_VECTOR_SAE = 1 shl 8;
  221. OTVE_VECTOR_ER = 1 shl 9;
  222. OTVE_VECTOR_ZERO = 1 shl 10;
  223. OTVE_VECTOR_WRITEMASK = 1 shl 11;
  224. OTVE_VECTOR_BCST = 1 shl 12;
  225. OTVE_VECTOR_BCST2 = 0;
  226. OTVE_VECTOR_BCST4 = 1 shl 4;
  227. OTVE_VECTOR_BCST8 = 1 shl 5;
  228. OTVE_VECTOR_BCST16 = 3 shl 4;
  229. OTVE_VECTOR_RNSAE = OTVE_VECTOR_ER or 0;
  230. OTVE_VECTOR_RDSAE = OTVE_VECTOR_ER or 1 shl 6;
  231. OTVE_VECTOR_RUSAE = OTVE_VECTOR_ER or 1 shl 7;
  232. OTVE_VECTOR_RZSAE = OTVE_VECTOR_ER or 3 shl 6;
  233. OTVE_VECTOR_BCST_MASK = OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16;
  234. OTVE_VECTOR_ER_MASK = OTVE_VECTOR_RNSAE or OTVE_VECTOR_RDSAE or OTVE_VECTOR_RUSAE or OTVE_VECTOR_RZSAE;
  235. OTVE_VECTOR_MASK = OTVE_VECTOR_SAE or OTVE_VECTOR_ER or OTVE_VECTOR_ZERO or OTVE_VECTOR_WRITEMASK or OTVE_VECTOR_BCST;
  236. { Size of the instruction table converted by nasmconv.pas }
  237. {$if defined(x86_64)}
  238. instabentries = {$i x8664nop.inc}
  239. {$elseif defined(i386)}
  240. instabentries = {$i i386nop.inc}
  241. {$elseif defined(i8086)}
  242. instabentries = {$i i8086nop.inc}
  243. {$endif}
  244. maxinfolen = 10;
  245. type
  246. { What an instruction can change. Needed for optimizer and spilling code.
  247. Note: The order of this enumeration is should not be changed! }
  248. TInsChange = (Ch_None,
  249. {Read from a register}
  250. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  251. {write from a register}
  252. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  253. {read and write from/to a register}
  254. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  255. {modify the contents of a register with the purpose of using
  256. this changed content afterwards (add/sub/..., but e.g. not rep
  257. or movsd)}
  258. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  259. {read individual flag bits from the flags register}
  260. Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
  261. {write individual flag bits to the flags register}
  262. Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
  263. {set individual flag bits to 0 in the flags register}
  264. Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
  265. {set individual flag bits to 1 in the flags register}
  266. Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
  267. {write an undefined value to individual flag bits in the flags register}
  268. Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
  269. {read and write flag bits}
  270. Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
  271. {more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
  272. Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
  273. {instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
  274. Ch_RFLAGScc,
  275. {read/write/read+write the entire flags/eflags/rflags register}
  276. Ch_RFlags, Ch_WFlags, Ch_RWFlags,
  277. Ch_FPU,
  278. Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
  279. Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
  280. Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
  281. Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
  282. { instruction doesn't read it's input register, in case both parameters
  283. are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
  284. Ch_NoReadIfEqualRegs,
  285. Ch_RMemEDI,Ch_WMemEDI,
  286. Ch_All,
  287. { x86_64 registers }
  288. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  289. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  290. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  291. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI,
  292. { xmm register }
  293. Ch_RXMM0,
  294. Ch_WXMM0,
  295. Ch_RWXMM0,
  296. Ch_MXMM0
  297. );
  298. TInsProp = packed record
  299. Ch : set of TInsChange;
  300. end;
  301. TMemRefSizeInfo = (msiUnknown, msiUnsupported, msiNoSize, msiNoMemRef,
  302. msiMultiple, msiMultipleMinSize8, msiMultipleMinSize16, msiMultipleMinSize32,
  303. msiMultipleMinSize64, msiMultipleMinSize128, msiMultipleminSize256, msiMultipleMinSize512,
  304. msiMemRegSize, msiMemRegx16y32, msiMemRegx16y32z64, msiMemRegx32y64, msiMemRegx32y64z128, msiMemRegx64y128, msiMemRegx64y128z256,
  305. msiMemRegx64y256, msiMemRegx64y256z512,
  306. msiMem8, msiMem16, msiMem32, msiBMem32, msiMem64, msiBMem64, msiMem128, msiMem256, msiMem512,
  307. msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64,
  308. msiVMemMultiple, msiVMemRegSize,
  309. msiMemRegConst128,msiMemRegConst256,msiMemRegConst512);
  310. TMemRefSizeInfoBCST = (msbUnknown, msbBCST32, msbBCST64, msbMultiple);
  311. TMemRefSizeInfoBCSTType = (btUnknown, bt1to2, bt1to4, bt1to8, bt1to16);
  312. TEVEXTupleState = (etsUnknown, etsIsTuple, etsNotTuple);
  313. TConstSizeInfo = (csiUnknown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  314. TInsTabMemRefSizeInfoRec = record
  315. MemRefSize : TMemRefSizeInfo;
  316. MemRefSizeBCST : TMemRefSizeInfoBCST;
  317. BCSTXMMMultiplicator : byte;
  318. ExistsSSEAVX : boolean;
  319. ConstSize : TConstSizeInfo;
  320. BCSTTypes : Set of TMemRefSizeInfoBCSTType;
  321. RegXMMSizeMask : int64;
  322. RegYMMSizeMask : int64;
  323. RegZMMSizeMask : int64;
  324. end;
  325. const
  326. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultipleMinSize8,
  327. msiMultipleMinSize16, msiMultipleMinSize32,
  328. msiMultipleMinSize64, msiMultipleMinSize128,
  329. msiMultipleMinSize256, msiMultipleMinSize512,
  330. msiVMemMultiple];
  331. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  332. msiZMem32, msiZMem64,
  333. msiVMemMultiple, msiVMemRegSize];
  334. InsProp : array[tasmop] of TInsProp =
  335. {$if defined(x86_64)}
  336. {$i x8664pro.inc}
  337. {$elseif defined(i386)}
  338. {$i i386prop.inc}
  339. {$elseif defined(i8086)}
  340. {$i i8086prop.inc}
  341. {$endif}
  342. type
  343. TOperandOrder = (op_intel,op_att);
  344. {Instruction flags }
  345. tinsflag = (
  346. { please keep these in order and in sync with IF_SMASK }
  347. IF_SM, { size match first two operands }
  348. IF_SM2,
  349. IF_SB, { unsized operands can't be non-byte }
  350. IF_SW, { unsized operands can't be non-word }
  351. IF_SD, { unsized operands can't be nondword }
  352. { unsized argument spec }
  353. { please keep these in order and in sync with IF_ARMASK }
  354. IF_AR0, { SB, SW, SD applies to argument 0 }
  355. IF_AR1, { SB, SW, SD applies to argument 1 }
  356. IF_AR2, { SB, SW, SD applies to argument 2 }
  357. IF_PRIV, { it's a privileged instruction }
  358. IF_SMM, { it's only valid in SMM }
  359. IF_PROT, { it's protected mode only }
  360. IF_NOX86_64, { removed instruction in x86_64 }
  361. IF_UNDOC, { it's an undocumented instruction }
  362. IF_FPU, { it's an FPU instruction }
  363. IF_MMX, { it's an MMX instruction }
  364. { it's a 3DNow! instruction }
  365. IF_3DNOW,
  366. { it's a SSE (KNI, MMX2) instruction }
  367. IF_SSE,
  368. { SSE2 instructions }
  369. IF_SSE2,
  370. { SSE3 instructions }
  371. IF_SSE3,
  372. { SSE64 instructions }
  373. IF_SSE64,
  374. { SVM instructions }
  375. IF_SVM,
  376. { SSE4 instructions }
  377. IF_SSE4,
  378. IF_SSSE3,
  379. IF_SSE41,
  380. IF_SSE42,
  381. IF_MOVBE,
  382. IF_CLMUL,
  383. IF_AVX,
  384. IF_AVX2,
  385. IF_AVX512,
  386. IF_BMI1,
  387. IF_BMI2,
  388. { Intel ADX (Multi-Precision Add-Carry Instruction Extensions) }
  389. IF_ADX,
  390. IF_16BITONLY,
  391. IF_FMA,
  392. IF_FMA4,
  393. IF_TSX,
  394. IF_RAND,
  395. IF_XSAVE,
  396. IF_PREFETCHWT1,
  397. IF_SHA,
  398. { mask for processor level }
  399. { please keep these in order and in sync with IF_PLEVEL }
  400. IF_8086, { 8086 instruction }
  401. IF_186, { 186+ instruction }
  402. IF_286, { 286+ instruction }
  403. IF_386, { 386+ instruction }
  404. IF_486, { 486+ instruction }
  405. IF_PENT, { Pentium instruction }
  406. IF_P6, { P6 instruction }
  407. IF_KATMAI, { Katmai instructions }
  408. IF_WILLAMETTE, { Willamette instructions }
  409. IF_PRESCOTT, { Prescott instructions }
  410. IF_X86_64,
  411. IF_SANDYBRIDGE, { Sandybridge-specific instruction }
  412. IF_NEC, { NEC V20/V30 instruction }
  413. { the following are not strictly part of the processor level, because
  414. they are never used standalone, but always in combination with a
  415. separate processor level flag. Therefore, they use bits outside of
  416. IF_PLEVEL, otherwise they would mess up the processor level they're
  417. used in combination with.
  418. The following combinations are currently used:
  419. [IF_AMD, IF_P6],
  420. [IF_CYRIX, IF_486],
  421. [IF_CYRIX, IF_PENT],
  422. [IF_CYRIX, IF_P6] }
  423. IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
  424. IF_AMD, { AMD-specific instruction }
  425. { added flags }
  426. IF_PRE, { it's a prefix instruction }
  427. IF_PASS2, { if the instruction can change in a second pass }
  428. IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
  429. IF_IMM3, { immediate operand is a triad (must be in range [0..7]) }
  430. { avx512 flags }
  431. IF_BCST2,
  432. IF_BCST4,
  433. IF_BCST8,
  434. IF_BCST16,
  435. IF_T2, { disp8 - tuple - 2 }
  436. IF_T4, { disp8 - tuple - 4 }
  437. IF_T8, { disp8 - tuple - 8 }
  438. IF_T1S, { disp8 - tuple - 1 scalar }
  439. IF_T1S8, { disp8 - tuple - 1 scalar byte }
  440. IF_T1S16, { disp8 - tuple - 1 scalar word }
  441. IF_T1F32,
  442. IF_T1F64,
  443. IF_TMDDUP,
  444. IF_TFV, { disp8 - tuple - full vector }
  445. IF_TFVM, { disp8 - tuple - full vector memory }
  446. IF_TQVM,
  447. IF_TMEM128,
  448. IF_THV,
  449. IF_THVM,
  450. IF_TOVM
  451. );
  452. tinsflags=set of tinsflag;
  453. const
  454. IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
  455. IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
  456. IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
  457. IF_TUPLEMASK=[IF_T2..IF_TOVM]; { mask for AVX512 disp8-tuples }
  458. type
  459. tinsentry=packed record
  460. opcode : tasmop;
  461. ops : byte;
  462. optypes : array[0..max_operands-1] of int64;
  463. code : array[0..maxinfolen] of char;
  464. flags : tinsflags;
  465. end;
  466. pinsentry=^tinsentry;
  467. { alignment for operator }
  468. tai_align = class(tai_align_abstract)
  469. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  470. end;
  471. { taicpu }
  472. taicpu = class(tai_cpu_abstract_sym)
  473. opsize : topsize;
  474. constructor op_none(op : tasmop);
  475. constructor op_none(op : tasmop;_size : topsize);
  476. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  477. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  478. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  479. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  480. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  481. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  482. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  483. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  484. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  485. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  486. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  487. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  488. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  489. constructor op_reg_ref_reg(op : tasmop;_size : topsize;_op1 : tregister; const _op2 : treference;_op3 : tregister);
  490. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  491. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  492. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  493. constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
  494. { this is for Jmp instructions }
  495. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  496. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  497. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  498. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  499. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  500. procedure changeopsize(siz:topsize); {$ifdef USEINLINE}inline;{$endif USEINLINE}
  501. function GetString:string;
  502. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  503. Early versions of the UnixWare assembler had a bug where some fpu instructions
  504. were reversed and GAS still keeps this "feature" for compatibility.
  505. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  506. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  507. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  508. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  509. when generating output for other assemblers, the opcodes must be fixed before writing them.
  510. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  511. because in case of smartlinking assembler is generated twice so at the second run wrong
  512. assembler is generated.
  513. }
  514. function FixNonCommutativeOpcodes: tasmop;
  515. private
  516. FOperandOrder : TOperandOrder;
  517. procedure init(_size : topsize); { this need to be called by all constructor }
  518. public
  519. { the next will reset all instructions that can change in pass 2 }
  520. procedure ResetPass1;override;
  521. procedure ResetPass2;override;
  522. function CheckIfValid:boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  523. function Pass1(objdata:TObjData):longint;override;
  524. procedure Pass2(objdata:TObjData);override;
  525. procedure SetOperandOrder(order:TOperandOrder);
  526. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  527. { register spilling code }
  528. function spilling_get_operation_type(opnr: longint): topertype;override;
  529. {$ifdef i8086}
  530. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  531. {$endif i8086}
  532. property OperandOrder : TOperandOrder read FOperandOrder;
  533. private
  534. { next fields are filled in pass1, so pass2 is faster }
  535. insentry : PInsEntry;
  536. insoffset : longint;
  537. LastInsOffset : longint; { need to be public to be reset }
  538. inssize : shortint;
  539. EVEXTupleState: TEVEXTupleState; { AVX512 disp8*N }
  540. {$ifdef x86_64}
  541. rex : byte;
  542. {$endif x86_64}
  543. function InsEnd:longint;
  544. procedure create_ot(objdata:TObjData);
  545. function Matches(p:PInsEntry):boolean;
  546. function calcsize(p:PInsEntry):shortint;
  547. procedure gencode(objdata:TObjData);
  548. function NeedAddrPrefix(opidx:byte):boolean;
  549. function NeedAddrPrefix:boolean;
  550. procedure write0x66prefix(objdata:TObjData);
  551. procedure write0x67prefix(objdata:TObjData);
  552. procedure Swapoperands;
  553. function FindInsentry(objdata:TObjData):boolean;
  554. function CheckUseEVEX: boolean;
  555. procedure CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  556. end;
  557. function is_64_bit_ref(const ref:treference):boolean;
  558. function is_32_bit_ref(const ref:treference):boolean;
  559. function is_16_bit_ref(const ref:treference):boolean;
  560. function get_ref_address_size(const ref:treference):byte;
  561. function get_default_segment_of_ref(const ref:treference):tregister;
  562. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  563. { returns true if opcode can be used with one memory operand without size }
  564. function NoMemorySizeRequired(opcode : TAsmOp) : Boolean;
  565. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  566. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  567. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  568. function MightHaveExtension(AsmOp : TAsmOp) : Boolean;
  569. procedure InitAsm;
  570. procedure DoneAsm;
  571. {*****************************************************************************
  572. External Symbol Chain
  573. used for agx86nsm and agx86int
  574. *****************************************************************************}
  575. type
  576. PExternChain = ^TExternChain;
  577. TExternChain = Record
  578. psym : pshortstring;
  579. is_defined : boolean;
  580. next : PExternChain;
  581. end;
  582. const
  583. FEC : PExternChain = nil;
  584. procedure AddSymbol(symname : string; defined : boolean);
  585. procedure FreeExternChainList;
  586. implementation
  587. uses
  588. cutils,
  589. globals,
  590. systems,
  591. itcpugas,
  592. cpuinfo;
  593. procedure AddSymbol(symname : string; defined : boolean);
  594. var
  595. EC : PExternChain;
  596. begin
  597. EC:=FEC;
  598. while assigned(EC) do
  599. begin
  600. if EC^.psym^=symname then
  601. begin
  602. if defined then
  603. EC^.is_defined:=true;
  604. exit;
  605. end;
  606. EC:=EC^.next;
  607. end;
  608. New(EC);
  609. EC^.next:=FEC;
  610. FEC:=EC;
  611. FEC^.psym:=stringdup(symname);
  612. FEC^.is_defined := defined;
  613. end;
  614. procedure FreeExternChainList;
  615. var
  616. EC : PExternChain;
  617. begin
  618. EC:=FEC;
  619. while assigned(EC) do
  620. begin
  621. FEC:=EC^.next;
  622. stringdispose(EC^.psym);
  623. Dispose(EC);
  624. EC:=FEC;
  625. end;
  626. end;
  627. {*****************************************************************************
  628. Instruction table
  629. *****************************************************************************}
  630. type
  631. TInsTabCache=array[TasmOp] of longint;
  632. PInsTabCache=^TInsTabCache;
  633. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  634. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  635. const
  636. {$if defined(x86_64)}
  637. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  638. {$elseif defined(i386)}
  639. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  640. {$elseif defined(i8086)}
  641. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  642. {$endif}
  643. var
  644. InsTabCache : PInsTabCache;
  645. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  646. const
  647. {$if defined(x86_64)}
  648. { Intel style operands ! }
  649. opsize_2_type:array[0..2,topsize] of int64=(
  650. (OT_NONE,
  651. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  652. OT_BITS16,OT_BITS32,OT_BITS64,
  653. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  654. OT_BITS64,
  655. OT_NEAR,OT_FAR,OT_SHORT,
  656. OT_NONE,
  657. OT_BITS128,
  658. OT_BITS256,
  659. OT_BITS512
  660. ),
  661. (OT_NONE,
  662. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  663. OT_BITS16,OT_BITS32,OT_BITS64,
  664. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  665. OT_BITS64,
  666. OT_NEAR,OT_FAR,OT_SHORT,
  667. OT_NONE,
  668. OT_BITS128,
  669. OT_BITS256,
  670. OT_BITS512
  671. ),
  672. (OT_NONE,
  673. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  674. OT_BITS16,OT_BITS32,OT_BITS64,
  675. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  676. OT_BITS64,
  677. OT_NEAR,OT_FAR,OT_SHORT,
  678. OT_NONE,
  679. OT_BITS128,
  680. OT_BITS256,
  681. OT_BITS512
  682. )
  683. );
  684. reg_ot_table : array[tregisterindex] of longint = (
  685. {$i r8664ot.inc}
  686. );
  687. {$elseif defined(i386)}
  688. { Intel style operands ! }
  689. opsize_2_type:array[0..2,topsize] of int64=(
  690. (OT_NONE,
  691. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  692. OT_BITS16,OT_BITS32,OT_BITS64,
  693. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  694. OT_BITS64,
  695. OT_NEAR,OT_FAR,OT_SHORT,
  696. OT_NONE,
  697. OT_BITS128,
  698. OT_BITS256,
  699. OT_BITS512
  700. ),
  701. (OT_NONE,
  702. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  703. OT_BITS16,OT_BITS32,OT_BITS64,
  704. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  705. OT_BITS64,
  706. OT_NEAR,OT_FAR,OT_SHORT,
  707. OT_NONE,
  708. OT_BITS128,
  709. OT_BITS256,
  710. OT_BITS512
  711. ),
  712. (OT_NONE,
  713. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  714. OT_BITS16,OT_BITS32,OT_BITS64,
  715. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  716. OT_BITS64,
  717. OT_NEAR,OT_FAR,OT_SHORT,
  718. OT_NONE,
  719. OT_BITS128,
  720. OT_BITS256,
  721. OT_BITS512
  722. )
  723. );
  724. reg_ot_table : array[tregisterindex] of longint = (
  725. {$i r386ot.inc}
  726. );
  727. {$elseif defined(i8086)}
  728. { Intel style operands ! }
  729. opsize_2_type:array[0..2,topsize] of int64=(
  730. (OT_NONE,
  731. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  732. OT_BITS16,OT_BITS32,OT_BITS64,
  733. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  734. OT_BITS64,
  735. OT_NEAR,OT_FAR,OT_SHORT,
  736. OT_NONE,
  737. OT_BITS128,
  738. OT_BITS256,
  739. OT_BITS512
  740. ),
  741. (OT_NONE,
  742. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  743. OT_BITS16,OT_BITS32,OT_BITS64,
  744. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  745. OT_BITS64,
  746. OT_NEAR,OT_FAR,OT_SHORT,
  747. OT_NONE,
  748. OT_BITS128,
  749. OT_BITS256,
  750. OT_BITS512
  751. ),
  752. (OT_NONE,
  753. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  754. OT_BITS16,OT_BITS32,OT_BITS64,
  755. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  756. OT_BITS64,
  757. OT_NEAR,OT_FAR,OT_SHORT,
  758. OT_NONE,
  759. OT_BITS128,
  760. OT_BITS256,
  761. OT_BITS512
  762. )
  763. );
  764. reg_ot_table : array[tregisterindex] of longint = (
  765. {$i r8086ot.inc}
  766. );
  767. {$endif}
  768. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  769. begin
  770. result := InsTabMemRefSizeInfoCache^[aAsmop];
  771. end;
  772. function MightHaveExtension(AsmOp : TAsmOp): Boolean;
  773. var
  774. i,j: LongInt;
  775. insentry: pinsentry;
  776. begin
  777. Result:=true;
  778. i:=InsTabCache^[AsmOp];
  779. if i>=0 then
  780. begin
  781. insentry:=@instab[i];
  782. while insentry^.opcode=AsmOp do
  783. begin
  784. for j:=0 to insentry^.ops-1 do
  785. begin
  786. if (insentry^.optypes[j] and OT_VECTOR_EXT)<>0 then
  787. exit;
  788. end;
  789. inc(i);
  790. insentry:=@instab[i];
  791. end;
  792. end;
  793. Result:=false;
  794. end;
  795. { Operation type for spilling code }
  796. type
  797. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  798. var
  799. operation_type_table : ^toperation_type_table;
  800. {****************************************************************************
  801. TAI_ALIGN
  802. ****************************************************************************}
  803. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  804. const
  805. { Updated according to
  806. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  807. and
  808. Intel 64 and IA-32 Architectures Software Developer’s Manual
  809. Volume 2B: Instruction Set Reference, N-Z, January 2015
  810. }
  811. {$ifndef i8086}
  812. alignarray_cmovcpus:array[0..10] of string[11]=(
  813. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  814. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  815. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  816. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  817. #$0F#$1F#$80#$00#$00#$00#$00,
  818. #$66#$0F#$1F#$44#$00#$00,
  819. #$0F#$1F#$44#$00#$00,
  820. #$0F#$1F#$40#$00,
  821. #$0F#$1F#$00,
  822. #$66#$90,
  823. #$90);
  824. {$endif i8086}
  825. {$ifdef i8086}
  826. alignarray:array[0..5] of string[8]=(
  827. #$90#$90#$90#$90#$90#$90#$90,
  828. #$90#$90#$90#$90#$90#$90,
  829. #$90#$90#$90#$90,
  830. #$90#$90#$90,
  831. #$90#$90,
  832. #$90);
  833. {$else i8086}
  834. alignarray:array[0..5] of string[8]=(
  835. #$8D#$B4#$26#$00#$00#$00#$00,
  836. #$8D#$B6#$00#$00#$00#$00,
  837. #$8D#$74#$26#$00,
  838. #$8D#$76#$00,
  839. #$89#$F6,
  840. #$90);
  841. {$endif i8086}
  842. var
  843. bufptr : pchar;
  844. j : longint;
  845. localsize: byte;
  846. begin
  847. inherited calculatefillbuf(buf,executable);
  848. if not(use_op) and executable then
  849. begin
  850. bufptr:=pchar(@buf);
  851. { fillsize may still be used afterwards, so don't modify }
  852. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  853. localsize:=fillsize;
  854. while (localsize>0) do
  855. begin
  856. {$ifndef i8086}
  857. if (CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype]) then
  858. begin
  859. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  860. if (localsize>=length(alignarray_cmovcpus[j])) then
  861. break;
  862. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  863. inc(bufptr,length(alignarray_cmovcpus[j]));
  864. dec(localsize,length(alignarray_cmovcpus[j]));
  865. end
  866. else
  867. {$endif not i8086}
  868. begin
  869. for j:=low(alignarray) to high(alignarray) do
  870. if (localsize>=length(alignarray[j])) then
  871. break;
  872. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  873. inc(bufptr,length(alignarray[j]));
  874. dec(localsize,length(alignarray[j]));
  875. end
  876. end;
  877. end;
  878. calculatefillbuf:=pchar(@buf);
  879. end;
  880. {*****************************************************************************
  881. Taicpu Constructors
  882. *****************************************************************************}
  883. procedure taicpu.changeopsize(siz:topsize); {$ifdef USEINLINE}inline;{$endif USEINLINE}
  884. begin
  885. opsize:=siz;
  886. end;
  887. procedure taicpu.init(_size : topsize);
  888. begin
  889. { default order is att }
  890. FOperandOrder:=op_att;
  891. segprefix:=NR_NO;
  892. opsize:=_size;
  893. insentry:=nil;
  894. LastInsOffset:=-1;
  895. InsOffset:=0;
  896. InsSize:=0;
  897. EVEXTupleState := etsUnknown;
  898. end;
  899. constructor taicpu.op_none(op : tasmop);
  900. begin
  901. inherited create(op);
  902. init(S_NO);
  903. end;
  904. constructor taicpu.op_none(op : tasmop;_size : topsize);
  905. begin
  906. inherited create(op);
  907. init(_size);
  908. end;
  909. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  910. begin
  911. inherited create(op);
  912. init(_size);
  913. ops:=1;
  914. loadreg(0,_op1);
  915. end;
  916. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  917. begin
  918. inherited create(op);
  919. init(_size);
  920. ops:=1;
  921. loadconst(0,_op1);
  922. end;
  923. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  924. begin
  925. inherited create(op);
  926. init(_size);
  927. ops:=1;
  928. loadref(0,_op1);
  929. end;
  930. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  931. begin
  932. inherited create(op);
  933. init(_size);
  934. ops:=2;
  935. loadreg(0,_op1);
  936. loadreg(1,_op2);
  937. end;
  938. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  939. begin
  940. inherited create(op);
  941. init(_size);
  942. ops:=2;
  943. loadreg(0,_op1);
  944. loadconst(1,_op2);
  945. end;
  946. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  947. begin
  948. inherited create(op);
  949. init(_size);
  950. ops:=2;
  951. loadreg(0,_op1);
  952. loadref(1,_op2);
  953. end;
  954. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  955. begin
  956. inherited create(op);
  957. init(_size);
  958. ops:=2;
  959. loadconst(0,_op1);
  960. loadreg(1,_op2);
  961. end;
  962. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  963. begin
  964. inherited create(op);
  965. init(_size);
  966. ops:=2;
  967. loadconst(0,_op1);
  968. loadconst(1,_op2);
  969. end;
  970. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  971. begin
  972. inherited create(op);
  973. init(_size);
  974. ops:=2;
  975. loadconst(0,_op1);
  976. loadref(1,_op2);
  977. end;
  978. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  979. begin
  980. inherited create(op);
  981. init(_size);
  982. ops:=2;
  983. loadref(0,_op1);
  984. loadreg(1,_op2);
  985. end;
  986. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  987. begin
  988. inherited create(op);
  989. init(_size);
  990. ops:=3;
  991. loadreg(0,_op1);
  992. loadreg(1,_op2);
  993. loadreg(2,_op3);
  994. end;
  995. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  996. begin
  997. inherited create(op);
  998. init(_size);
  999. ops:=3;
  1000. loadconst(0,_op1);
  1001. loadreg(1,_op2);
  1002. loadreg(2,_op3);
  1003. end;
  1004. constructor taicpu.op_reg_ref_reg(op : tasmop;_size : topsize;_op1 : tregister; const _op2 : treference;_op3 : tregister);
  1005. begin
  1006. inherited create(op);
  1007. init(_size);
  1008. ops:=3;
  1009. loadreg(0,_op1);
  1010. loadref(1,_op2);
  1011. loadreg(2,_op3);
  1012. end;
  1013. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  1014. begin
  1015. inherited create(op);
  1016. init(_size);
  1017. ops:=3;
  1018. loadref(0,_op1);
  1019. loadreg(1,_op2);
  1020. loadreg(2,_op3);
  1021. end;
  1022. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  1023. begin
  1024. inherited create(op);
  1025. init(_size);
  1026. ops:=3;
  1027. loadconst(0,_op1);
  1028. loadref(1,_op2);
  1029. loadreg(2,_op3);
  1030. end;
  1031. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  1032. begin
  1033. inherited create(op);
  1034. init(_size);
  1035. ops:=3;
  1036. loadconst(0,_op1);
  1037. loadreg(1,_op2);
  1038. loadref(2,_op3);
  1039. end;
  1040. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  1041. begin
  1042. inherited create(op);
  1043. init(_size);
  1044. ops:=3;
  1045. loadreg(0,_op1);
  1046. loadreg(1,_op2);
  1047. loadref(2,_op3);
  1048. end;
  1049. constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
  1050. begin
  1051. inherited create(op);
  1052. init(_size);
  1053. ops:=4;
  1054. loadconst(0,_op1);
  1055. loadreg(1,_op2);
  1056. loadreg(2,_op3);
  1057. loadreg(3,_op4);
  1058. end;
  1059. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  1060. begin
  1061. inherited create(op);
  1062. init(_size);
  1063. condition:=cond;
  1064. ops:=1;
  1065. loadsymbol(0,_op1,0);
  1066. end;
  1067. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  1068. begin
  1069. inherited create(op);
  1070. init(_size);
  1071. ops:=1;
  1072. loadsymbol(0,_op1,0);
  1073. end;
  1074. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  1075. begin
  1076. inherited create(op);
  1077. init(_size);
  1078. ops:=1;
  1079. loadsymbol(0,_op1,_op1ofs);
  1080. end;
  1081. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  1082. begin
  1083. inherited create(op);
  1084. init(_size);
  1085. ops:=2;
  1086. loadsymbol(0,_op1,_op1ofs);
  1087. loadreg(1,_op2);
  1088. end;
  1089. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  1090. begin
  1091. inherited create(op);
  1092. init(_size);
  1093. ops:=2;
  1094. loadsymbol(0,_op1,_op1ofs);
  1095. loadref(1,_op2);
  1096. end;
  1097. function taicpu.GetString:string;
  1098. var
  1099. i : longint;
  1100. s : string;
  1101. regnr: string;
  1102. addsize : boolean;
  1103. begin
  1104. s:='['+std_op2str[opcode];
  1105. for i:=0 to ops-1 do
  1106. begin
  1107. with oper[i]^ do
  1108. begin
  1109. if i=0 then
  1110. s:=s+' '
  1111. else
  1112. s:=s+',';
  1113. { type }
  1114. addsize:=false;
  1115. regnr := '';
  1116. if getregtype(reg) = R_MMREGISTER then
  1117. str(getsupreg(reg),regnr);
  1118. if (ot and OT_XMMREG)=OT_XMMREG then
  1119. s:=s+'xmmreg' + regnr
  1120. else
  1121. if (ot and OT_YMMREG)=OT_YMMREG then
  1122. s:=s+'ymmreg' + regnr
  1123. else
  1124. if (ot and OT_ZMMREG)=OT_ZMMREG then
  1125. s:=s+'zmmreg' + regnr
  1126. else
  1127. if (ot and OT_REG_EXTRA_MASK)=OT_MMXREG then
  1128. s:=s+'mmxreg'
  1129. else
  1130. if (ot and OT_REG_EXTRA_MASK)=OT_FPUREG then
  1131. s:=s+'fpureg'
  1132. else
  1133. if (ot and OT_REGISTER)=OT_REGISTER then
  1134. begin
  1135. s:=s+'reg';
  1136. addsize:=true;
  1137. end
  1138. else
  1139. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  1140. begin
  1141. s:=s+'imm';
  1142. addsize:=true;
  1143. end
  1144. else
  1145. if (ot and OT_MEMORY)=OT_MEMORY then
  1146. begin
  1147. s:=s+'mem';
  1148. addsize:=true;
  1149. end
  1150. else
  1151. s:=s+'???';
  1152. { size }
  1153. if addsize then
  1154. begin
  1155. if (ot and OT_BITS8)<>0 then
  1156. s:=s+'8'
  1157. else
  1158. if (ot and OT_BITS16)<>0 then
  1159. s:=s+'16'
  1160. else
  1161. if (ot and OT_BITS32)<>0 then
  1162. s:=s+'32'
  1163. else
  1164. if (ot and OT_BITS64)<>0 then
  1165. s:=s+'64'
  1166. else
  1167. if (ot and OT_BITS128)<>0 then
  1168. s:=s+'128'
  1169. else
  1170. if (ot and OT_BITS256)<>0 then
  1171. s:=s+'256'
  1172. else
  1173. if (ot and OT_BITS512)<>0 then
  1174. s:=s+'512'
  1175. else
  1176. s:=s+'??';
  1177. { signed }
  1178. if (ot and OT_SIGNED)<>0 then
  1179. s:=s+'s';
  1180. end;
  1181. if vopext <> 0 then
  1182. begin
  1183. str(vopext and $07, regnr);
  1184. if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  1185. s := s + ' {k' + regnr + '}';
  1186. if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then
  1187. s := s + ' {z}';
  1188. if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  1189. s := s + ' {sae}';
  1190. if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  1191. case vopext and OTVE_VECTOR_BCST_MASK of
  1192. OTVE_VECTOR_BCST2: s := s + ' {1to2}';
  1193. OTVE_VECTOR_BCST4: s := s + ' {1to4}';
  1194. OTVE_VECTOR_BCST8: s := s + ' {1to8}';
  1195. OTVE_VECTOR_BCST16: s := s + ' {1to16}';
  1196. end;
  1197. if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  1198. case vopext and OTVE_VECTOR_ER_MASK of
  1199. OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}';
  1200. OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}';
  1201. OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}';
  1202. OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}';
  1203. end;
  1204. end;
  1205. end;
  1206. end;
  1207. GetString:=s+']';
  1208. end;
  1209. procedure taicpu.Swapoperands;
  1210. var
  1211. p : POper;
  1212. begin
  1213. { Fix the operands which are in AT&T style and we need them in Intel style }
  1214. case ops of
  1215. 0,1:
  1216. ;
  1217. 2 : begin
  1218. { 0,1 -> 1,0 }
  1219. p:=oper[0];
  1220. oper[0]:=oper[1];
  1221. oper[1]:=p;
  1222. end;
  1223. 3 : begin
  1224. { 0,1,2 -> 2,1,0 }
  1225. p:=oper[0];
  1226. oper[0]:=oper[2];
  1227. oper[2]:=p;
  1228. end;
  1229. 4 : begin
  1230. { 0,1,2,3 -> 3,2,1,0 }
  1231. p:=oper[0];
  1232. oper[0]:=oper[3];
  1233. oper[3]:=p;
  1234. p:=oper[1];
  1235. oper[1]:=oper[2];
  1236. oper[2]:=p;
  1237. end;
  1238. else
  1239. internalerror(201108141);
  1240. end;
  1241. end;
  1242. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1243. begin
  1244. if FOperandOrder<>order then
  1245. begin
  1246. Swapoperands;
  1247. FOperandOrder:=order;
  1248. end;
  1249. end;
  1250. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1251. begin
  1252. result:=opcode;
  1253. { we need ATT order }
  1254. SetOperandOrder(op_att);
  1255. if (
  1256. (ops=2) and
  1257. (oper[0]^.typ=top_reg) and
  1258. (oper[1]^.typ=top_reg) and
  1259. { if the first is ST and the second is also a register
  1260. it is necessarily ST1 .. ST7 }
  1261. ((oper[0]^.reg=NR_ST) or
  1262. (oper[0]^.reg=NR_ST0))
  1263. ) or
  1264. { ((ops=1) and
  1265. (oper[0]^.typ=top_reg) and
  1266. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1267. (ops=0) then
  1268. begin
  1269. if opcode=A_FSUBR then
  1270. result:=A_FSUB
  1271. else if opcode=A_FSUB then
  1272. result:=A_FSUBR
  1273. else if opcode=A_FDIVR then
  1274. result:=A_FDIV
  1275. else if opcode=A_FDIV then
  1276. result:=A_FDIVR
  1277. else if opcode=A_FSUBRP then
  1278. result:=A_FSUBP
  1279. else if opcode=A_FSUBP then
  1280. result:=A_FSUBRP
  1281. else if opcode=A_FDIVRP then
  1282. result:=A_FDIVP
  1283. else if opcode=A_FDIVP then
  1284. result:=A_FDIVRP;
  1285. end;
  1286. if (
  1287. (ops=1) and
  1288. (oper[0]^.typ=top_reg) and
  1289. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1290. (oper[0]^.reg<>NR_ST)
  1291. ) then
  1292. begin
  1293. if opcode=A_FSUBRP then
  1294. result:=A_FSUBP
  1295. else if opcode=A_FSUBP then
  1296. result:=A_FSUBRP
  1297. else if opcode=A_FDIVRP then
  1298. result:=A_FDIVP
  1299. else if opcode=A_FDIVP then
  1300. result:=A_FDIVRP;
  1301. end;
  1302. end;
  1303. {*****************************************************************************
  1304. Assembler
  1305. *****************************************************************************}
  1306. type
  1307. ea = packed record
  1308. sib_present : boolean;
  1309. bytes : byte;
  1310. size : byte;
  1311. modrm : byte;
  1312. sib : byte;
  1313. {$ifdef x86_64}
  1314. rex : byte;
  1315. {$endif x86_64}
  1316. end;
  1317. procedure taicpu.create_ot(objdata:TObjData);
  1318. {
  1319. this function will also fix some other fields which only needs to be once
  1320. }
  1321. var
  1322. i,l,relsize : longint;
  1323. currsym : TObjSymbol;
  1324. begin
  1325. if ops=0 then
  1326. exit;
  1327. { update oper[].ot field }
  1328. for i:=0 to ops-1 do
  1329. with oper[i]^ do
  1330. begin
  1331. case typ of
  1332. top_reg :
  1333. begin
  1334. ot:=reg_ot_table[findreg_by_number(reg)];
  1335. end;
  1336. top_ref :
  1337. begin
  1338. if (ref^.refaddr in [addr_no{$ifdef x86_64},addr_tpoff{$endif x86_64}{$ifdef i386},addr_ntpoff{$endif i386}])
  1339. {$ifdef i386}
  1340. or (
  1341. (ref^.refaddr in [addr_pic,addr_tlsgd]) and
  1342. ((ref^.base<>NR_NO) or (ref^.index<>NR_NO))
  1343. )
  1344. {$endif i386}
  1345. {$ifdef x86_64}
  1346. or (
  1347. (ref^.refaddr in [addr_pic,addr_pic_no_got,addr_tlsgd]) and
  1348. (ref^.base<>NR_NO)
  1349. )
  1350. {$endif x86_64}
  1351. then
  1352. begin
  1353. { create ot field }
  1354. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1355. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1356. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1357. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1358. ) then
  1359. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1360. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1361. (reg_ot_table[findreg_by_number(ref^.index)])
  1362. else if (ref^.base = NR_NO) and
  1363. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1364. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1365. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1366. ) then
  1367. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1368. ot := (OT_REG_GPR) or
  1369. (reg_ot_table[findreg_by_number(ref^.index)])
  1370. else if (ot and OT_SIZE_MASK)=0 then
  1371. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1372. else
  1373. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1374. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1375. ot:=ot or OT_MEM_OFFS;
  1376. { fix scalefactor }
  1377. if (ref^.index=NR_NO) then
  1378. ref^.scalefactor:=0
  1379. else
  1380. if (ref^.scalefactor=0) then
  1381. ref^.scalefactor:=1;
  1382. end
  1383. else
  1384. begin
  1385. { Jumps use a relative offset which can be 8bit,
  1386. for other opcodes we always need to generate the full
  1387. 32bit address }
  1388. if assigned(objdata) and
  1389. is_jmp then
  1390. begin
  1391. currsym:=objdata.symbolref(ref^.symbol);
  1392. l:=ref^.offset;
  1393. {$push}
  1394. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1395. if assigned(currsym) then
  1396. inc(l,currsym.address);
  1397. {$pop}
  1398. { when it is a forward jump we need to compensate the
  1399. offset of the instruction since the previous time,
  1400. because the symbol address is then still using the
  1401. 'old-style' addressing.
  1402. For backwards jumps this is not required because the
  1403. address of the symbol is already adjusted to the
  1404. new offset }
  1405. if (l>InsOffset) and (LastInsOffset<>-1) then
  1406. inc(l,InsOffset-LastInsOffset);
  1407. { instruction size will then always become 2 (PFV) }
  1408. relsize:=(InsOffset+2)-l;
  1409. if (relsize>=-128) and (relsize<=127) and
  1410. (
  1411. not assigned(currsym) or
  1412. (currsym.objsection=objdata.currobjsec)
  1413. ) then
  1414. ot:=OT_IMM8 or OT_SHORT
  1415. else
  1416. {$ifdef i8086}
  1417. ot:=OT_IMM16 or OT_NEAR;
  1418. {$else i8086}
  1419. ot:=OT_IMM32 or OT_NEAR;
  1420. {$endif i8086}
  1421. end
  1422. else
  1423. {$ifdef i8086}
  1424. if opsize=S_FAR then
  1425. ot:=OT_IMM16 or OT_FAR
  1426. else
  1427. ot:=OT_IMM16 or OT_NEAR;
  1428. {$else i8086}
  1429. ot:=OT_IMM32 or OT_NEAR;
  1430. {$endif i8086}
  1431. end;
  1432. end;
  1433. top_local :
  1434. begin
  1435. if (ot and OT_SIZE_MASK)=0 then
  1436. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1437. else
  1438. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1439. end;
  1440. top_const :
  1441. begin
  1442. // if opcode is a SSE or AVX-instruction then we need a
  1443. // special handling (opsize can different from const-size)
  1444. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1445. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1446. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnknown])) then
  1447. begin
  1448. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1449. csiNoSize: ot := ot and OT_NON_SIZE or OT_IMMEDIATE;
  1450. csiMem8: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS8;
  1451. csiMem16: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS16;
  1452. csiMem32: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS32;
  1453. csiMem64: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS64;
  1454. else
  1455. ;
  1456. end;
  1457. end
  1458. else
  1459. begin
  1460. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1461. { further, allow AAD and AAM with imm. operand }
  1462. if (opsize=S_NO) and not((i in [1,2,3])
  1463. {$ifndef x86_64}
  1464. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1465. {$endif x86_64}
  1466. ) then
  1467. message(asmr_e_invalid_opcode_and_operand);
  1468. if
  1469. {$ifdef i8086}
  1470. (longint(val)>=-128) and (val<=127) then
  1471. {$else i8086}
  1472. (opsize<>S_W) and
  1473. (aint(val)>=-128) and (val<=127) then
  1474. {$endif not i8086}
  1475. ot:=OT_IMM8 or OT_SIGNED
  1476. else
  1477. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1478. if (val=1) and (i=1) then
  1479. ot := ot or OT_ONENESS;
  1480. end;
  1481. end;
  1482. top_none :
  1483. begin
  1484. { generated when there was an error in the
  1485. assembler reader. It never happends when generating
  1486. assembler }
  1487. end;
  1488. else
  1489. internalerror(200402266);
  1490. end;
  1491. end;
  1492. end;
  1493. function taicpu.InsEnd:longint;
  1494. begin
  1495. InsEnd:=InsOffset+InsSize;
  1496. end;
  1497. function taicpu.Matches(p:PInsEntry):boolean;
  1498. { * IF_SM stands for Size Match: any operand whose size is not
  1499. * explicitly specified by the template is `really' intended to be
  1500. * the same size as the first size-specified operand.
  1501. * Non-specification is tolerated in the input instruction, but
  1502. * _wrong_ specification is not.
  1503. *
  1504. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1505. * three-operand instructions such as SHLD: it implies that the
  1506. * first two operands must match in size, but that the third is
  1507. * required to be _unspecified_.
  1508. *
  1509. * IF_SB invokes Size Byte: operands with unspecified size in the
  1510. * template are really bytes, and so no non-byte specification in
  1511. * the input instruction will be tolerated. IF_SW similarly invokes
  1512. * Size Word, and IF_SD invokes Size Doubleword.
  1513. *
  1514. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1515. * that any operand with unspecified size in the template is
  1516. * required to have unspecified size in the instruction too...)
  1517. }
  1518. var
  1519. insot,
  1520. currot: int64;
  1521. i,j,asize,oprs : longint;
  1522. insflags:tinsflags;
  1523. vopext: int64;
  1524. siz : array[0..max_operands-1] of longint;
  1525. begin
  1526. result:=false;
  1527. { Check the opcode and operands }
  1528. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1529. exit;
  1530. {$ifdef i8086}
  1531. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1532. cpu is earlier than 386. There's another entry, later in the table for
  1533. i8086, which simulates it with i8086 instructions:
  1534. JNcc short +3
  1535. JMP near target }
  1536. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1537. (IF_386 in p^.flags) then
  1538. exit;
  1539. {$endif i8086}
  1540. for i:=0 to p^.ops-1 do
  1541. begin
  1542. insot:=p^.optypes[i];
  1543. currot:=oper[i]^.ot;
  1544. { Check the operand flags }
  1545. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1546. exit;
  1547. // IGNORE VECTOR-MEMORY-SIZE
  1548. if insot and OT_TYPE_MASK = OT_MEMORY then
  1549. insot := insot and not(int64(OT_BITS128 or OT_BITS256 or OT_BITS512));
  1550. { Check if the passed operand size matches with one of
  1551. the supported operand sizes }
  1552. if ((insot and OT_SIZE_MASK)<>0) and
  1553. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1554. exit;
  1555. { "far" matches only with "far" }
  1556. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1557. exit;
  1558. end;
  1559. { Check operand sizes }
  1560. insflags:=p^.flags;
  1561. if (insflags*IF_SMASK)<>[] then
  1562. begin
  1563. { as default an untyped size can get all the sizes, this is different
  1564. from nasm, but else we need to do a lot checking which opcodes want
  1565. size or not with the automatic size generation }
  1566. asize:=-1;
  1567. if IF_SB in insflags then
  1568. asize:=OT_BITS8
  1569. else if IF_SW in insflags then
  1570. asize:=OT_BITS16
  1571. else if IF_SD in insflags then
  1572. asize:=OT_BITS32;
  1573. if insflags*IF_ARMASK<>[] then
  1574. begin
  1575. siz[0]:=-1;
  1576. siz[1]:=-1;
  1577. siz[2]:=-1;
  1578. if IF_AR0 in insflags then
  1579. siz[0]:=asize
  1580. else if IF_AR1 in insflags then
  1581. siz[1]:=asize
  1582. else if IF_AR2 in insflags then
  1583. siz[2]:=asize
  1584. else
  1585. internalerror(2017092101);
  1586. end
  1587. else
  1588. begin
  1589. siz[0]:=asize;
  1590. siz[1]:=asize;
  1591. siz[2]:=asize;
  1592. end;
  1593. if insflags*[IF_SM,IF_SM2]<>[] then
  1594. begin
  1595. if IF_SM2 in insflags then
  1596. oprs:=2
  1597. else
  1598. oprs:=p^.ops;
  1599. for i:=0 to oprs-1 do
  1600. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1601. begin
  1602. for j:=0 to oprs-1 do
  1603. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1604. break;
  1605. end;
  1606. end
  1607. else
  1608. oprs:=2;
  1609. { Check operand sizes }
  1610. for i:=0 to p^.ops-1 do
  1611. begin
  1612. insot:=p^.optypes[i];
  1613. currot:=oper[i]^.ot;
  1614. if ((insot and OT_SIZE_MASK)=0) and
  1615. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1616. { Immediates can always include smaller size }
  1617. ((currot and OT_IMMEDIATE)=0) and
  1618. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1619. exit;
  1620. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1621. exit;
  1622. end;
  1623. end;
  1624. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1625. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1626. begin
  1627. for i:=0 to p^.ops-1 do
  1628. begin
  1629. insot:=p^.optypes[i];
  1630. currot:=oper[i]^.ot;
  1631. { Check the operand flags }
  1632. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1633. exit;
  1634. { Check if the passed operand size matches with one of
  1635. the supported operand sizes }
  1636. if ((insot and OT_SIZE_MASK)<>0) and
  1637. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1638. exit;
  1639. end;
  1640. end;
  1641. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1642. begin
  1643. for i:=0 to p^.ops-1 do
  1644. begin
  1645. // check vectoroperand-extention e.g. {k1} {z}
  1646. vopext := 0;
  1647. if (oper[i]^.vopext and OTVE_VECTOR_WRITEMASK) = OTVE_VECTOR_WRITEMASK then
  1648. begin
  1649. vopext := vopext or OT_VECTORMASK;
  1650. if (oper[i]^.vopext and OTVE_VECTOR_ZERO) = OTVE_VECTOR_ZERO then
  1651. vopext := vopext or OT_VECTORZERO;
  1652. end;
  1653. if (oper[i]^.vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST then
  1654. begin
  1655. vopext := vopext or OT_VECTORBCST;
  1656. if (InsTabMemRefSizeInfoCache^[opcode].BCSTTypes <> []) then
  1657. begin
  1658. // any opcodes needs a special handling
  1659. // default broadcast calculation is
  1660. // bmem32
  1661. // xmmreg: {1to4}
  1662. // ymmreg: {1to8}
  1663. // zmmreg: {1to16}
  1664. // bmem64
  1665. // xmmreg: {1to2}
  1666. // ymmreg: {1to4}
  1667. // zmmreg: {1to8}
  1668. // in any opcodes not exists a mmregister
  1669. // e.g. vfpclasspd k1, [RAX] {1to8}, 0
  1670. // =>> check flags
  1671. case oper[i]^.vopext and (OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16) of
  1672. OTVE_VECTOR_BCST2: if not(IF_BCST2 in p^.flags) then exit;
  1673. OTVE_VECTOR_BCST4: if not(IF_BCST4 in p^.flags) then exit;
  1674. OTVE_VECTOR_BCST8: if not(IF_BCST8 in p^.flags) then exit;
  1675. OTVE_VECTOR_BCST16: if not(IF_BCST16 in p^.flags) then exit;
  1676. else exit;
  1677. end;
  1678. end;
  1679. end;
  1680. if (oper[i]^.vopext and OTVE_VECTOR_ER) = OTVE_VECTOR_ER then
  1681. vopext := vopext or OT_VECTORER;
  1682. if (oper[i]^.vopext and OTVE_VECTOR_SAE) = OTVE_VECTOR_SAE then
  1683. vopext := vopext or OT_VECTORSAE;
  1684. if p^.optypes[i] and vopext <> vopext then
  1685. exit;
  1686. end;
  1687. end;
  1688. result:=true;
  1689. end;
  1690. procedure taicpu.ResetPass1;
  1691. begin
  1692. { we need to reset everything here, because the choosen insentry
  1693. can be invalid for a new situation where the previously optimized
  1694. insentry is not correct }
  1695. InsEntry:=nil;
  1696. InsSize:=0;
  1697. LastInsOffset:=-1;
  1698. end;
  1699. procedure taicpu.ResetPass2;
  1700. begin
  1701. { we are here in a second pass, check if the instruction can be optimized }
  1702. if assigned(InsEntry) and
  1703. (IF_PASS2 in InsEntry^.flags) then
  1704. begin
  1705. InsEntry:=nil;
  1706. InsSize:=0;
  1707. end;
  1708. LastInsOffset:=-1;
  1709. end;
  1710. function taicpu.CheckIfValid:boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  1711. begin
  1712. result:=FindInsEntry(nil);
  1713. end;
  1714. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1715. var
  1716. i : longint;
  1717. begin
  1718. result:=false;
  1719. { Things which may only be done once, not when a second pass is done to
  1720. optimize }
  1721. if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
  1722. begin
  1723. current_filepos:=fileinfo;
  1724. { We need intel style operands }
  1725. SetOperandOrder(op_intel);
  1726. { create the .ot fields }
  1727. create_ot(objdata);
  1728. { set the file postion }
  1729. end
  1730. else
  1731. begin
  1732. { we've already an insentry so it's valid }
  1733. result:=true;
  1734. exit;
  1735. end;
  1736. { Lookup opcode in the table }
  1737. InsSize:=-1;
  1738. i:=instabcache^[opcode];
  1739. if i=-1 then
  1740. begin
  1741. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1742. exit;
  1743. end;
  1744. insentry:=@instab[i];
  1745. while (insentry^.opcode=opcode) do
  1746. begin
  1747. if matches(insentry) then
  1748. begin
  1749. result:=true;
  1750. exit;
  1751. end;
  1752. inc(insentry);
  1753. end;
  1754. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1755. { No instruction found, set insentry to nil and inssize to -1 }
  1756. insentry:=nil;
  1757. inssize:=-1;
  1758. end;
  1759. function taicpu.CheckUseEVEX: boolean;
  1760. var
  1761. i: integer;
  1762. begin
  1763. result := false;
  1764. for i := 0 to ops - 1 do
  1765. begin
  1766. if (oper[i]^.typ=top_reg) and
  1767. (getregtype(oper[i]^.reg) = R_MMREGISTER) then
  1768. if getsupreg(oper[i]^.reg)>=16 then
  1769. result := true;
  1770. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  1771. result := true;
  1772. end;
  1773. end;
  1774. procedure taicpu.CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  1775. var
  1776. i: integer;
  1777. tuplesize: integer;
  1778. memsize: integer;
  1779. begin
  1780. if EVEXTupleState = etsUnknown then
  1781. begin
  1782. EVEXTupleState := etsNotTuple;
  1783. if aInsEntry^.Flags * IF_TUPLEMASK <> [] then
  1784. begin
  1785. tuplesize := 0;
  1786. if IF_TFV in aInsEntry^.Flags then
  1787. begin
  1788. for i := 0 to aInsEntry^.ops - 1 do
  1789. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1790. begin
  1791. tuplesize := 4;
  1792. break;
  1793. end
  1794. else if (aInsEntry^.optypes[i] and OT_BMEM64 = OT_BMEM64) then
  1795. begin
  1796. tuplesize := 8;
  1797. break;
  1798. end
  1799. else if (aInsEntry^.optypes[i] and OT_MEMORY = OT_MEMORY) then
  1800. begin
  1801. if aIsVector512 then tuplesize := 64
  1802. else if aIsVector256 then tuplesize := 32
  1803. else tuplesize := 16;
  1804. break;
  1805. end
  1806. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1807. begin
  1808. if aIsVector512 then tuplesize := 64
  1809. else if aIsVector256 then tuplesize := 32
  1810. else tuplesize := 16;
  1811. break;
  1812. end;
  1813. end
  1814. else if IF_THV in aInsEntry^.Flags then
  1815. begin
  1816. for i := 0 to aInsEntry^.ops - 1 do
  1817. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1818. begin
  1819. tuplesize := 4;
  1820. break;
  1821. end
  1822. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1823. begin
  1824. if aIsVector512 then tuplesize := 32
  1825. else if aIsVector256 then tuplesize := 16
  1826. else tuplesize := 8;
  1827. break;
  1828. end
  1829. end
  1830. else if IF_TFVM in aInsEntry^.Flags then
  1831. begin
  1832. if aIsVector512 then tuplesize := 64
  1833. else if aIsVector256 then tuplesize := 32
  1834. else tuplesize := 16;
  1835. end
  1836. else
  1837. begin
  1838. memsize := 0;
  1839. for i := 0 to aInsEntry^.ops - 1 do
  1840. begin
  1841. if aInsEntry^.optypes[i] and (OT_REGNORM or OT_MEMORY) = OT_REGMEM then
  1842. begin
  1843. case aInsEntry^.optypes[i] and (OT_BITS32 or OT_BITS64) of
  1844. OT_BITS32: begin
  1845. memsize := 32;
  1846. break;
  1847. end;
  1848. OT_BITS64: begin
  1849. memsize := 64;
  1850. break;
  1851. end;
  1852. end;
  1853. end
  1854. else
  1855. case aInsEntry^.optypes[i] and (OT_MEM8 or OT_MEM16 or OT_MEM32 or OT_MEM64) of
  1856. OT_MEM8: begin
  1857. memsize := 8;
  1858. break;
  1859. end;
  1860. OT_MEM16: begin
  1861. memsize := 16;
  1862. break;
  1863. end;
  1864. OT_MEM32: begin
  1865. memsize := 32;
  1866. break;
  1867. end;
  1868. OT_MEM64: //if aIsEVEXW1 then
  1869. begin
  1870. memsize := 64;
  1871. break;
  1872. end;
  1873. end;
  1874. end;
  1875. if IF_T1S in aInsEntry^.Flags then
  1876. begin
  1877. case memsize of
  1878. 8: tuplesize := 1;
  1879. 16: tuplesize := 2;
  1880. else if aIsEVEXW1 then tuplesize := 8
  1881. else tuplesize := 4;
  1882. end;
  1883. end
  1884. else if IF_T1S8 in aInsEntry^.Flags then tuplesize := 1
  1885. else if IF_T1S16 in aInsEntry^.Flags then tuplesize := 2
  1886. else if IF_T1F32 in aInsEntry^.Flags then tuplesize := 4
  1887. else if IF_T1F64 in aInsEntry^.Flags then tuplesize := 8
  1888. else if IF_T2 in aInsEntry^.Flags then
  1889. begin
  1890. case aIsEVEXW1 of
  1891. false: tuplesize := 8;
  1892. else if aIsVector256 or aIsVector512 then tuplesize := 16;
  1893. end;
  1894. end
  1895. else if IF_T4 in aInsEntry^.Flags then
  1896. begin
  1897. case aIsEVEXW1 of
  1898. false: if aIsVector256 or aIsVector512 then tuplesize := 16;
  1899. else if aIsVector512 then tuplesize := 32;
  1900. end;
  1901. end
  1902. else if IF_T8 in aInsEntry^.Flags then
  1903. begin
  1904. case aIsEVEXW1 of
  1905. false: if aIsVector512 then tuplesize := 32;
  1906. else
  1907. Internalerror(2019081013);
  1908. end;
  1909. end
  1910. else if IF_THVM in aInsEntry^.Flags then
  1911. begin
  1912. tuplesize := 8; // default 128bit-vectorlength
  1913. if aIsVector256 then tuplesize := 16
  1914. else if aIsVector512 then tuplesize := 32;
  1915. end
  1916. else if IF_TQVM in aInsEntry^.Flags then
  1917. begin
  1918. tuplesize := 4; // default 128bit-vectorlength
  1919. if aIsVector256 then tuplesize := 8
  1920. else if aIsVector512 then tuplesize := 16;
  1921. end
  1922. else if IF_TOVM in aInsEntry^.Flags then
  1923. begin
  1924. tuplesize := 2; // default 128bit-vectorlength
  1925. if aIsVector256 then tuplesize := 4
  1926. else if aIsVector512 then tuplesize := 8;
  1927. end
  1928. else if IF_TMEM128 in aInsEntry^.Flags then tuplesize := 16
  1929. else if IF_TMDDUP in aInsEntry^.Flags then
  1930. begin
  1931. tuplesize := 8; // default 128bit-vectorlength
  1932. if aIsVector256 then tuplesize := 32
  1933. else if aIsVector512 then tuplesize := 64;
  1934. end;
  1935. end;
  1936. if tuplesize > 0 then
  1937. begin
  1938. if aInput.typ = top_ref then
  1939. begin
  1940. if aInput.ref^.base <> NR_NO then
  1941. begin
  1942. if (aInput.ref^.offset <> 0) and
  1943. ((aInput.ref^.offset mod tuplesize) = 0) and
  1944. (abs(aInput.ref^.offset) div tuplesize <= 127) then
  1945. begin
  1946. aInput.ref^.offset := aInput.ref^.offset div tuplesize;
  1947. EVEXTupleState := etsIsTuple;
  1948. end;
  1949. end;
  1950. end;
  1951. end;
  1952. end;
  1953. end;
  1954. end;
  1955. function taicpu.Pass1(objdata:TObjData):longint;
  1956. begin
  1957. Pass1:=0;
  1958. { Save the old offset and set the new offset }
  1959. InsOffset:=ObjData.CurrObjSec.Size;
  1960. { Error? }
  1961. if (Insentry=nil) and (InsSize=-1) then
  1962. exit;
  1963. { set the file postion }
  1964. current_filepos:=fileinfo;
  1965. { Get InsEntry }
  1966. if FindInsEntry(ObjData) then
  1967. begin
  1968. { Calculate instruction size }
  1969. InsSize:=calcsize(insentry);
  1970. if segprefix<>NR_NO then
  1971. inc(InsSize);
  1972. if NeedAddrPrefix then
  1973. inc(InsSize);
  1974. { Fix opsize if size if forced }
  1975. if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
  1976. begin
  1977. if insentry^.flags*IF_ARMASK=[] then
  1978. begin
  1979. if IF_SB in insentry^.flags then
  1980. begin
  1981. if opsize=S_NO then
  1982. opsize:=S_B;
  1983. end
  1984. else if IF_SW in insentry^.flags then
  1985. begin
  1986. if opsize=S_NO then
  1987. opsize:=S_W;
  1988. end
  1989. else if IF_SD in insentry^.flags then
  1990. begin
  1991. if opsize=S_NO then
  1992. opsize:=S_L;
  1993. end;
  1994. end;
  1995. end;
  1996. LastInsOffset:=InsOffset;
  1997. Pass1:=InsSize;
  1998. exit;
  1999. end;
  2000. LastInsOffset:=-1;
  2001. end;
  2002. const
  2003. segprefixes: array[NR_ES..NR_GS] of Byte=(
  2004. // es cs ss ds fs gs
  2005. $26, $2E, $36, $3E, $64, $65
  2006. );
  2007. procedure taicpu.Pass2(objdata:TObjData);
  2008. begin
  2009. { error in pass1 ? }
  2010. if insentry=nil then
  2011. exit;
  2012. current_filepos:=fileinfo;
  2013. { Segment override }
  2014. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  2015. begin
  2016. {$ifdef i8086}
  2017. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  2018. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  2019. Message(asmw_e_instruction_not_supported_by_cpu);
  2020. {$endif i8086}
  2021. objdata.writebytes(segprefixes[segprefix],1);
  2022. { fix the offset for GenNode }
  2023. inc(InsOffset);
  2024. end
  2025. else if segprefix<>NR_NO then
  2026. InternalError(201001071);
  2027. { Address size prefix? }
  2028. if NeedAddrPrefix then
  2029. begin
  2030. write0x67prefix(objdata);
  2031. { fix the offset for GenNode }
  2032. inc(InsOffset);
  2033. end;
  2034. { Generate the instruction }
  2035. GenCode(objdata);
  2036. end;
  2037. function is_64_bit_ref(const ref:treference):boolean;
  2038. begin
  2039. {$if defined(x86_64)}
  2040. result:=not is_32_bit_ref(ref);
  2041. {$elseif defined(i386) or defined(i8086)}
  2042. result:=false;
  2043. {$endif}
  2044. end;
  2045. function is_32_bit_ref(const ref:treference):boolean;
  2046. begin
  2047. {$if defined(x86_64)}
  2048. result:=(ref.refaddr=addr_no) and
  2049. (ref.base<>NR_RIP) and
  2050. (
  2051. ((ref.index<>NR_NO) and (getsubreg(ref.index)=R_SUBD)) or
  2052. ((ref.base<>NR_NO) and (getsubreg(ref.base)=R_SUBD))
  2053. );
  2054. {$elseif defined(i386) or defined(i8086)}
  2055. result:=not is_16_bit_ref(ref);
  2056. {$endif}
  2057. end;
  2058. function is_16_bit_ref(const ref:treference):boolean;
  2059. var
  2060. ir,br : Tregister;
  2061. isub,bsub : tsubregister;
  2062. begin
  2063. if (ref.index<>NR_NO) and (getregtype(ref.index)=R_MMREGISTER) then
  2064. exit(false);
  2065. ir:=ref.index;
  2066. br:=ref.base;
  2067. isub:=getsubreg(ir);
  2068. bsub:=getsubreg(br);
  2069. { it's a direct address }
  2070. if (br=NR_NO) and (ir=NR_NO) then
  2071. begin
  2072. {$ifdef i8086}
  2073. result:=true;
  2074. {$else i8086}
  2075. result:=false;
  2076. {$endif}
  2077. end
  2078. else
  2079. { it's an indirection }
  2080. begin
  2081. result := ((ir<>NR_NO) and (isub=R_SUBW)) or
  2082. ((br<>NR_NO) and (bsub=R_SUBW));
  2083. end;
  2084. end;
  2085. function get_ref_address_size(const ref:treference):byte;
  2086. begin
  2087. if is_64_bit_ref(ref) then
  2088. result:=64
  2089. else if is_32_bit_ref(ref) then
  2090. result:=32
  2091. else if is_16_bit_ref(ref) then
  2092. result:=16
  2093. else
  2094. internalerror(2017101601);
  2095. end;
  2096. function get_default_segment_of_ref(const ref:treference):tregister;
  2097. begin
  2098. { for 16-bit registers, we allow base and index to be swapped, that's
  2099. why we also we check whether ref.index=NR_BP. For 32-bit registers,
  2100. however, index=NR_EBP is encoded differently than base=NR_EBP and has
  2101. a different default segment. }
  2102. if (ref.base=NR_BP) or (ref.index=NR_BP) or
  2103. (ref.base=NR_EBP) or (ref.base=NR_ESP)
  2104. {$ifdef x86_64}
  2105. or (ref.base=NR_RBP) or (ref.base=NR_RSP)
  2106. {$endif x86_64}
  2107. then
  2108. result:=NR_SS
  2109. else
  2110. result:=NR_DS;
  2111. end;
  2112. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  2113. var
  2114. ss_equals_ds: boolean;
  2115. tmpreg: TRegister;
  2116. begin
  2117. {$ifdef x86_64}
  2118. { x86_64 in long mode ignores all segment base, limit and access rights
  2119. checks for the DS, ES and SS registers, so we can set ss_equals_ds to
  2120. true (and thus, perform stronger optimizations on the reference),
  2121. regardless of whether this is inline asm or not (so, even if the user
  2122. is doing tricks by loading different values into DS and SS, it still
  2123. doesn't matter while the processor is in long mode) }
  2124. ss_equals_ds:=True;
  2125. {$else x86_64}
  2126. { for i8086 and i386 inline asm, we assume SS<>DS, even if we're
  2127. compiling for a memory model, where SS=DS, because the user might be
  2128. doing something tricky with the segment registers (and may have
  2129. temporarily set them differently) }
  2130. if inlineasm then
  2131. ss_equals_ds:=False
  2132. else
  2133. ss_equals_ds:=segment_regs_equal(NR_DS,NR_SS);
  2134. {$endif x86_64}
  2135. { remove redundant segment overrides }
  2136. if (ref.segment<>NR_NO) and
  2137. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2138. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2139. ref.segment:=NR_NO;
  2140. if not is_16_bit_ref(ref) then
  2141. begin
  2142. { Switching index to base position gives shorter assembler instructions.
  2143. Converting index*2 to base+index also gives shorter instructions. }
  2144. if (ref.base=NR_NO) and (ref.index<>NR_NO) and (ref.scalefactor<=2) and
  2145. (ss_equals_ds or (ref.segment<>NR_NO) or (ref.index<>NR_EBP))
  2146. { do not mess with tls references, they have the (,reg,1) format on purpose
  2147. else the linker cannot resolve/replace them }
  2148. {$ifdef i386} and (ref.refaddr<>addr_tlsgd) {$endif i386} then
  2149. begin
  2150. ref.base:=ref.index;
  2151. if ref.scalefactor=2 then
  2152. ref.scalefactor:=1
  2153. else
  2154. begin
  2155. ref.index:=NR_NO;
  2156. ref.scalefactor:=0;
  2157. end;
  2158. end;
  2159. { Switching rBP+reg to reg+rBP sometimes gives shorter instructions (if there's no offset)
  2160. On x86_64 this also works for switching r13+reg to reg+r13. }
  2161. if ((ref.base=NR_EBP) {$ifdef x86_64}or (ref.base=NR_RBP) or (ref.base=NR_R13) or (ref.base=NR_R13D){$endif}) and
  2162. (ref.index<>NR_NO) and
  2163. (ref.index<>NR_EBP) and {$ifdef x86_64}(ref.index<>NR_RBP) and (ref.index<>NR_R13) and (ref.index<>NR_R13D) and{$endif}
  2164. (ref.scalefactor<=1) and (ref.offset=0) and (ref.refaddr=addr_no) and
  2165. (ss_equals_ds or (ref.segment<>NR_NO)) then
  2166. begin
  2167. tmpreg:=ref.base;
  2168. ref.base:=ref.index;
  2169. ref.index:=tmpreg;
  2170. end;
  2171. end;
  2172. { remove redundant segment overrides again }
  2173. if (ref.segment<>NR_NO) and
  2174. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2175. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2176. ref.segment:=NR_NO;
  2177. end;
  2178. function taicpu.NeedAddrPrefix(opidx: byte): boolean;
  2179. begin
  2180. {$if defined(x86_64)}
  2181. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2182. {$elseif defined(i386)}
  2183. result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^.ref^);
  2184. {$elseif defined(i8086)}
  2185. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2186. {$endif}
  2187. end;
  2188. function taicpu.NeedAddrPrefix:boolean;
  2189. var
  2190. i: Integer;
  2191. begin
  2192. for i:=0 to ops-1 do
  2193. if needaddrprefix(i) then
  2194. exit(true);
  2195. result:=false;
  2196. end;
  2197. procedure badreg(r:Tregister);
  2198. begin
  2199. Message1(asmw_e_invalid_register,generic_regname(r));
  2200. end;
  2201. function regval(r:Tregister):byte;
  2202. const
  2203. intsupreg2opcode: array[0..7] of byte=
  2204. // ax cx dx bx si di bp sp -- in x86reg.dat
  2205. // ax cx dx bx sp bp si di -- needed order
  2206. (0, 1, 2, 3, 6, 7, 5, 4);
  2207. maxsupreg: array[tregistertype] of tsuperregister=
  2208. {$ifdef x86_64}
  2209. (0, 16, 9, 8, 32, 32, 8, 0, 0, 0, 0, 0);
  2210. {$else x86_64}
  2211. (0, 8, 9, 8, 8, 32, 8, 0, 0, 0, 0, 0);
  2212. {$endif x86_64}
  2213. var
  2214. rs: tsuperregister;
  2215. rt: tregistertype;
  2216. begin
  2217. rs:=getsupreg(r);
  2218. rt:=getregtype(r);
  2219. if (rs>=maxsupreg[rt]) then
  2220. badreg(r);
  2221. result:=rs and 7;
  2222. if (rt=R_INTREGISTER) then
  2223. begin
  2224. if (rs<8) then
  2225. result:=intsupreg2opcode[rs];
  2226. if getsubreg(r)=R_SUBH then
  2227. inc(result,4);
  2228. end;
  2229. end;
  2230. {$if defined(x86_64)}
  2231. function rexbits(r: tregister): byte;
  2232. begin
  2233. result:=0;
  2234. case getregtype(r) of
  2235. R_INTREGISTER:
  2236. if (getsupreg(r)>=RS_R8) then
  2237. { Either B,X or R bits can be set, depending on register role in instruction.
  2238. Set all three bits here, caller will discard unnecessary ones. }
  2239. result:=result or $47
  2240. else if (getsubreg(r)=R_SUBL) and
  2241. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  2242. result:=result or $40
  2243. else if (getsubreg(r)=R_SUBH) then
  2244. { Not an actual REX bit, used to detect incompatible usage of
  2245. AH/BH/CH/DH }
  2246. result:=result or $80;
  2247. R_MMREGISTER:
  2248. //if getsupreg(r)>=RS_XMM8 then
  2249. // AVX512 = 32 register
  2250. // rexbit = 0 => MMRegister 0..7 or 16..23
  2251. // rexbit = 1 => MMRegister 8..15 or 24..31
  2252. if (getsupreg(r) and $08) = $08 then
  2253. result:=result or $47;
  2254. else
  2255. ;
  2256. end;
  2257. end;
  2258. function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2259. var
  2260. sym : tasmsymbol;
  2261. md,s : byte;
  2262. base,index,scalefactor,
  2263. o : longint;
  2264. ir,br : Tregister;
  2265. isub,bsub : tsubregister;
  2266. begin
  2267. result:=false;
  2268. ir:=input.ref^.index;
  2269. br:=input.ref^.base;
  2270. isub:=getsubreg(ir);
  2271. bsub:=getsubreg(br);
  2272. s:=input.ref^.scalefactor;
  2273. o:=input.ref^.offset;
  2274. sym:=input.ref^.symbol;
  2275. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  2276. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2277. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  2278. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  2279. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2280. internalerror(200301081);
  2281. { it's direct address }
  2282. if (br=NR_NO) and (ir=NR_NO) then
  2283. begin
  2284. output.sib_present:=true;
  2285. output.bytes:=4;
  2286. output.modrm:=4 or (rfield shl 3);
  2287. output.sib:=$25;
  2288. end
  2289. else if (br=NR_RIP) and (ir=NR_NO) then
  2290. begin
  2291. { rip based }
  2292. output.sib_present:=false;
  2293. output.bytes:=4;
  2294. output.modrm:=5 or (rfield shl 3);
  2295. end
  2296. else
  2297. { it's an indirection }
  2298. begin
  2299. if ((br=NR_RIP) and (ir<>NR_NO)) or
  2300. (ir=NR_RIP) then
  2301. message(asmw_e_illegal_use_of_rip);
  2302. if ir=NR_STACK_POINTER_REG then
  2303. Message(asmw_e_illegal_use_of_sp);
  2304. { 16 bit? }
  2305. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2306. (br<>NR_NO) and (bsub=R_SUBQ)
  2307. ) then
  2308. begin
  2309. // vector memory (AVX2) =>> ignore
  2310. end
  2311. else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
  2312. ((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
  2313. begin
  2314. message(asmw_e_16bit_32bit_not_supported);
  2315. end;
  2316. { wrong, for various reasons }
  2317. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2318. exit;
  2319. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  2320. result:=true;
  2321. { base }
  2322. case br of
  2323. NR_R8D,
  2324. NR_EAX,
  2325. NR_R8,
  2326. NR_RAX : base:=0;
  2327. NR_R9D,
  2328. NR_ECX,
  2329. NR_R9,
  2330. NR_RCX : base:=1;
  2331. NR_R10D,
  2332. NR_EDX,
  2333. NR_R10,
  2334. NR_RDX : base:=2;
  2335. NR_R11D,
  2336. NR_EBX,
  2337. NR_R11,
  2338. NR_RBX : base:=3;
  2339. NR_R12D,
  2340. NR_ESP,
  2341. NR_R12,
  2342. NR_RSP : base:=4;
  2343. NR_R13D,
  2344. NR_EBP,
  2345. NR_R13,
  2346. NR_NO,
  2347. NR_RBP : base:=5;
  2348. NR_R14D,
  2349. NR_ESI,
  2350. NR_R14,
  2351. NR_RSI : base:=6;
  2352. NR_R15D,
  2353. NR_EDI,
  2354. NR_R15,
  2355. NR_RDI : base:=7;
  2356. else
  2357. exit;
  2358. end;
  2359. { index }
  2360. case ir of
  2361. NR_R8D,
  2362. NR_EAX,
  2363. NR_R8,
  2364. NR_RAX,
  2365. NR_XMM0,
  2366. NR_XMM8,
  2367. NR_XMM16,
  2368. NR_XMM24,
  2369. NR_YMM0,
  2370. NR_YMM8,
  2371. NR_YMM16,
  2372. NR_YMM24,
  2373. NR_ZMM0,
  2374. NR_ZMM8,
  2375. NR_ZMM16,
  2376. NR_ZMM24: index:=0;
  2377. NR_R9D,
  2378. NR_ECX,
  2379. NR_R9,
  2380. NR_RCX,
  2381. NR_XMM1,
  2382. NR_XMM9,
  2383. NR_XMM17,
  2384. NR_XMM25,
  2385. NR_YMM1,
  2386. NR_YMM9,
  2387. NR_YMM17,
  2388. NR_YMM25,
  2389. NR_ZMM1,
  2390. NR_ZMM9,
  2391. NR_ZMM17,
  2392. NR_ZMM25: index:=1;
  2393. NR_R10D,
  2394. NR_EDX,
  2395. NR_R10,
  2396. NR_RDX,
  2397. NR_XMM2,
  2398. NR_XMM10,
  2399. NR_XMM18,
  2400. NR_XMM26,
  2401. NR_YMM2,
  2402. NR_YMM10,
  2403. NR_YMM18,
  2404. NR_YMM26,
  2405. NR_ZMM2,
  2406. NR_ZMM10,
  2407. NR_ZMM18,
  2408. NR_ZMM26: index:=2;
  2409. NR_R11D,
  2410. NR_EBX,
  2411. NR_R11,
  2412. NR_RBX,
  2413. NR_XMM3,
  2414. NR_XMM11,
  2415. NR_XMM19,
  2416. NR_XMM27,
  2417. NR_YMM3,
  2418. NR_YMM11,
  2419. NR_YMM19,
  2420. NR_YMM27,
  2421. NR_ZMM3,
  2422. NR_ZMM11,
  2423. NR_ZMM19,
  2424. NR_ZMM27: index:=3;
  2425. NR_R12D,
  2426. NR_ESP,
  2427. NR_R12,
  2428. NR_NO,
  2429. NR_XMM4,
  2430. NR_XMM12,
  2431. NR_XMM20,
  2432. NR_XMM28,
  2433. NR_YMM4,
  2434. NR_YMM12,
  2435. NR_YMM20,
  2436. NR_YMM28,
  2437. NR_ZMM4,
  2438. NR_ZMM12,
  2439. NR_ZMM20,
  2440. NR_ZMM28: index:=4;
  2441. NR_R13D,
  2442. NR_EBP,
  2443. NR_R13,
  2444. NR_RBP,
  2445. NR_XMM5,
  2446. NR_XMM13,
  2447. NR_XMM21,
  2448. NR_XMM29,
  2449. NR_YMM5,
  2450. NR_YMM13,
  2451. NR_YMM21,
  2452. NR_YMM29,
  2453. NR_ZMM5,
  2454. NR_ZMM13,
  2455. NR_ZMM21,
  2456. NR_ZMM29: index:=5;
  2457. NR_R14D,
  2458. NR_ESI,
  2459. NR_R14,
  2460. NR_RSI,
  2461. NR_XMM6,
  2462. NR_XMM14,
  2463. NR_XMM22,
  2464. NR_XMM30,
  2465. NR_YMM6,
  2466. NR_YMM14,
  2467. NR_YMM22,
  2468. NR_YMM30,
  2469. NR_ZMM6,
  2470. NR_ZMM14,
  2471. NR_ZMM22,
  2472. NR_ZMM30: index:=6;
  2473. NR_R15D,
  2474. NR_EDI,
  2475. NR_R15,
  2476. NR_RDI,
  2477. NR_XMM7,
  2478. NR_XMM15,
  2479. NR_XMM23,
  2480. NR_XMM31,
  2481. NR_YMM7,
  2482. NR_YMM15,
  2483. NR_YMM23,
  2484. NR_YMM31,
  2485. NR_ZMM7,
  2486. NR_ZMM15,
  2487. NR_ZMM23,
  2488. NR_ZMM31: index:=7;
  2489. else
  2490. exit;
  2491. end;
  2492. case s of
  2493. 0,
  2494. 1 : scalefactor:=0;
  2495. 2 : scalefactor:=1;
  2496. 4 : scalefactor:=2;
  2497. 8 : scalefactor:=3;
  2498. else
  2499. exit;
  2500. end;
  2501. { If rbp or r13 is used we must always include an offset }
  2502. if (br=NR_NO) or
  2503. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  2504. md:=0
  2505. else
  2506. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2507. md:=1
  2508. else
  2509. md:=2;
  2510. if (br=NR_NO) or (md=2) then
  2511. output.bytes:=4
  2512. else
  2513. output.bytes:=md;
  2514. { SIB needed ? }
  2515. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  2516. begin
  2517. output.sib_present:=false;
  2518. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  2519. end
  2520. else
  2521. begin
  2522. output.sib_present:=true;
  2523. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  2524. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2525. end;
  2526. end;
  2527. output.size:=1+ord(output.sib_present)+output.bytes;
  2528. result:=true;
  2529. end;
  2530. {$elseif defined(i386) or defined(i8086)}
  2531. function process_ea_ref_32(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2532. var
  2533. sym : tasmsymbol;
  2534. md,s : byte;
  2535. base,index,scalefactor,
  2536. o : longint;
  2537. ir,br : Tregister;
  2538. isub,bsub : tsubregister;
  2539. begin
  2540. result:=false;
  2541. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  2542. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  2543. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2544. internalerror(2003010802);
  2545. ir:=input.ref^.index;
  2546. br:=input.ref^.base;
  2547. isub:=getsubreg(ir);
  2548. bsub:=getsubreg(br);
  2549. s:=input.ref^.scalefactor;
  2550. o:=input.ref^.offset;
  2551. sym:=input.ref^.symbol;
  2552. { it's direct address }
  2553. if (br=NR_NO) and (ir=NR_NO) then
  2554. begin
  2555. { it's a pure offset }
  2556. output.sib_present:=false;
  2557. output.bytes:=4;
  2558. output.modrm:=5 or (rfield shl 3);
  2559. end
  2560. else
  2561. { it's an indirection }
  2562. begin
  2563. { 16 bit address? }
  2564. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2565. (br<>NR_NO) and (bsub=R_SUBD)
  2566. ) then
  2567. begin
  2568. // vector memory (AVX2) =>> ignore
  2569. end
  2570. else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
  2571. ((br<>NR_NO) and (bsub<>R_SUBD)) then
  2572. message(asmw_e_16bit_not_supported);
  2573. {$ifdef OPTEA}
  2574. { make single reg base }
  2575. if (br=NR_NO) and (s=1) then
  2576. begin
  2577. br:=ir;
  2578. ir:=NR_NO;
  2579. end;
  2580. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  2581. if (br=NR_NO) and
  2582. (((s=2) and (ir<>NR_ESP)) or
  2583. (s=3) or (s=5) or (s=9)) then
  2584. begin
  2585. br:=ir;
  2586. dec(s);
  2587. end;
  2588. { swap ESP into base if scalefactor is 1 }
  2589. if (s=1) and (ir=NR_ESP) then
  2590. begin
  2591. ir:=br;
  2592. br:=NR_ESP;
  2593. end;
  2594. {$endif OPTEA}
  2595. { wrong, for various reasons }
  2596. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2597. exit;
  2598. { base }
  2599. case br of
  2600. NR_EAX : base:=0;
  2601. NR_ECX : base:=1;
  2602. NR_EDX : base:=2;
  2603. NR_EBX : base:=3;
  2604. NR_ESP : base:=4;
  2605. NR_NO,
  2606. NR_EBP : base:=5;
  2607. NR_ESI : base:=6;
  2608. NR_EDI : base:=7;
  2609. else
  2610. exit;
  2611. end;
  2612. { index }
  2613. case ir of
  2614. NR_EAX,
  2615. NR_XMM0,
  2616. NR_YMM0,
  2617. NR_ZMM0: index:=0;
  2618. NR_ECX,
  2619. NR_XMM1,
  2620. NR_YMM1,
  2621. NR_ZMM1: index:=1;
  2622. NR_EDX,
  2623. NR_XMM2,
  2624. NR_YMM2,
  2625. NR_ZMM2: index:=2;
  2626. NR_EBX,
  2627. NR_XMM3,
  2628. NR_YMM3,
  2629. NR_ZMM3: index:=3;
  2630. NR_NO,
  2631. NR_XMM4,
  2632. NR_YMM4,
  2633. NR_ZMM4: index:=4;
  2634. NR_EBP,
  2635. NR_XMM5,
  2636. NR_YMM5,
  2637. NR_ZMM5: index:=5;
  2638. NR_ESI,
  2639. NR_XMM6,
  2640. NR_YMM6,
  2641. NR_ZMM6: index:=6;
  2642. NR_EDI,
  2643. NR_XMM7,
  2644. NR_YMM7,
  2645. NR_ZMM7: index:=7;
  2646. else
  2647. exit;
  2648. end;
  2649. case s of
  2650. 0,
  2651. 1 : scalefactor:=0;
  2652. 2 : scalefactor:=1;
  2653. 4 : scalefactor:=2;
  2654. 8 : scalefactor:=3;
  2655. else
  2656. exit;
  2657. end;
  2658. if (br=NR_NO) or
  2659. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  2660. md:=0
  2661. else
  2662. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2663. md:=1
  2664. else
  2665. md:=2;
  2666. if (br=NR_NO) or (md=2) then
  2667. output.bytes:=4
  2668. else
  2669. output.bytes:=md;
  2670. { SIB needed ? }
  2671. if (ir=NR_NO) and (br<>NR_ESP) then
  2672. begin
  2673. output.sib_present:=false;
  2674. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2675. end
  2676. else
  2677. begin
  2678. output.sib_present:=true;
  2679. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  2680. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2681. end;
  2682. end;
  2683. if output.sib_present then
  2684. output.size:=2+output.bytes
  2685. else
  2686. output.size:=1+output.bytes;
  2687. result:=true;
  2688. end;
  2689. procedure maybe_swap_index_base(var br,ir:Tregister);
  2690. var
  2691. tmpreg: Tregister;
  2692. begin
  2693. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  2694. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  2695. begin
  2696. tmpreg:=br;
  2697. br:=ir;
  2698. ir:=tmpreg;
  2699. end;
  2700. end;
  2701. function process_ea_ref_16(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2702. var
  2703. sym : tasmsymbol;
  2704. md,s : byte;
  2705. base,
  2706. o : longint;
  2707. ir,br : Tregister;
  2708. isub,bsub : tsubregister;
  2709. begin
  2710. result:=false;
  2711. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  2712. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2713. internalerror(2003010803);
  2714. ir:=input.ref^.index;
  2715. br:=input.ref^.base;
  2716. isub:=getsubreg(ir);
  2717. bsub:=getsubreg(br);
  2718. s:=input.ref^.scalefactor;
  2719. o:=input.ref^.offset;
  2720. sym:=input.ref^.symbol;
  2721. { it's a direct address }
  2722. if (br=NR_NO) and (ir=NR_NO) then
  2723. begin
  2724. { it's a pure offset }
  2725. output.bytes:=2;
  2726. output.modrm:=6 or (rfield shl 3);
  2727. end
  2728. else
  2729. { it's an indirection }
  2730. begin
  2731. { 32 bit address? }
  2732. if ((ir<>NR_NO) and (isub<>R_SUBW)) or
  2733. ((br<>NR_NO) and (bsub<>R_SUBW)) then
  2734. message(asmw_e_32bit_not_supported);
  2735. { scalefactor can only be 1 in 16-bit addresses }
  2736. if (s<>1) and (ir<>NR_NO) then
  2737. exit;
  2738. maybe_swap_index_base(br,ir);
  2739. if (br=NR_BX) and (ir=NR_SI) then
  2740. base:=0
  2741. else if (br=NR_BX) and (ir=NR_DI) then
  2742. base:=1
  2743. else if (br=NR_BP) and (ir=NR_SI) then
  2744. base:=2
  2745. else if (br=NR_BP) and (ir=NR_DI) then
  2746. base:=3
  2747. else if (br=NR_NO) and (ir=NR_SI) then
  2748. base:=4
  2749. else if (br=NR_NO) and (ir=NR_DI) then
  2750. base:=5
  2751. else if (br=NR_BP) and (ir=NR_NO) then
  2752. base:=6
  2753. else if (br=NR_BX) and (ir=NR_NO) then
  2754. base:=7
  2755. else
  2756. exit;
  2757. if (base<>6) and (o=0) and (sym=nil) then
  2758. md:=0
  2759. else if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2760. md:=1
  2761. else
  2762. md:=2;
  2763. output.bytes:=md;
  2764. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2765. end;
  2766. output.size:=1+output.bytes;
  2767. output.sib_present:=false;
  2768. result:=true;
  2769. end;
  2770. {$endif}
  2771. function process_ea(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2772. var
  2773. rv : byte;
  2774. begin
  2775. result:=false;
  2776. fillchar(output,sizeof(output),0);
  2777. {Register ?}
  2778. if (input.typ=top_reg) then
  2779. begin
  2780. rv:=regval(input.reg);
  2781. output.modrm:=$c0 or (rfield shl 3) or rv;
  2782. output.size:=1;
  2783. {$ifdef x86_64}
  2784. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2785. {$endif x86_64}
  2786. result:=true;
  2787. exit;
  2788. end;
  2789. {No register, so memory reference.}
  2790. if input.typ<>top_ref then
  2791. internalerror(200409263);
  2792. {$if defined(x86_64)}
  2793. result:=process_ea_ref_64_32(input,output,rfield, uselargeoffset);
  2794. {$elseif defined(i386) or defined(i8086)}
  2795. if is_16_bit_ref(input.ref^) then
  2796. result:=process_ea_ref_16(input,output,rfield, uselargeoffset)
  2797. else
  2798. result:=process_ea_ref_32(input,output,rfield, uselargeoffset);
  2799. {$endif}
  2800. end;
  2801. function taicpu.calcsize(p:PInsEntry):shortint;
  2802. var
  2803. codes : pchar;
  2804. c : byte;
  2805. len : shortint;
  2806. ea_data : ea;
  2807. exists_evex: boolean;
  2808. exists_vex: boolean;
  2809. exists_vex_extension: boolean;
  2810. exists_prefix_66: boolean;
  2811. exists_prefix_F2: boolean;
  2812. exists_prefix_F3: boolean;
  2813. exists_l256: boolean;
  2814. exists_l512: boolean;
  2815. exists_EVEXW1: boolean;
  2816. {$ifdef x86_64}
  2817. omit_rexw : boolean;
  2818. {$endif x86_64}
  2819. begin
  2820. len:=0;
  2821. codes:=@p^.code[0];
  2822. exists_vex := false;
  2823. exists_vex_extension := false;
  2824. exists_prefix_66 := false;
  2825. exists_prefix_F2 := false;
  2826. exists_prefix_F3 := false;
  2827. exists_evex := false;
  2828. exists_l256 := false;
  2829. exists_l512 := false;
  2830. exists_EVEXW1 := false;
  2831. {$ifdef x86_64}
  2832. rex:=0;
  2833. omit_rexw:=false;
  2834. {$endif x86_64}
  2835. repeat
  2836. c:=ord(codes^);
  2837. inc(codes);
  2838. case c of
  2839. &0 :
  2840. break;
  2841. &1,&2,&3 :
  2842. begin
  2843. inc(codes,c);
  2844. inc(len,c);
  2845. end;
  2846. &10,&11,&12 :
  2847. begin
  2848. {$ifdef x86_64}
  2849. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2850. {$endif x86_64}
  2851. inc(codes);
  2852. inc(len);
  2853. end;
  2854. &13,&23 :
  2855. begin
  2856. inc(codes);
  2857. inc(len);
  2858. end;
  2859. &4,&5,&6,&7 :
  2860. begin
  2861. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2862. inc(len,2)
  2863. else
  2864. inc(len);
  2865. end;
  2866. &14,&15,&16,
  2867. &20,&21,&22,
  2868. &24,&25,&26,&27,
  2869. &50,&51,&52 :
  2870. inc(len);
  2871. &30,&31,&32,
  2872. &37,
  2873. &60,&61,&62 :
  2874. inc(len,2);
  2875. &34,&35,&36:
  2876. begin
  2877. {$ifdef i8086}
  2878. inc(len,2);
  2879. {$else i8086}
  2880. if opsize=S_Q then
  2881. inc(len,8)
  2882. else
  2883. inc(len,4);
  2884. {$endif i8086}
  2885. end;
  2886. &44,&45,&46:
  2887. inc(len,sizeof(pint));
  2888. &54,&55,&56:
  2889. inc(len,8);
  2890. &40,&41,&42,
  2891. &70,&71,&72,
  2892. &254,&255,&256 :
  2893. inc(len,4);
  2894. &64,&65,&66:
  2895. {$ifdef i8086}
  2896. inc(len,2);
  2897. {$else i8086}
  2898. inc(len,4);
  2899. {$endif i8086}
  2900. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2901. &320,&321,&322 :
  2902. begin
  2903. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2904. {$if defined(i386) or defined(x86_64)}
  2905. OT_BITS16 :
  2906. {$elseif defined(i8086)}
  2907. OT_BITS32 :
  2908. {$endif}
  2909. inc(len);
  2910. {$ifdef x86_64}
  2911. OT_BITS64:
  2912. begin
  2913. rex:=rex or $48;
  2914. end;
  2915. {$endif x86_64}
  2916. end;
  2917. end;
  2918. &310 :
  2919. {$if defined(x86_64)}
  2920. { every insentry with code 0310 must be marked with NOX86_64 }
  2921. InternalError(2011051301);
  2922. {$elseif defined(i386)}
  2923. inc(len);
  2924. {$elseif defined(i8086)}
  2925. {nothing};
  2926. {$endif}
  2927. &311 :
  2928. {$if defined(x86_64) or defined(i8086)}
  2929. inc(len)
  2930. {$endif x86_64 or i8086}
  2931. ;
  2932. &324 :
  2933. {$ifndef i8086}
  2934. inc(len)
  2935. {$endif not i8086}
  2936. ;
  2937. &326 :
  2938. begin
  2939. {$ifdef x86_64}
  2940. rex:=rex or $48;
  2941. {$endif x86_64}
  2942. end;
  2943. &312,
  2944. &323,
  2945. &327,
  2946. &331,&332: ;
  2947. &325:
  2948. {$ifdef i8086}
  2949. inc(len)
  2950. {$endif i8086}
  2951. ;
  2952. &333:
  2953. begin
  2954. inc(len);
  2955. exists_prefix_F2 := true;
  2956. end;
  2957. &334:
  2958. begin
  2959. inc(len);
  2960. exists_prefix_F3 := true;
  2961. end;
  2962. &361:
  2963. begin
  2964. {$ifndef i8086}
  2965. inc(len);
  2966. exists_prefix_66 := true;
  2967. {$endif not i8086}
  2968. end;
  2969. &335:
  2970. {$ifdef x86_64}
  2971. omit_rexw:=true
  2972. {$endif x86_64}
  2973. ;
  2974. &336,
  2975. &337: {nothing};
  2976. &100..&227 :
  2977. begin
  2978. {$ifdef x86_64}
  2979. if (c<&177) then
  2980. begin
  2981. if (oper[c and 7]^.typ=top_reg) then
  2982. begin
  2983. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2984. end;
  2985. end;
  2986. {$endif x86_64}
  2987. if (oper[(c shr 3) and 7]^.typ = top_ref) and
  2988. (oper[(c shr 3) and 7]^.ref^.offset <> 0) then
  2989. begin
  2990. if (exists_vex and exists_evex and CheckUseEVEX) or
  2991. (not(exists_vex) and exists_evex) then
  2992. begin
  2993. CheckEVEXTuple(oper[(c shr 3) and 7]^, p, not(exists_l256 or exists_l512), exists_l256, exists_l512, exists_EVEXW1);
  2994. //const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  2995. end;
  2996. end;
  2997. if process_ea(oper[(c shr 3) and 7]^, ea_data, 0, EVEXTupleState = etsNotTuple) then
  2998. inc(len,ea_data.size)
  2999. else Message(asmw_e_invalid_effective_address);
  3000. {$ifdef x86_64}
  3001. rex:=rex or ea_data.rex;
  3002. {$endif x86_64}
  3003. end;
  3004. &350:
  3005. begin
  3006. exists_evex := true;
  3007. end;
  3008. &351: exists_l512 := true; // EVEX length bit 512
  3009. &352: exists_EVEXW1 := true; // EVEX W1
  3010. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  3011. // =>> DEFAULT = 2 Bytes
  3012. begin
  3013. //if not(exists_vex) then
  3014. //begin
  3015. // inc(len, 2);
  3016. //end;
  3017. exists_vex := true;
  3018. end;
  3019. &363: // REX.W = 1
  3020. // =>> VEX prefix length = 3
  3021. begin
  3022. if not(exists_vex_extension) then
  3023. begin
  3024. //inc(len);
  3025. exists_vex_extension := true;
  3026. end;
  3027. end;
  3028. &364: exists_l256 := true; // VEX length bit 256
  3029. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  3030. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  3031. &370: // VEX-Extension prefix $0F
  3032. // ignore for calculating length
  3033. ;
  3034. &371, // VEX-Extension prefix $0F38
  3035. &372: // VEX-Extension prefix $0F3A
  3036. begin
  3037. if not(exists_vex_extension) then
  3038. begin
  3039. //inc(len);
  3040. exists_vex_extension := true;
  3041. end;
  3042. end;
  3043. &300,&301,&302:
  3044. begin
  3045. {$if defined(x86_64) or defined(i8086)}
  3046. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3047. inc(len);
  3048. {$endif x86_64 or i8086}
  3049. end;
  3050. else
  3051. InternalError(200603141);
  3052. end;
  3053. until false;
  3054. {$ifdef x86_64}
  3055. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  3056. Message(asmw_e_bad_reg_with_rex);
  3057. rex:=rex and $4F; { reset extra bits in upper nibble }
  3058. if omit_rexw then
  3059. begin
  3060. if rex=$48 then { remove rex entirely? }
  3061. rex:=0
  3062. else
  3063. rex:=rex and $F7;
  3064. end;
  3065. if not(exists_vex or exists_evex) then
  3066. begin
  3067. if rex<>0 then
  3068. Inc(len);
  3069. end;
  3070. {$endif}
  3071. if exists_evex and
  3072. exists_vex then
  3073. begin
  3074. if CheckUseEVEX then
  3075. begin
  3076. inc(len, 4);
  3077. end
  3078. else
  3079. begin
  3080. inc(len, 2);
  3081. if exists_vex_extension then inc(len);
  3082. {$ifdef x86_64}
  3083. if not(exists_vex_extension) then
  3084. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3085. {$endif x86_64}
  3086. end;
  3087. if exists_prefix_66 then dec(len);
  3088. if exists_prefix_F2 then dec(len);
  3089. if exists_prefix_F3 then dec(len);
  3090. end
  3091. else if exists_evex then
  3092. begin
  3093. inc(len, 4);
  3094. if exists_prefix_66 then dec(len);
  3095. if exists_prefix_F2 then dec(len);
  3096. if exists_prefix_F3 then dec(len);
  3097. end
  3098. else
  3099. begin
  3100. if exists_vex then
  3101. begin
  3102. inc(len,2);
  3103. if exists_prefix_66 then dec(len);
  3104. if exists_prefix_F2 then dec(len);
  3105. if exists_prefix_F3 then dec(len);
  3106. if exists_vex_extension then inc(len);
  3107. {$ifdef x86_64}
  3108. if not(exists_vex_extension) then
  3109. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3110. {$endif x86_64}
  3111. end;
  3112. end;
  3113. calcsize:=len;
  3114. end;
  3115. procedure taicpu.write0x66prefix(objdata:TObjData);
  3116. const
  3117. b66: Byte=$66;
  3118. begin
  3119. {$ifdef i8086}
  3120. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3121. Message(asmw_e_instruction_not_supported_by_cpu);
  3122. {$endif i8086}
  3123. objdata.writebytes(b66,1);
  3124. end;
  3125. procedure taicpu.write0x67prefix(objdata:TObjData);
  3126. const
  3127. b67: Byte=$67;
  3128. begin
  3129. {$ifdef i8086}
  3130. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3131. Message(asmw_e_instruction_not_supported_by_cpu);
  3132. {$endif i8086}
  3133. objdata.writebytes(b67,1);
  3134. end;
  3135. procedure taicpu.gencode(objdata: TObjData);
  3136. {
  3137. * the actual codes (C syntax, i.e. octal):
  3138. * \0 - terminates the code. (Unless it's a literal of course.)
  3139. * \1, \2, \3 - that many literal bytes follow in the code stream
  3140. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  3141. * (POP is never used for CS) depending on operand 0
  3142. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  3143. * on operand 0
  3144. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  3145. * to the register value of operand 0, 1 or 2
  3146. * \13 - a literal byte follows in the code stream, to be added
  3147. * to the condition code value of the instruction.
  3148. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  3149. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  3150. * \23 - a literal byte follows in the code stream, to be added
  3151. * to the inverted condition code value of the instruction
  3152. * (inverted version of \13).
  3153. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  3154. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  3155. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  3156. * assembly mode or the address-size override on the operand
  3157. * \37 - a word constant, from the _segment_ part of operand 0
  3158. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  3159. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  3160. on the address size of instruction
  3161. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  3162. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  3163. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  3164. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  3165. * assembly mode or the address-size override on the operand
  3166. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  3167. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  3168. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  3169. * field the register value of operand b.
  3170. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  3171. * field equal to digit b.
  3172. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  3173. * \300,\301,\302 - might be an 0x67, depending on the address size of
  3174. * the memory reference in operand x.
  3175. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  3176. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  3177. * \312 - (disassembler only) invalid with non-default address size.
  3178. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  3179. * size of operand x.
  3180. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  3181. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  3182. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  3183. * \327 - indicates that this instruction is only valid when the
  3184. * operand size is the default (instruction to disassembler,
  3185. * generates no code in the assembler)
  3186. * \331 - instruction not valid with REP prefix. Hint for
  3187. * disassembler only; for SSE instructions.
  3188. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  3189. * \333 - 0xF3 prefix for SSE instructions
  3190. * \334 - 0xF2 prefix for SSE instructions
  3191. * \335 - Indicates 64-bit operand size with REX.W not necessary / 64-bit scalar vector operand size
  3192. * \336 - Indicates 32-bit scalar vector operand size
  3193. * \337 - Indicates 64-bit scalar vector operand size
  3194. * \350 - EVEX prefix for AVX instructions
  3195. * \351 - EVEX Vector length 512
  3196. * \352 - EVEX W1
  3197. * \361 - 0x66 prefix for SSE instructions
  3198. * \362 - VEX prefix for AVX instructions
  3199. * \363 - VEX W1
  3200. * \364 - VEX Vector length 256
  3201. * \366 - operand 2 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3202. * \367 - operand 3 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3203. * \370 - VEX 0F-FLAG
  3204. * \371 - VEX 0F38-FLAG
  3205. * \372 - VEX 0F3A-FLAG
  3206. }
  3207. var
  3208. {$ifdef i8086}
  3209. currval : longint;
  3210. {$else i8086}
  3211. currval : aint;
  3212. {$endif i8086}
  3213. currsym : tobjsymbol;
  3214. currrelreloc,
  3215. currabsreloc,
  3216. currabsreloc32 : TObjRelocationType;
  3217. {$ifdef x86_64}
  3218. rexwritten : boolean;
  3219. {$endif x86_64}
  3220. procedure getvalsym(opidx:longint);
  3221. begin
  3222. case oper[opidx]^.typ of
  3223. top_ref :
  3224. begin
  3225. currval:=oper[opidx]^.ref^.offset;
  3226. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  3227. {$ifdef i8086}
  3228. if oper[opidx]^.ref^.refaddr=addr_seg then
  3229. begin
  3230. currrelreloc:=RELOC_SEGREL;
  3231. currabsreloc:=RELOC_SEG;
  3232. currabsreloc32:=RELOC_SEG;
  3233. end
  3234. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  3235. begin
  3236. currrelreloc:=RELOC_DGROUPREL;
  3237. currabsreloc:=RELOC_DGROUP;
  3238. currabsreloc32:=RELOC_DGROUP;
  3239. end
  3240. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  3241. begin
  3242. currrelreloc:=RELOC_FARDATASEGREL;
  3243. currabsreloc:=RELOC_FARDATASEG;
  3244. currabsreloc32:=RELOC_FARDATASEG;
  3245. end
  3246. else
  3247. {$endif i8086}
  3248. {$ifdef i386}
  3249. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3250. (tf_pic_uses_got in target_info.flags) then
  3251. begin
  3252. currrelreloc:=RELOC_PLT32;
  3253. currabsreloc:=RELOC_GOT32;
  3254. currabsreloc32:=RELOC_GOT32;
  3255. end
  3256. else if oper[opidx]^.ref^.refaddr=addr_ntpoff then
  3257. begin
  3258. currrelreloc:=RELOC_NTPOFF;
  3259. currabsreloc:=RELOC_NTPOFF;
  3260. currabsreloc32:=RELOC_NTPOFF;
  3261. end
  3262. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  3263. begin
  3264. currrelreloc:=RELOC_TLSGD;
  3265. currabsreloc:=RELOC_TLSGD;
  3266. currabsreloc32:=RELOC_TLSGD;
  3267. end
  3268. else
  3269. {$endif i386}
  3270. {$ifdef x86_64}
  3271. if oper[opidx]^.ref^.refaddr=addr_pic then
  3272. begin
  3273. currrelreloc:=RELOC_PLT32;
  3274. currabsreloc:=RELOC_GOTPCREL;
  3275. currabsreloc32:=RELOC_GOTPCREL;
  3276. end
  3277. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  3278. begin
  3279. currrelreloc:=RELOC_RELATIVE;
  3280. currabsreloc:=RELOC_RELATIVE;
  3281. currabsreloc32:=RELOC_RELATIVE;
  3282. end
  3283. else if oper[opidx]^.ref^.refaddr=addr_tpoff then
  3284. begin
  3285. currrelreloc:=RELOC_TPOFF;
  3286. currabsreloc:=RELOC_TPOFF;
  3287. currabsreloc32:=RELOC_TPOFF;
  3288. end
  3289. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  3290. begin
  3291. currrelreloc:=RELOC_TLSGD;
  3292. currabsreloc:=RELOC_TLSGD;
  3293. currabsreloc32:=RELOC_TLSGD;
  3294. end
  3295. else
  3296. {$endif x86_64}
  3297. begin
  3298. currrelreloc:=RELOC_RELATIVE;
  3299. currabsreloc:=RELOC_ABSOLUTE;
  3300. currabsreloc32:=RELOC_ABSOLUTE32;
  3301. end;
  3302. end;
  3303. top_const :
  3304. begin
  3305. {$ifdef i8086}
  3306. currval:=longint(oper[opidx]^.val);
  3307. {$else i8086}
  3308. currval:=aint(oper[opidx]^.val);
  3309. {$endif i8086}
  3310. currsym:=nil;
  3311. currabsreloc:=RELOC_ABSOLUTE;
  3312. currabsreloc32:=RELOC_ABSOLUTE32;
  3313. end;
  3314. else
  3315. Message(asmw_e_immediate_or_reference_expected);
  3316. end;
  3317. end;
  3318. {$ifdef x86_64}
  3319. procedure maybewriterex;
  3320. begin
  3321. if (rex<>0) and not(rexwritten) then
  3322. begin
  3323. rexwritten:=true;
  3324. objdata.writebytes(rex,1);
  3325. end;
  3326. end;
  3327. {$endif x86_64}
  3328. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  3329. begin
  3330. {$ifdef i386}
  3331. { Special case of '_GLOBAL_OFFSET_TABLE_'
  3332. which needs a special relocation type R_386_GOTPC }
  3333. if assigned (p) and
  3334. (p.name='_GLOBAL_OFFSET_TABLE_') and
  3335. (tf_pic_uses_got in target_info.flags) then
  3336. begin
  3337. { nothing else than a 4 byte relocation should occur
  3338. for GOT }
  3339. if len<>4 then
  3340. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3341. Reloctype:=RELOC_GOTPC;
  3342. { We need to add the offset of the relocation
  3343. of _GLOBAL_OFFSET_TABLE symbol within
  3344. the current instruction }
  3345. inc(data,objdata.currobjsec.size-insoffset);
  3346. end;
  3347. {$endif i386}
  3348. objdata.writereloc(data,len,p,Reloctype);
  3349. {$ifdef x86_64}
  3350. { Computed offset is not yet correct for GOTPC relocation }
  3351. { RELOC_GOTPCREL, RELOC_REX_GOTPCRELX, RELOC_GOTPCRELX need special handling }
  3352. if assigned(p) and (RelocType in [RELOC_GOTPCREL, RELOC_REX_GOTPCRELX, RELOC_GOTPCRELX]) and
  3353. { These relocations seem to be used only for ELF
  3354. which always has relocs_use_addend set to true
  3355. so that it is the orgsize of the last relocation which needs to be fixed PM }
  3356. (insend<>objdata.CurrObjSec.size) then
  3357. dec(TObjRelocation(objdata.CurrObjSec.ObjRelocations.Last).orgsize,insend-objdata.CurrObjSec.size);
  3358. {$endif}
  3359. end;
  3360. const
  3361. CondVal:array[TAsmCond] of byte=($0,
  3362. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  3363. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  3364. $0, $A, $A, $B, $8, $4);
  3365. var
  3366. i: integer;
  3367. c : byte;
  3368. pb : pbyte;
  3369. codes : pchar;
  3370. bytes : array[0..3] of byte;
  3371. rfield,
  3372. data,s,opidx : longint;
  3373. ea_data : ea;
  3374. relsym : TObjSymbol;
  3375. needed_VEX_Extension: boolean;
  3376. needed_VEX: boolean;
  3377. needed_EVEX: boolean;
  3378. {$ifdef x86_64}
  3379. needed_VSIB: boolean;
  3380. {$endif x86_64}
  3381. opmode: integer;
  3382. VEXvvvv: byte;
  3383. VEXmmmmm: byte;
  3384. {
  3385. VEXw : byte;
  3386. VEXpp : byte;
  3387. VEXll : byte;
  3388. }
  3389. EVEXvvvv: byte;
  3390. EVEXpp: byte;
  3391. EVEXr: byte;
  3392. EVEXx: byte;
  3393. EVEXv: byte;
  3394. EVEXll: byte;
  3395. EVEXw1: byte;
  3396. EVEXz : byte;
  3397. EVEXaaa : byte;
  3398. EVEXb : byte;
  3399. EVEXmm : byte;
  3400. begin
  3401. { safety check }
  3402. if objdata.currobjsec.size<>longword(insoffset) then
  3403. internalerror(200130121);
  3404. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  3405. currsym:=nil;
  3406. currabsreloc:=RELOC_NONE;
  3407. currabsreloc32:=RELOC_NONE;
  3408. currrelreloc:=RELOC_NONE;
  3409. currval:=0;
  3410. { check instruction's processor level }
  3411. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  3412. {$ifdef i8086}
  3413. if objdata.CPUType<>cpu_none then
  3414. begin
  3415. if IF_8086 in insentry^.flags then
  3416. else if IF_186 in insentry^.flags then
  3417. begin
  3418. if objdata.CPUType<cpu_186 then
  3419. Message(asmw_e_instruction_not_supported_by_cpu);
  3420. end
  3421. else if IF_286 in insentry^.flags then
  3422. begin
  3423. if objdata.CPUType<cpu_286 then
  3424. Message(asmw_e_instruction_not_supported_by_cpu);
  3425. end
  3426. else if IF_386 in insentry^.flags then
  3427. begin
  3428. if objdata.CPUType<cpu_386 then
  3429. Message(asmw_e_instruction_not_supported_by_cpu);
  3430. end
  3431. else if IF_486 in insentry^.flags then
  3432. begin
  3433. if objdata.CPUType<cpu_486 then
  3434. Message(asmw_e_instruction_not_supported_by_cpu);
  3435. end
  3436. else if IF_PENT in insentry^.flags then
  3437. begin
  3438. if objdata.CPUType<cpu_Pentium then
  3439. Message(asmw_e_instruction_not_supported_by_cpu);
  3440. end
  3441. else if IF_P6 in insentry^.flags then
  3442. begin
  3443. if objdata.CPUType<cpu_Pentium2 then
  3444. Message(asmw_e_instruction_not_supported_by_cpu);
  3445. end
  3446. else if IF_KATMAI in insentry^.flags then
  3447. begin
  3448. if objdata.CPUType<cpu_Pentium3 then
  3449. Message(asmw_e_instruction_not_supported_by_cpu);
  3450. end
  3451. else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
  3452. begin
  3453. if objdata.CPUType<cpu_Pentium4 then
  3454. Message(asmw_e_instruction_not_supported_by_cpu);
  3455. end
  3456. else if IF_NEC in insentry^.flags then
  3457. begin
  3458. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  3459. if objdata.CPUType>=cpu_386 then
  3460. Message(asmw_e_instruction_not_supported_by_cpu);
  3461. end
  3462. else if IF_SANDYBRIDGE in insentry^.flags then
  3463. begin
  3464. { todo: handle these properly }
  3465. end;
  3466. end;
  3467. {$endif i8086}
  3468. { load data to write }
  3469. codes:=insentry^.code;
  3470. {$ifdef x86_64}
  3471. rexwritten:=false;
  3472. {$endif x86_64}
  3473. { Force word push/pop for registers }
  3474. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  3475. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  3476. write0x66prefix(objdata);
  3477. // needed VEX Prefix (for AVX etc.)
  3478. needed_VEX := false;
  3479. needed_EVEX := false;
  3480. needed_VEX_Extension := false;
  3481. {$ifdef x86_64}
  3482. needed_VSIB := false;
  3483. {$endif x86_64}
  3484. opmode := -1;
  3485. VEXvvvv := 0;
  3486. VEXmmmmm := 0;
  3487. {
  3488. VEXll := 0;
  3489. VEXw := 0;
  3490. VEXpp := 0;
  3491. }
  3492. EVEXpp := 0;
  3493. EVEXvvvv := 0;
  3494. EVEXr := 0;
  3495. EVEXx := 0;
  3496. EVEXv := 0;
  3497. EVEXll := 0;
  3498. EVEXw1 := 0;
  3499. EVEXz := 0;
  3500. EVEXaaa := 0;
  3501. EVEXb := 0;
  3502. EVEXmm := 0;
  3503. repeat
  3504. c:=ord(codes^);
  3505. inc(codes);
  3506. case c of
  3507. &0: break;
  3508. &1,
  3509. &2,
  3510. &3: inc(codes,c);
  3511. &10,
  3512. &11,
  3513. &12: inc(codes, 1);
  3514. &74: opmode := 0;
  3515. &75: opmode := 1;
  3516. &76: opmode := 2;
  3517. &100..&227: begin
  3518. // AVX 512 - EVEX
  3519. // check operands
  3520. if (c shr 6) = 1 then
  3521. begin
  3522. opidx := c and 7;
  3523. if ops > opidx then
  3524. begin
  3525. if (oper[opidx]^.typ=top_reg) then
  3526. if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXr := 1;
  3527. end
  3528. end
  3529. else EVEXr := 1; // modrm:reg not used =>> 1
  3530. opidx := (c shr 3) and 7;
  3531. if ops > opidx then
  3532. case oper[opidx]^.typ of
  3533. top_reg: if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXx := 1;
  3534. top_ref: begin
  3535. if getsupreg(oper[opidx]^.ref^.index) and $08 = $0 then EVEXx := 1;
  3536. if getsubreg(oper[opidx]^.ref^.index) in [R_SUBMMX,R_SUBMMY,R_SUBMMZ] then
  3537. begin
  3538. // VSIB memory addresing
  3539. if getsupreg(oper[opidx]^.ref^.index) and $10 = $0 then EVEXv := 1; // VECTOR-Index
  3540. {$ifdef x86_64}
  3541. needed_VSIB := true;
  3542. {$endif x86_64}
  3543. end;
  3544. end;
  3545. else
  3546. Internalerror(2019081014);
  3547. end;
  3548. end;
  3549. &333: begin
  3550. VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  3551. //VEXpp := $02; // set SIMD-prefix $F3
  3552. EVEXpp := $02; // set SIMD-prefix $F3
  3553. end;
  3554. &334: begin
  3555. VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  3556. //VEXpp := $03; // set SIMD-prefix $F2
  3557. EVEXpp := $03; // set SIMD-prefix $F2
  3558. end;
  3559. &350: needed_EVEX := true; // AVX512 instruction or AVX128/256/512-instruction (depended on operands [x,y,z]mm16..)
  3560. &351: EVEXll := $02; // vectorlength = 512 bits AND no scalar
  3561. &352: EVEXw1 := $01;
  3562. &361: begin
  3563. VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  3564. //VEXpp := $01; // set SIMD-prefix $66
  3565. EVEXpp := $01; // set SIMD-prefix $66
  3566. end;
  3567. &362: needed_VEX := true;
  3568. &363: begin
  3569. needed_VEX_Extension := true;
  3570. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  3571. //VEXw := 1;
  3572. end;
  3573. &364: begin
  3574. VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  3575. //VEXll := $01;
  3576. EVEXll := $01;
  3577. end;
  3578. &366,
  3579. &367: begin
  3580. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3581. if (ops > opidx) and
  3582. (oper[opidx]^.typ=top_reg) and
  3583. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_xmm) or
  3584. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_ymm) or
  3585. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_zmm)) then
  3586. if (getsupreg(oper[opidx]^.reg) and $10 = $0) then EVEXx := 1;
  3587. end;
  3588. &370: begin
  3589. VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  3590. EVEXmm := $01;
  3591. end;
  3592. &371: begin
  3593. needed_VEX_Extension := true;
  3594. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  3595. EVEXmm := $02;
  3596. end;
  3597. &372: begin
  3598. needed_VEX_Extension := true;
  3599. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  3600. EVEXmm := $03;
  3601. end;
  3602. end;
  3603. until false;
  3604. {$ifndef x86_64}
  3605. EVEXv := 1;
  3606. EVEXx := 1;
  3607. EVEXr := 1;
  3608. {$endif}
  3609. if needed_VEX or needed_EVEX then
  3610. begin
  3611. if (opmode > ops) or
  3612. (opmode < -1) then
  3613. begin
  3614. Internalerror(777100);
  3615. end
  3616. else if opmode = -1 then
  3617. begin
  3618. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  3619. EVEXvvvv := $0F;
  3620. {$ifdef x86_64}
  3621. if not(needed_vsib) then EVEXv := 1;
  3622. {$endif x86_64}
  3623. end
  3624. else if oper[opmode]^.typ = top_reg then
  3625. begin
  3626. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  3627. EVEXvvvv := not(regval(oper[opmode]^.reg)) and $07;
  3628. {$ifdef x86_64}
  3629. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  3630. if rexbits(oper[opmode]^.reg) = 0 then EVEXvvvv := EVEXvvvv or (1 shl 3);
  3631. if getsupreg(oper[opmode]^.reg) and $10 = 0 then EVEXv := 1;
  3632. {$else}
  3633. VEXvvvv := VEXvvvv or (1 shl 6);
  3634. EVEXvvvv := EVEXvvvv or (1 shl 3);
  3635. {$endif x86_64}
  3636. end
  3637. else Internalerror(777101);
  3638. if not(needed_VEX_Extension) then
  3639. begin
  3640. {$ifdef x86_64}
  3641. if rex and $0B <> 0 then needed_VEX_Extension := true;
  3642. {$endif x86_64}
  3643. end;
  3644. //TG
  3645. if needed_EVEX and needed_VEX then
  3646. begin
  3647. needed_EVEX := false;
  3648. if CheckUseEVEX then
  3649. begin
  3650. // EVEX-Flags r,v,x indicate extended-MMregister
  3651. // Flag = 0 =>> [x,y,z]mm16..[x,y,z]mm31
  3652. // Flag = 1 =>> [x,y,z]mm00..[x,y,z]mm15
  3653. needed_EVEX := true;
  3654. needed_VEX := false;
  3655. needed_VEX_Extension := false;
  3656. end;
  3657. end;
  3658. if needed_EVEX then
  3659. begin
  3660. EVEXaaa:= 0;
  3661. EVEXz := 0;
  3662. for i := 0 to ops - 1 do
  3663. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  3664. begin
  3665. if oper[i]^.vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  3666. begin
  3667. EVEXaaa := oper[i]^.vopext and $07;
  3668. if oper[i]^.vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then EVEXz := 1;
  3669. end;
  3670. if oper[i]^.vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  3671. begin
  3672. EVEXb := 1;
  3673. end;
  3674. // flag EVEXb is multiple use (broadcast, sae and er)
  3675. if oper[i]^.vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  3676. begin
  3677. EVEXb := 1;
  3678. end;
  3679. if oper[i]^.vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  3680. begin
  3681. EVEXb := 1;
  3682. case oper[i]^.vopext and OTVE_VECTOR_ER_MASK of
  3683. OTVE_VECTOR_RNSAE: EVEXll := 0;
  3684. OTVE_VECTOR_RDSAE: EVEXll := 1;
  3685. OTVE_VECTOR_RUSAE: EVEXll := 2;
  3686. OTVE_VECTOR_RZSAE: EVEXll := 3;
  3687. else EVEXll := 0;
  3688. end;
  3689. end;
  3690. end;
  3691. bytes[0] := $62;
  3692. bytes[1] := ((EVEXmm and $03) shl 0) or
  3693. {$ifdef x86_64}
  3694. ((not(rex) and $05) shl 5) or
  3695. {$else}
  3696. (($05) shl 5) or
  3697. {$endif x86_64}
  3698. ((EVEXr and $01) shl 4) or
  3699. ((EVEXx and $01) shl 6);
  3700. bytes[2] := ((EVEXpp and $03) shl 0) or
  3701. ((1 and $01) shl 2) or // fixed in AVX512
  3702. ((EVEXvvvv and $0F) shl 3) or
  3703. ((EVEXw1 and $01) shl 7);
  3704. bytes[3] := ((EVEXaaa and $07) shl 0) or
  3705. ((EVEXv and $01) shl 3) or
  3706. ((EVEXb and $01) shl 4) or
  3707. ((EVEXll and $03) shl 5) or
  3708. ((EVEXz and $01) shl 7);
  3709. objdata.writebytes(bytes,4);
  3710. end
  3711. else if needed_VEX_Extension then
  3712. begin
  3713. // VEX-Prefix-Length = 3 Bytes
  3714. {$ifdef x86_64}
  3715. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  3716. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  3717. {$else}
  3718. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  3719. {$endif x86_64}
  3720. bytes[0]:=$C4;
  3721. bytes[1]:=VEXmmmmm;
  3722. bytes[2]:=VEXvvvv;
  3723. objdata.writebytes(bytes,3);
  3724. end
  3725. else
  3726. begin
  3727. // VEX-Prefix-Length = 2 Bytes
  3728. {$ifdef x86_64}
  3729. if rex and $04 = 0 then
  3730. {$endif x86_64}
  3731. begin
  3732. VEXvvvv := VEXvvvv or (1 shl 7);
  3733. end;
  3734. bytes[0]:=$C5;
  3735. bytes[1]:=VEXvvvv;
  3736. objdata.writebytes(bytes,2);
  3737. end;
  3738. end
  3739. else
  3740. begin
  3741. needed_VEX_Extension := false;
  3742. opmode := -1;
  3743. end;
  3744. if not(needed_EVEX) then
  3745. begin
  3746. for opidx := 0 to ops - 1 do
  3747. begin
  3748. if ops > opidx then
  3749. if (oper[opidx]^.typ=top_reg) and
  3750. (getregtype(oper[opidx]^.reg) = R_MMREGISTER) then
  3751. if getsupreg(oper[opidx]^.reg) and $10 = $10 then
  3752. begin
  3753. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3754. break;
  3755. end;
  3756. //badreg(oper[opidx]^.reg);
  3757. end;
  3758. end;
  3759. { load data to write }
  3760. codes:=insentry^.code;
  3761. repeat
  3762. c:=ord(codes^);
  3763. inc(codes);
  3764. case c of
  3765. &0 :
  3766. break;
  3767. &1,&2,&3 :
  3768. begin
  3769. {$ifdef x86_64}
  3770. if not(needed_VEX or needed_EVEX) then // TG
  3771. maybewriterex;
  3772. {$endif x86_64}
  3773. objdata.writebytes(codes^,c);
  3774. inc(codes,c);
  3775. end;
  3776. &4,&6 :
  3777. begin
  3778. case oper[0]^.reg of
  3779. NR_CS:
  3780. bytes[0]:=$e;
  3781. NR_NO,
  3782. NR_DS:
  3783. bytes[0]:=$1e;
  3784. NR_ES:
  3785. bytes[0]:=$6;
  3786. NR_SS:
  3787. bytes[0]:=$16;
  3788. else
  3789. internalerror(777004);
  3790. end;
  3791. if c=&4 then
  3792. inc(bytes[0]);
  3793. objdata.writebytes(bytes,1);
  3794. end;
  3795. &5,&7 :
  3796. begin
  3797. case oper[0]^.reg of
  3798. NR_FS:
  3799. bytes[0]:=$a0;
  3800. NR_GS:
  3801. bytes[0]:=$a8;
  3802. else
  3803. internalerror(777005);
  3804. end;
  3805. if c=&5 then
  3806. inc(bytes[0]);
  3807. objdata.writebytes(bytes,1);
  3808. end;
  3809. &10,&11,&12 :
  3810. begin
  3811. {$ifdef x86_64}
  3812. if not(needed_VEX or needed_EVEX) then // TG
  3813. maybewriterex;
  3814. {$endif x86_64}
  3815. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  3816. inc(codes);
  3817. objdata.writebytes(bytes,1);
  3818. end;
  3819. &13 :
  3820. begin
  3821. bytes[0]:=ord(codes^)+condval[condition];
  3822. inc(codes);
  3823. objdata.writebytes(bytes,1);
  3824. end;
  3825. &14,&15,&16 :
  3826. begin
  3827. getvalsym(c-&14);
  3828. if (currval<-128) or (currval>127) then
  3829. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  3830. if assigned(currsym) then
  3831. objdata_writereloc(currval,1,currsym,currabsreloc)
  3832. else
  3833. objdata.writeint8(shortint(currval));
  3834. end;
  3835. &20,&21,&22 :
  3836. begin
  3837. getvalsym(c-&20);
  3838. if (currval<-256) or (currval>255) then
  3839. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  3840. if assigned(currsym) then
  3841. objdata_writereloc(currval,1,currsym,currabsreloc)
  3842. else
  3843. objdata.writeuint8(byte(currval));
  3844. end;
  3845. &23 :
  3846. begin
  3847. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  3848. inc(codes);
  3849. objdata.writebytes(bytes,1);
  3850. end;
  3851. &24,&25,&26,&27 :
  3852. begin
  3853. getvalsym(c-&24);
  3854. if IF_IMM3 in insentry^.flags then
  3855. begin
  3856. if (currval<0) or (currval>7) then
  3857. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  3858. end
  3859. else if IF_IMM4 in insentry^.flags then
  3860. begin
  3861. if (currval<0) or (currval>15) then
  3862. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  3863. end
  3864. else
  3865. if (currval<0) or (currval>255) then
  3866. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  3867. if assigned(currsym) then
  3868. objdata_writereloc(currval,1,currsym,currabsreloc)
  3869. else
  3870. objdata.writeuint8(byte(currval));
  3871. end;
  3872. &30,&31,&32 : // 030..032
  3873. begin
  3874. getvalsym(c-&30);
  3875. {$ifndef i8086}
  3876. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  3877. if (currval<-65536) or (currval>65535) then
  3878. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  3879. {$endif i8086}
  3880. if assigned(currsym)
  3881. {$ifdef i8086}
  3882. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3883. {$endif i8086}
  3884. then
  3885. objdata_writereloc(currval,2,currsym,currabsreloc)
  3886. else
  3887. objdata.writeInt16LE(int16(currval));
  3888. end;
  3889. &34,&35,&36 : // 034..036
  3890. { !!! These are intended (and used in opcode table) to select depending
  3891. on address size, *not* operand size. Works by coincidence only. }
  3892. begin
  3893. getvalsym(c-&34);
  3894. {$ifdef i8086}
  3895. if assigned(currsym) then
  3896. objdata_writereloc(currval,2,currsym,currabsreloc)
  3897. else
  3898. objdata.writeInt16LE(int16(currval));
  3899. {$else i8086}
  3900. if opsize=S_Q then
  3901. begin
  3902. if assigned(currsym) then
  3903. objdata_writereloc(currval,8,currsym,currabsreloc)
  3904. else
  3905. objdata.writeInt64LE(int64(currval));
  3906. end
  3907. else
  3908. begin
  3909. if assigned(currsym) then
  3910. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3911. else
  3912. objdata.writeInt32LE(int32(currval));
  3913. end
  3914. {$endif i8086}
  3915. end;
  3916. &40,&41,&42 : // 040..042
  3917. begin
  3918. getvalsym(c-&40);
  3919. if assigned(currsym)
  3920. {$ifdef i8086}
  3921. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3922. {$endif i8086}
  3923. then
  3924. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3925. else
  3926. objdata.writeInt32LE(int32(currval));
  3927. end;
  3928. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  3929. begin // address size (we support only default address sizes).
  3930. getvalsym(c-&44);
  3931. {$if defined(x86_64)}
  3932. if assigned(currsym) then
  3933. objdata_writereloc(currval,8,currsym,currabsreloc)
  3934. else
  3935. objdata.writeInt64LE(int64(currval));
  3936. {$elseif defined(i386)}
  3937. if assigned(currsym) then
  3938. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3939. else
  3940. objdata.writeInt32LE(int32(currval));
  3941. {$elseif defined(i8086)}
  3942. if assigned(currsym) then
  3943. objdata_writereloc(currval,2,currsym,currabsreloc)
  3944. else
  3945. objdata.writeInt16LE(int16(currval));
  3946. {$endif}
  3947. end;
  3948. &50,&51,&52 : // 050..052 - byte relative operand
  3949. begin
  3950. getvalsym(c-&50);
  3951. data:=currval-insend;
  3952. {$push}
  3953. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  3954. if assigned(currsym) then
  3955. inc(data,currsym.address);
  3956. {$pop}
  3957. if (data>127) or (data<-128) then
  3958. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  3959. objdata.writeint8(shortint(data));
  3960. end;
  3961. &54,&55,&56: // 054..056 - qword immediate operand
  3962. begin
  3963. getvalsym(c-&54);
  3964. if assigned(currsym) then
  3965. objdata_writereloc(currval,8,currsym,currabsreloc)
  3966. else
  3967. objdata.writeInt64LE(int64(currval));
  3968. end;
  3969. &60,&61,&62 :
  3970. begin
  3971. getvalsym(c-&60);
  3972. {$ifdef i8086}
  3973. if assigned(currsym) then
  3974. objdata_writereloc(currval,2,currsym,currrelreloc)
  3975. else
  3976. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3977. {$else i8086}
  3978. InternalError(2020100821);
  3979. {$endif i8086}
  3980. end;
  3981. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  3982. begin
  3983. getvalsym(c-&64);
  3984. {$ifdef i8086}
  3985. if assigned(currsym) then
  3986. objdata_writereloc(currval,2,currsym,currrelreloc)
  3987. else
  3988. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3989. {$else i8086}
  3990. if assigned(currsym) then
  3991. objdata_writereloc(currval,4,currsym,currrelreloc)
  3992. else
  3993. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  3994. {$endif i8086}
  3995. end;
  3996. &70,&71,&72 : // 070..072 - long relative operand
  3997. begin
  3998. getvalsym(c-&70);
  3999. if assigned(currsym) then
  4000. objdata_writereloc(currval,4,currsym,currrelreloc)
  4001. else
  4002. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  4003. end;
  4004. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  4005. // ignore
  4006. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  4007. begin
  4008. getvalsym(c-&254);
  4009. {$ifdef x86_64}
  4010. { for i386 as aint type is longint the
  4011. following test is useless }
  4012. if (currval<low(longint)) or (currval>high(longint)) then
  4013. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  4014. {$endif x86_64}
  4015. if assigned(currsym) then
  4016. objdata_writereloc(currval,4,currsym,currabsreloc32)
  4017. else
  4018. objdata.writeInt32LE(int32(currval));
  4019. end;
  4020. &300,&301,&302:
  4021. begin
  4022. {$if defined(x86_64) or defined(i8086)}
  4023. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  4024. write0x67prefix(objdata);
  4025. {$endif x86_64 or i8086}
  4026. end;
  4027. &310 : { fixed 16-bit addr }
  4028. {$if defined(x86_64)}
  4029. { every insentry having code 0310 must be marked with NOX86_64 }
  4030. InternalError(2011051302);
  4031. {$elseif defined(i386)}
  4032. write0x67prefix(objdata);
  4033. {$elseif defined(i8086)}
  4034. {nothing};
  4035. {$endif}
  4036. &311 : { fixed 32-bit addr }
  4037. {$if defined(x86_64) or defined(i8086)}
  4038. write0x67prefix(objdata)
  4039. {$endif x86_64 or i8086}
  4040. ;
  4041. &320,&321,&322 :
  4042. begin
  4043. case oper[c-&320]^.ot and OT_SIZE_MASK of
  4044. {$if defined(i386) or defined(x86_64)}
  4045. OT_BITS16 :
  4046. {$elseif defined(i8086)}
  4047. OT_BITS32 :
  4048. {$endif}
  4049. write0x66prefix(objdata);
  4050. {$ifndef x86_64}
  4051. OT_BITS64 :
  4052. Message(asmw_e_64bit_not_supported);
  4053. {$endif x86_64}
  4054. end;
  4055. end;
  4056. &323 : {no action needed};
  4057. &325:
  4058. {$ifdef i8086}
  4059. write0x66prefix(objdata);
  4060. {$else i8086}
  4061. {no action needed};
  4062. {$endif i8086}
  4063. &324,
  4064. &361:
  4065. begin
  4066. {$ifndef i8086}
  4067. if not(needed_VEX or needed_EVEX) then
  4068. write0x66prefix(objdata);
  4069. {$endif not i8086}
  4070. end;
  4071. &326 :
  4072. begin
  4073. {$ifndef x86_64}
  4074. Message(asmw_e_64bit_not_supported);
  4075. {$endif x86_64}
  4076. end;
  4077. &333 :
  4078. begin
  4079. if not(needed_VEX or needed_EVEX) then
  4080. begin
  4081. bytes[0]:=$f3;
  4082. objdata.writebytes(bytes,1);
  4083. end;
  4084. end;
  4085. &334 :
  4086. begin
  4087. if not(needed_VEX or needed_EVEX) then
  4088. begin
  4089. bytes[0]:=$f2;
  4090. objdata.writebytes(bytes,1);
  4091. end;
  4092. end;
  4093. &335:
  4094. ;
  4095. &336: ; // indicates 32-bit scalar vector operand {no action needed}
  4096. &337: ; // indicates 64-bit scalar vector operand {no action needed}
  4097. &312,
  4098. &327,
  4099. &331,&332 :
  4100. begin
  4101. { these are dissambler hints or 32 bit prefixes which
  4102. are not needed }
  4103. end;
  4104. &362..&364: ; // VEX flags =>> nothing todo
  4105. &366, &367:
  4106. begin
  4107. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  4108. if (needed_VEX or needed_EVEX) and
  4109. (ops=4) and
  4110. (oper[opidx]^.typ=top_reg) and
  4111. (
  4112. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_xmm) or
  4113. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_ymm) or
  4114. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_zmm)
  4115. ) then
  4116. begin
  4117. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  4118. objdata.writebytes(bytes,1);
  4119. end
  4120. else
  4121. Internalerror(2014032001);
  4122. end;
  4123. &350..&352: ; // EVEX flags =>> nothing todo
  4124. &370..&372: ; // VEX flags =>> nothing todo
  4125. &37:
  4126. begin
  4127. {$ifdef i8086}
  4128. if assigned(currsym) then
  4129. objdata_writereloc(0,2,currsym,RELOC_SEG)
  4130. else
  4131. InternalError(2015041503);
  4132. {$else i8086}
  4133. InternalError(2020100822);
  4134. {$endif i8086}
  4135. end;
  4136. else
  4137. begin
  4138. { rex should be written at this point }
  4139. {$ifdef x86_64}
  4140. if not(needed_VEX or needed_EVEX) then // TG
  4141. if (rex<>0) and not(rexwritten) then
  4142. internalerror(200603191);
  4143. {$endif x86_64}
  4144. if (c>=&100) and (c<=&227) then // 0100..0227
  4145. begin
  4146. if (c<&177) then // 0177
  4147. begin
  4148. if (oper[c and 7]^.typ=top_reg) then
  4149. rfield:=regval(oper[c and 7]^.reg)
  4150. else
  4151. rfield:=regval(oper[c and 7]^.ref^.base);
  4152. end
  4153. else
  4154. rfield:=c and 7;
  4155. opidx:=(c shr 3) and 7;
  4156. if not process_ea(oper[opidx]^,ea_data,rfield, EVEXTupleState = etsNotTuple) then
  4157. Message(asmw_e_invalid_effective_address);
  4158. pb:=@bytes[0];
  4159. pb^:=ea_data.modrm;
  4160. inc(pb);
  4161. if ea_data.sib_present then
  4162. begin
  4163. pb^:=ea_data.sib;
  4164. inc(pb);
  4165. end;
  4166. s:=pb-@bytes[0];
  4167. objdata.writebytes(bytes,s);
  4168. case ea_data.bytes of
  4169. 0 : ;
  4170. 1 :
  4171. begin
  4172. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  4173. begin
  4174. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4175. {$ifdef i386}
  4176. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4177. (tf_pic_uses_got in target_info.flags) then
  4178. currabsreloc:=RELOC_GOT32
  4179. else
  4180. {$endif i386}
  4181. {$ifdef x86_64}
  4182. if oper[opidx]^.ref^.refaddr=addr_pic then
  4183. currabsreloc:=RELOC_GOTPCREL
  4184. else
  4185. {$endif x86_64}
  4186. currabsreloc:=RELOC_ABSOLUTE;
  4187. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  4188. end
  4189. else
  4190. begin
  4191. bytes[0]:=oper[opidx]^.ref^.offset;
  4192. objdata.writebytes(bytes,1);
  4193. end;
  4194. inc(s);
  4195. end;
  4196. 2,4 :
  4197. begin
  4198. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4199. currval:=oper[opidx]^.ref^.offset;
  4200. {$ifdef x86_64}
  4201. if oper[opidx]^.ref^.refaddr=addr_pic then
  4202. currabsreloc:=RELOC_GOTPCREL
  4203. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  4204. currabsreloc:=RELOC_TLSGD
  4205. else if oper[opidx]^.ref^.refaddr=addr_tpoff then
  4206. currabsreloc:=RELOC_TPOFF
  4207. else
  4208. if oper[opidx]^.ref^.base=NR_RIP then
  4209. begin
  4210. currabsreloc:=RELOC_RELATIVE;
  4211. { Adjust reloc value by number of bytes following the displacement,
  4212. but not if displacement is specified by literal constant }
  4213. if Assigned(currsym) then
  4214. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  4215. end
  4216. else
  4217. {$endif x86_64}
  4218. {$ifdef i386}
  4219. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4220. (tf_pic_uses_got in target_info.flags) then
  4221. currabsreloc:=RELOC_GOT32
  4222. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  4223. currabsreloc:=RELOC_TLSGD
  4224. else if oper[opidx]^.ref^.refaddr=addr_ntpoff then
  4225. currabsreloc:=RELOC_NTPOFF
  4226. else
  4227. {$endif i386}
  4228. {$ifdef i8086}
  4229. if ea_data.bytes=2 then
  4230. currabsreloc:=RELOC_ABSOLUTE
  4231. else
  4232. {$endif i8086}
  4233. currabsreloc:=RELOC_ABSOLUTE32;
  4234. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  4235. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  4236. begin
  4237. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  4238. if relsym.objsection=objdata.CurrObjSec then
  4239. begin
  4240. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  4241. {$ifdef i8086}
  4242. if ea_data.bytes=4 then
  4243. currabsreloc:=RELOC_RELATIVE32
  4244. else
  4245. {$endif i8086}
  4246. currabsreloc:=RELOC_RELATIVE;
  4247. end
  4248. else
  4249. begin
  4250. currabsreloc:=RELOC_PIC_PAIR;
  4251. currval:=relsym.offset;
  4252. end;
  4253. end;
  4254. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  4255. inc(s,ea_data.bytes);
  4256. end;
  4257. end;
  4258. end
  4259. else
  4260. InternalError(777007);
  4261. end;
  4262. end;
  4263. until false;
  4264. end;
  4265. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  4266. begin
  4267. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  4268. (regtype = R_INTREGISTER) and
  4269. (ops=2) and
  4270. (oper[0]^.typ=top_reg) and
  4271. (oper[1]^.typ=top_reg) and
  4272. (oper[0]^.reg=oper[1]^.reg)
  4273. ) or
  4274. ({ checking the opcodes is a long "or" chain, so check first the registers which is more selective }
  4275. ((regtype = R_MMREGISTER) and
  4276. (ops=2) and
  4277. (oper[0]^.typ=top_reg) and
  4278. (oper[1]^.typ=top_reg) and
  4279. (oper[0]^.reg=oper[1]^.reg)) and
  4280. (
  4281. (opcode=A_MOVSS) or (opcode=A_MOVSD) or
  4282. (opcode=A_MOVQ) or (opcode=A_MOVD) or
  4283. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  4284. (opcode=A_MOVUPS) or (opcode=A_MOVUPD) or
  4285. (opcode=A_MOVDQA) or (opcode=A_MOVDQU) or
  4286. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or
  4287. (opcode=A_VMOVQ) or (opcode=A_VMOVD) or
  4288. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD) or
  4289. (opcode=A_VMOVUPS) or (opcode=A_VMOVUPD) or
  4290. (opcode=A_VMOVDQA) or (opcode=A_VMOVDQU)
  4291. )
  4292. );
  4293. end;
  4294. procedure build_spilling_operation_type_table;
  4295. var
  4296. opcode : tasmop;
  4297. begin
  4298. new(operation_type_table);
  4299. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  4300. for opcode:=low(tasmop) to high(tasmop) do
  4301. with InsProp[opcode] do
  4302. begin
  4303. if Ch_Rop1 in Ch then
  4304. operation_type_table^[opcode,0]:=operand_read;
  4305. if Ch_Wop1 in Ch then
  4306. operation_type_table^[opcode,0]:=operand_write;
  4307. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  4308. operation_type_table^[opcode,0]:=operand_readwrite;
  4309. if Ch_Rop2 in Ch then
  4310. operation_type_table^[opcode,1]:=operand_read;
  4311. if Ch_Wop2 in Ch then
  4312. operation_type_table^[opcode,1]:=operand_write;
  4313. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  4314. operation_type_table^[opcode,1]:=operand_readwrite;
  4315. if Ch_Rop3 in Ch then
  4316. operation_type_table^[opcode,2]:=operand_read;
  4317. if Ch_Wop3 in Ch then
  4318. operation_type_table^[opcode,2]:=operand_write;
  4319. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  4320. operation_type_table^[opcode,2]:=operand_readwrite;
  4321. if Ch_Rop4 in Ch then
  4322. operation_type_table^[opcode,3]:=operand_read;
  4323. if Ch_Wop4 in Ch then
  4324. operation_type_table^[opcode,3]:=operand_write;
  4325. if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
  4326. operation_type_table^[opcode,3]:=operand_readwrite;
  4327. end;
  4328. end;
  4329. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  4330. begin
  4331. { the information in the instruction table is made for the string copy
  4332. operation MOVSD so hack here (FK)
  4333. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  4334. so fix it here (FK)
  4335. }
  4336. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  4337. begin
  4338. case opnr of
  4339. 0:
  4340. result:=operand_read;
  4341. 1:
  4342. result:=operand_write;
  4343. else
  4344. internalerror(200506055);
  4345. end
  4346. end
  4347. { IMUL has 1, 2 and 3-operand forms }
  4348. else if opcode=A_IMUL then
  4349. begin
  4350. case ops of
  4351. 1:
  4352. if opnr=0 then
  4353. result:=operand_read
  4354. else
  4355. internalerror(2014011802);
  4356. 2:
  4357. begin
  4358. case opnr of
  4359. 0:
  4360. result:=operand_read;
  4361. 1:
  4362. result:=operand_readwrite;
  4363. else
  4364. internalerror(2014011803);
  4365. end;
  4366. end;
  4367. 3:
  4368. begin
  4369. case opnr of
  4370. 0,1:
  4371. result:=operand_read;
  4372. 2:
  4373. result:=operand_write;
  4374. else
  4375. internalerror(2014011804);
  4376. end;
  4377. end;
  4378. else
  4379. internalerror(2014011805);
  4380. end;
  4381. end
  4382. else
  4383. result:=operation_type_table^[opcode,opnr];
  4384. end;
  4385. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  4386. var
  4387. tmpref: treference;
  4388. begin
  4389. tmpref:=ref;
  4390. {$ifdef i8086}
  4391. if tmpref.segment=NR_SS then
  4392. tmpref.segment:=NR_NO;
  4393. {$endif i8086}
  4394. case getregtype(r) of
  4395. R_INTREGISTER :
  4396. begin
  4397. if getsubreg(r)=R_SUBH then
  4398. inc(tmpref.offset);
  4399. { we don't need special code here for 32 bit loads on x86_64, since
  4400. those will automatically zero-extend the upper 32 bits. }
  4401. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  4402. end;
  4403. R_MMREGISTER :
  4404. if current_settings.fputype in fpu_avx_instructionsets then
  4405. case getsubreg(r) of
  4406. R_SUBMMD:
  4407. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  4408. R_SUBMMS:
  4409. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  4410. R_SUBQ,
  4411. R_SUBMMWHOLE:
  4412. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  4413. R_SUBMMY:
  4414. if ref.alignment>=32 then
  4415. result:=taicpu.op_ref_reg(A_VMOVDQA,S_NO,tmpref,r)
  4416. else
  4417. result:=taicpu.op_ref_reg(A_VMOVDQU,S_NO,tmpref,r);
  4418. R_SUBMMZ:
  4419. if ref.alignment>=64 then
  4420. result:=taicpu.op_ref_reg(A_VMOVDQA64,S_NO,tmpref,r)
  4421. else
  4422. result:=taicpu.op_ref_reg(A_VMOVDQU64,S_NO,tmpref,r);
  4423. R_SUBMMX:
  4424. result:=taicpu.op_ref_reg(A_VMOVDQU,S_NO,tmpref,r);
  4425. else
  4426. internalerror(200506043);
  4427. end
  4428. else
  4429. case getsubreg(r) of
  4430. R_SUBMMD:
  4431. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  4432. R_SUBMMS:
  4433. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  4434. R_SUBQ,
  4435. R_SUBMMWHOLE:
  4436. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  4437. R_SUBMMX:
  4438. result:=taicpu.op_ref_reg(A_MOVDQA,S_NO,tmpref,r);
  4439. else
  4440. internalerror(2005060405);
  4441. end;
  4442. else
  4443. internalerror(2004010411);
  4444. end;
  4445. end;
  4446. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  4447. var
  4448. size: topsize;
  4449. tmpref: treference;
  4450. begin
  4451. tmpref:=ref;
  4452. {$ifdef i8086}
  4453. if tmpref.segment=NR_SS then
  4454. tmpref.segment:=NR_NO;
  4455. {$endif i8086}
  4456. case getregtype(r) of
  4457. R_INTREGISTER :
  4458. begin
  4459. if getsubreg(r)=R_SUBH then
  4460. inc(tmpref.offset);
  4461. size:=reg2opsize(r);
  4462. {$ifdef x86_64}
  4463. { even if it's a 32 bit reg, we still have to spill 64 bits
  4464. because we often perform 64 bit operations on them }
  4465. if (size=S_L) then
  4466. begin
  4467. size:=S_Q;
  4468. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  4469. end;
  4470. {$endif x86_64}
  4471. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  4472. end;
  4473. R_MMREGISTER :
  4474. if current_settings.fputype in fpu_avx_instructionsets then
  4475. case getsubreg(r) of
  4476. R_SUBMMD:
  4477. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  4478. R_SUBMMS:
  4479. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  4480. R_SUBMMY:
  4481. if ref.alignment>=32 then
  4482. result:=taicpu.op_reg_ref(A_VMOVDQA,S_NO,r,tmpref)
  4483. else
  4484. result:=taicpu.op_reg_ref(A_VMOVDQU,S_NO,r,tmpref);
  4485. R_SUBMMZ:
  4486. if ref.alignment>=64 then
  4487. result:=taicpu.op_reg_ref(A_VMOVDQA64,S_NO,r,tmpref)
  4488. else
  4489. result:=taicpu.op_reg_ref(A_VMOVDQU64,S_NO,r,tmpref);
  4490. R_SUBQ,
  4491. R_SUBMMWHOLE:
  4492. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  4493. else
  4494. internalerror(200506042);
  4495. end
  4496. else
  4497. case getsubreg(r) of
  4498. R_SUBMMD:
  4499. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  4500. R_SUBMMS:
  4501. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  4502. R_SUBQ,
  4503. R_SUBMMWHOLE:
  4504. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  4505. R_SUBMMX:
  4506. result:=taicpu.op_reg_ref(A_MOVDQA,S_NO,r,tmpref);
  4507. else
  4508. internalerror(2005060404);
  4509. end;
  4510. else
  4511. internalerror(2004010412);
  4512. end;
  4513. end;
  4514. {$ifdef i8086}
  4515. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  4516. var
  4517. r: treference;
  4518. begin
  4519. reference_reset_symbol(r,s,0,1,[]);
  4520. r.refaddr:=addr_seg;
  4521. loadref(opidx,r);
  4522. end;
  4523. {$endif i8086}
  4524. {*****************************************************************************
  4525. Instruction table
  4526. *****************************************************************************}
  4527. procedure BuildInsTabCache;
  4528. var
  4529. i : longint;
  4530. begin
  4531. new(instabcache);
  4532. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  4533. i:=0;
  4534. while (i<InsTabEntries) do
  4535. begin
  4536. if InsTabCache^[InsTab[i].OPcode]=-1 then
  4537. InsTabCache^[InsTab[i].OPcode]:=i;
  4538. inc(i);
  4539. end;
  4540. end;
  4541. procedure BuildInsTabMemRefSizeInfoCache;
  4542. var
  4543. AsmOp: TasmOp;
  4544. i,j: longint;
  4545. iCntOpcodeValError: longint;
  4546. insentry : PInsEntry;
  4547. MRefInfo: TMemRefSizeInfo;
  4548. SConstInfo: TConstSizeInfo;
  4549. actRegSize: int64;
  4550. actMemSize: int64;
  4551. actConstSize: int64;
  4552. actRegCount: integer;
  4553. actMemCount: integer;
  4554. actConstCount: integer;
  4555. actRegTypes : int64;
  4556. actRegMemTypes: int64;
  4557. NewRegSize: int64;
  4558. actVMemCount : integer;
  4559. actVMemTypes : int64;
  4560. RegMMXSizeMask: int64;
  4561. RegXMMSizeMask: int64;
  4562. RegYMMSizeMask: int64;
  4563. RegZMMSizeMask: int64;
  4564. RegMMXConstSizeMask: int64;
  4565. RegXMMConstSizeMask: int64;
  4566. RegYMMConstSizeMask: int64;
  4567. RegZMMConstSizeMask: int64;
  4568. RegBCSTSizeMask: int64;
  4569. RegBCSTXMMSizeMask: int64;
  4570. RegBCSTYMMSizeMask: int64;
  4571. RegBCSTZMMSizeMask: int64;
  4572. ExistsMemRef : boolean;
  4573. bitcount : integer;
  4574. ExistsCode336 : boolean;
  4575. ExistsCode337 : boolean;
  4576. ExistsSSEAVXReg : boolean;
  4577. hs1,hs2 : String;
  4578. function bitcnt(aValue: int64): integer;
  4579. var
  4580. i: integer;
  4581. begin
  4582. result := 0;
  4583. for i := 0 to 63 do
  4584. begin
  4585. if (aValue mod 2) = 1 then
  4586. begin
  4587. inc(result);
  4588. end;
  4589. aValue := aValue shr 1;
  4590. end;
  4591. end;
  4592. begin
  4593. new(InsTabMemRefSizeInfoCache);
  4594. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  4595. iCntOpcodeValError := 0;
  4596. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  4597. begin
  4598. i := InsTabCache^[AsmOp];
  4599. if i >= 0 then
  4600. begin
  4601. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
  4602. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbUnknown;
  4603. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 0;
  4604. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
  4605. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  4606. InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := [];
  4607. insentry:=@instab[i];
  4608. RegMMXSizeMask := 0;
  4609. RegXMMSizeMask := 0;
  4610. RegYMMSizeMask := 0;
  4611. RegZMMSizeMask := 0;
  4612. RegMMXConstSizeMask := 0;
  4613. RegXMMConstSizeMask := 0;
  4614. RegYMMConstSizeMask := 0;
  4615. RegZMMConstSizeMask := 0;
  4616. RegBCSTSizeMask:= 0;
  4617. RegBCSTXMMSizeMask := 0;
  4618. RegBCSTYMMSizeMask := 0;
  4619. RegBCSTZMMSizeMask := 0;
  4620. ExistsMemRef := false;
  4621. while (insentry<=@instab[high(instab)]) and
  4622. (insentry^.opcode=AsmOp) do
  4623. begin
  4624. MRefInfo := msiUnknown;
  4625. actRegSize := 0;
  4626. actRegCount := 0;
  4627. actRegTypes := 0;
  4628. NewRegSize := 0;
  4629. actMemSize := 0;
  4630. actMemCount := 0;
  4631. actRegMemTypes := 0;
  4632. actVMemCount := 0;
  4633. actVMemTypes := 0;
  4634. actConstSize := 0;
  4635. actConstCount := 0;
  4636. ExistsCode336 := false; // indicate fixed operand size 32 bit
  4637. ExistsCode337 := false; // indicate fixed operand size 64 bit
  4638. ExistsSSEAVXReg := false;
  4639. // parse insentry^.code for &336 and &337
  4640. // &336 (octal) = 222 (decimal) == fixed operand size 32 bit
  4641. // &337 (octal) = 223 (decimal) == fixed operand size 64 bit
  4642. for i := low(insentry^.code) to high(insentry^.code) do
  4643. begin
  4644. case insentry^.code[i] of
  4645. #222: ExistsCode336 := true;
  4646. #223: ExistsCode337 := true;
  4647. #0,#1,#2,#3: break;
  4648. end;
  4649. end;
  4650. for i := 0 to insentry^.ops -1 do
  4651. begin
  4652. if (insentry^.optypes[i] and OT_REGISTER) = OT_REGISTER then
  4653. case insentry^.optypes[i] and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
  4654. OT_XMMREG,
  4655. OT_YMMREG,
  4656. OT_ZMMREG: ExistsSSEAVXReg := true;
  4657. else;
  4658. end;
  4659. end;
  4660. for j := 0 to insentry^.ops -1 do
  4661. begin
  4662. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  4663. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  4664. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  4665. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) OR
  4666. ((insentry^.optypes[j] and OT_ZMEM32) = OT_ZMEM32) OR
  4667. ((insentry^.optypes[j] and OT_ZMEM64) = OT_ZMEM64) then
  4668. begin
  4669. inc(actVMemCount);
  4670. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64 OR OT_ZMEM32 OR OT_ZMEM64) of
  4671. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  4672. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  4673. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  4674. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  4675. OT_ZMEM32: actVMemTypes := actVMemTypes or OT_ZMEM32;
  4676. OT_ZMEM64: actVMemTypes := actVMemTypes or OT_ZMEM64;
  4677. else InternalError(777206);
  4678. end;
  4679. end
  4680. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  4681. begin
  4682. inc(actRegCount);
  4683. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  4684. if NewRegSize = 0 then
  4685. begin
  4686. case insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
  4687. OT_MMXREG: begin
  4688. NewRegSize := OT_BITS64;
  4689. end;
  4690. OT_XMMREG: begin
  4691. NewRegSize := OT_BITS128;
  4692. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4693. end;
  4694. OT_YMMREG: begin
  4695. NewRegSize := OT_BITS256;
  4696. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4697. end;
  4698. OT_ZMMREG: begin
  4699. NewRegSize := OT_BITS512;
  4700. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4701. end;
  4702. OT_KREG: begin
  4703. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4704. end;
  4705. else NewRegSize := not(0);
  4706. end;
  4707. end;
  4708. actRegSize := actRegSize or NewRegSize;
  4709. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK));
  4710. end
  4711. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  4712. begin
  4713. inc(actMemCount);
  4714. if ExistsSSEAVXReg and ExistsCode336 then
  4715. actMemSize := actMemSize or OT_BITS32
  4716. else if ExistsSSEAVXReg and ExistsCode337 then
  4717. actMemSize := actMemSize or OT_BITS64
  4718. else
  4719. actMemSize:=actMemSize or (insentry^.optypes[j] and (OT_SIZE_MASK OR OT_VECTORBCST));
  4720. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  4721. begin
  4722. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  4723. end;
  4724. end
  4725. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  4726. begin
  4727. inc(actConstCount);
  4728. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  4729. end
  4730. end;
  4731. if actConstCount > 0 then
  4732. begin
  4733. case actConstSize of
  4734. 0: SConstInfo := csiNoSize;
  4735. OT_BITS8: SConstInfo := csiMem8;
  4736. OT_BITS16: SConstInfo := csiMem16;
  4737. OT_BITS32: SConstInfo := csiMem32;
  4738. OT_BITS64: SConstInfo := csiMem64;
  4739. else SConstInfo := csiMultiple;
  4740. end;
  4741. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnknown then
  4742. begin
  4743. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  4744. end
  4745. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  4746. begin
  4747. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  4748. end;
  4749. end;
  4750. if actVMemCount > 0 then
  4751. begin
  4752. if actVMemCount = 1 then
  4753. begin
  4754. if actVMemTypes > 0 then
  4755. begin
  4756. case actVMemTypes of
  4757. OT_XMEM32: MRefInfo := msiXMem32;
  4758. OT_XMEM64: MRefInfo := msiXMem64;
  4759. OT_YMEM32: MRefInfo := msiYMem32;
  4760. OT_YMEM64: MRefInfo := msiYMem64;
  4761. OT_ZMEM32: MRefInfo := msiZMem32;
  4762. OT_ZMEM64: MRefInfo := msiZMem64;
  4763. else InternalError(777208);
  4764. end;
  4765. case actRegTypes of
  4766. OT_XMMREG: case MRefInfo of
  4767. msiXMem32,
  4768. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  4769. msiYMem32,
  4770. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  4771. msiZMem32,
  4772. msiZMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS512;
  4773. else InternalError(777210);
  4774. end;
  4775. OT_YMMREG: case MRefInfo of
  4776. msiXMem32,
  4777. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  4778. msiYMem32,
  4779. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  4780. msiZMem32,
  4781. msiZMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS512;
  4782. else InternalError(2020100823);
  4783. end;
  4784. OT_ZMMREG: case MRefInfo of
  4785. msiXMem32,
  4786. msiXMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS128;
  4787. msiYMem32,
  4788. msiYMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS256;
  4789. msiZMem32,
  4790. msiZMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS512;
  4791. else InternalError(2020100824);
  4792. end;
  4793. //else InternalError(777209);
  4794. end;
  4795. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
  4796. begin
  4797. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4798. end
  4799. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4800. begin
  4801. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64] then
  4802. begin
  4803. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  4804. end
  4805. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> msiVMemMultiple then InternalError(777212);
  4806. end;
  4807. end;
  4808. end
  4809. else InternalError(777207);
  4810. end
  4811. else
  4812. begin
  4813. if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then actMemCount:=1;
  4814. ExistsMemRef := ExistsMemRef or (actMemCount > 0);
  4815. case actMemCount of
  4816. 0: ; // nothing todo
  4817. 1: begin
  4818. MRefInfo := msiUnknown;
  4819. if not(ExistsCode336 or ExistsCode337) then
  4820. case actRegMemTypes and (OT_MMXRM or OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
  4821. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  4822. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  4823. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  4824. OT_ZMMRM: actMemSize := actMemSize or OT_BITS512;
  4825. end;
  4826. case actMemSize of
  4827. 0: MRefInfo := msiNoSize;
  4828. OT_BITS8: MRefInfo := msiMem8;
  4829. OT_BITS16: MRefInfo := msiMem16;
  4830. OT_BITS32: MRefInfo := msiMem32;
  4831. OT_BITSB32: MRefInfo := msiBMem32;
  4832. OT_BITS64: MRefInfo := msiMem64;
  4833. OT_BITSB64: MRefInfo := msiBMem64;
  4834. OT_BITS128: MRefInfo := msiMem128;
  4835. OT_BITS256: MRefInfo := msiMem256;
  4836. OT_BITS512: MRefInfo := msiMem512;
  4837. OT_BITS80,
  4838. OT_FAR,
  4839. OT_NEAR,
  4840. OT_SHORT: ; // ignore
  4841. else
  4842. begin
  4843. bitcount := bitcnt(actMemSize);
  4844. if bitcount > 1 then MRefInfo := msiMultiple
  4845. else InternalError(777203);
  4846. end;
  4847. end;
  4848. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
  4849. begin
  4850. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4851. end
  4852. else
  4853. begin
  4854. // ignore broadcast-memory
  4855. if not(MRefInfo in [msiBMem32, msiBMem64]) then
  4856. begin
  4857. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4858. begin
  4859. with InsTabMemRefSizeInfoCache^[AsmOp] do
  4860. begin
  4861. if ((MemRefSize in [msiMem8, msiMULTIPLEMinSize8]) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultipleMinSize8
  4862. else if ((MemRefSize in [ msiMem16, msiMULTIPLEMinSize16]) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultipleMinSize16
  4863. else if ((MemRefSize in [ msiMem32, msiMULTIPLEMinSize32]) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultipleMinSize32
  4864. else if ((MemRefSize in [ msiMem64, msiMULTIPLEMinSize64]) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultipleMinSize64
  4865. else if ((MemRefSize in [msiMem128, msiMULTIPLEMinSize128]) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultipleMinSize128
  4866. else if ((MemRefSize in [msiMem256, msiMULTIPLEMinSize256]) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultipleMinSize256
  4867. else if ((MemRefSize in [msiMem512, msiMULTIPLEMinSize512]) OR (MRefInfo = msiMem512)) then MemRefSize := msiMultipleMinSize512
  4868. else MemRefSize := msiMultiple;
  4869. end;
  4870. end;
  4871. end;
  4872. end;
  4873. //if not(MRefInfo in [msiBMem32, msiBMem64]) and (actRegCount > 0) then
  4874. if actRegCount > 0 then
  4875. begin
  4876. if MRefInfo in [msiBMem32, msiBMem64] then
  4877. begin
  4878. if IF_BCST2 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to2];
  4879. if IF_BCST4 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to4];
  4880. if IF_BCST8 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to8];
  4881. if IF_BCST16 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to16];
  4882. //InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes
  4883. // BROADCAST - OPERAND
  4884. RegBCSTSizeMask := RegBCSTSizeMask or actMemSize;
  4885. case actRegTypes and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4886. OT_XMMREG: RegBCSTXMMSizeMask := RegBCSTXMMSizeMask or actMemSize;
  4887. OT_YMMREG: RegBCSTYMMSizeMask := RegBCSTYMMSizeMask or actMemSize;
  4888. OT_ZMMREG: RegBCSTZMMSizeMask := RegBCSTZMMSizeMask or actMemSize;
  4889. else begin
  4890. RegBCSTXMMSizeMask := not(0);
  4891. RegBCSTYMMSizeMask := not(0);
  4892. RegBCSTZMMSizeMask := not(0);
  4893. end;
  4894. end;
  4895. end
  4896. else
  4897. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4898. OT_MMXREG: if actConstCount > 0 then RegMMXConstSizeMask := RegMMXConstSizeMask or actMemSize
  4899. else RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  4900. OT_XMMREG: if actConstCount > 0 then RegXMMConstSizeMask := RegXMMConstSizeMask or actMemSize
  4901. else RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  4902. OT_YMMREG: if actConstCount > 0 then RegYMMConstSizeMask := RegYMMConstSizeMask or actMemSize
  4903. else RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  4904. OT_ZMMREG: if actConstCount > 0 then RegZMMConstSizeMask := RegZMMConstSizeMask or actMemSize
  4905. else RegZMMSizeMask := RegZMMSizeMask or actMemSize;
  4906. else begin
  4907. RegMMXSizeMask := not(0);
  4908. RegXMMSizeMask := not(0);
  4909. RegYMMSizeMask := not(0);
  4910. RegZMMSizeMask := not(0);
  4911. RegMMXConstSizeMask := not(0);
  4912. RegXMMConstSizeMask := not(0);
  4913. RegYMMConstSizeMask := not(0);
  4914. RegZMMConstSizeMask := not(0);
  4915. end;
  4916. end;
  4917. end
  4918. else
  4919. end
  4920. else InternalError(777202);
  4921. end;
  4922. end;
  4923. inc(insentry);
  4924. end;
  4925. if InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX then
  4926. begin
  4927. case RegBCSTSizeMask of
  4928. 0: ; // ignore;
  4929. OT_BITSB32: begin
  4930. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST32;
  4931. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 4;
  4932. end;
  4933. OT_BITSB64: begin
  4934. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST64;
  4935. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 2;
  4936. end;
  4937. else begin
  4938. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbMultiple;
  4939. end;
  4940. end;
  4941. end;
  4942. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  4943. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  4944. begin
  4945. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  4946. begin
  4947. if ((RegXMMSizeMask = OT_BITS128) or (RegXMMSizeMask = 0)) and
  4948. ((RegYMMSizeMask = OT_BITS256) or (RegYMMSizeMask = 0)) and
  4949. ((RegZMMSizeMask = OT_BITS512) or (RegZMMSizeMask = 0)) and
  4950. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) <> 0) then
  4951. begin
  4952. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  4953. end;
  4954. end
  4955. else if (RegMMXSizeMask or RegMMXConstSizeMask) <> 0 then
  4956. begin
  4957. if ((RegMMXSizeMask or RegMMXConstSizeMask) = OT_BITS64) and
  4958. ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) and
  4959. ((RegYMMSizeMask or RegYMMConstSizeMask) = 0) and
  4960. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4961. begin
  4962. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4963. end;
  4964. end
  4965. else if (((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) or ((RegXMMSizeMask or RegXMMConstSizeMask) = 0)) and
  4966. (((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) or ((RegYMMSizeMask or RegYMMConstSizeMask) = 0)) and
  4967. (((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) or ((RegZMMSizeMask or RegZMMConstSizeMask) = 0)) and
  4968. (((RegXMMSizeMask or RegXMMConstSizeMask or
  4969. RegYMMSizeMask or RegYMMConstSizeMask or
  4970. RegZMMSizeMask or RegZMMConstSizeMask)) <> 0) then
  4971. begin
  4972. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4973. end
  4974. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4975. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4976. (RegZMMSizeMask or RegZMMConstSizeMask = 0) then
  4977. begin
  4978. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  4979. end
  4980. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4981. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4982. (RegZMMSizeMask or RegZMMConstSizeMask = OT_BITS64) then
  4983. begin
  4984. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32z64;
  4985. end
  4986. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS32) and
  4987. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS64) then
  4988. begin
  4989. if ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4990. begin
  4991. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  4992. end
  4993. else if ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS128) then
  4994. begin
  4995. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64z128;
  4996. end;
  4997. end
  4998. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  4999. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  5000. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  5001. begin
  5002. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  5003. end
  5004. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5005. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  5006. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS256) then
  5007. begin
  5008. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128z256;
  5009. end
  5010. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5011. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  5012. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  5013. begin
  5014. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  5015. end
  5016. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5017. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  5018. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) then
  5019. begin
  5020. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256z512;
  5021. end
  5022. else if ((RegXMMConstSizeMask = 0) or (RegXMMConstSizeMask = OT_BITS128)) and
  5023. ((RegYMMConstSizeMask = 0) or (RegYMMConstSizeMask = OT_BITS256)) and
  5024. ((RegZMMConstSizeMask = 0) or (RegZMMConstSizeMask = OT_BITS512)) and
  5025. ((RegXMMConstSizeMask or RegYMMConstSizeMask or RegZMMConstSizeMask) <> 0) and
  5026. (
  5027. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS128) or
  5028. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS256) or
  5029. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS512)
  5030. ) then
  5031. begin
  5032. case RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask of
  5033. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst128;
  5034. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst256;
  5035. OT_BITS512: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst512;
  5036. else InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMultiple;
  5037. end;
  5038. end
  5039. else
  5040. begin
  5041. if not(
  5042. (AsmOp = A_CVTSI2SS) or
  5043. (AsmOp = A_CVTSI2SD) or
  5044. (AsmOp = A_CVTPD2DQ) or
  5045. (AsmOp = A_VCVTPD2DQ) or
  5046. (AsmOp = A_VCVTPD2PS) or
  5047. (AsmOp = A_VCVTSI2SD) or
  5048. (AsmOp = A_VCVTSI2SS) or
  5049. (AsmOp = A_VCVTTPD2DQ) or
  5050. (AsmOp = A_VCVTPD2UDQ) or
  5051. (AsmOp = A_VCVTQQ2PS) or
  5052. (AsmOp = A_VCVTTPD2UDQ) or
  5053. (AsmOp = A_VCVTUQQ2PS) or
  5054. (AsmOp = A_VCVTUSI2SD) or
  5055. (AsmOp = A_VCVTUSI2SS) or
  5056. // TODO check
  5057. (AsmOp = A_VCMPSS)
  5058. ) then
  5059. InternalError(777205);
  5060. end;
  5061. end
  5062. else if (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) and
  5063. (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown) and
  5064. (not(ExistsMemRef)) then
  5065. begin
  5066. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiNoMemRef;
  5067. end;
  5068. InsTabMemRefSizeInfoCache^[AsmOp].RegXMMSizeMask:=RegXMMSizeMask;
  5069. InsTabMemRefSizeInfoCache^[AsmOp].RegYMMSizeMask:=RegYMMSizeMask;
  5070. InsTabMemRefSizeInfoCache^[AsmOp].RegZMMSizeMask:=RegZMMSizeMask;
  5071. if (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) and
  5072. (gas_needsuffix[AsmOp] <> AttSufNONE) and
  5073. (not(InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples)) then
  5074. begin
  5075. // combination (attsuffix <> "AttSufNONE") and (MemRefSize is not in MemRefMultiples) is not supported =>> check opcode-definition in x86ins.dat
  5076. if (AsmOp <> A_CVTSI2SD) and
  5077. (AsmOp <> A_CVTSI2SS) then
  5078. begin
  5079. inc(iCntOpcodeValError);
  5080. Str(gas_needsuffix[AsmOp],hs1);
  5081. Str(InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize,hs2);
  5082. Message3(asmr_e_not_supported_combination_attsuffix_memrefsize_type,
  5083. std_op2str[AsmOp],hs1,hs2);
  5084. end;
  5085. end;
  5086. end;
  5087. end;
  5088. if iCntOpcodeValError > 0 then
  5089. InternalError(2021011201);
  5090. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  5091. begin
  5092. // only supported intructiones with SSE- or AVX-operands
  5093. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  5094. begin
  5095. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
  5096. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
  5097. end;
  5098. end;
  5099. end;
  5100. function NoMemorySizeRequired(opcode : TAsmOp) : Boolean;
  5101. var
  5102. i : LongInt;
  5103. insentry : PInsEntry;
  5104. begin
  5105. result:=false;
  5106. i:=instabcache^[opcode];
  5107. if i=-1 then
  5108. begin
  5109. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  5110. exit;
  5111. end;
  5112. insentry:=@instab[i];
  5113. while (insentry^.opcode=opcode) do
  5114. begin
  5115. if (insentry^.ops=1) and (insentry^.optypes[0]=OT_MEMORY) then
  5116. begin
  5117. result:=true;
  5118. exit;
  5119. end;
  5120. inc(insentry);
  5121. end;
  5122. end;
  5123. procedure InitAsm;
  5124. begin
  5125. build_spilling_operation_type_table;
  5126. if not assigned(instabcache) then
  5127. BuildInsTabCache;
  5128. if not assigned(InsTabMemRefSizeInfoCache) then
  5129. BuildInsTabMemRefSizeInfoCache;
  5130. end;
  5131. procedure DoneAsm;
  5132. begin
  5133. if assigned(operation_type_table) then
  5134. begin
  5135. dispose(operation_type_table);
  5136. operation_type_table:=nil;
  5137. end;
  5138. if assigned(instabcache) then
  5139. begin
  5140. dispose(instabcache);
  5141. instabcache:=nil;
  5142. end;
  5143. if assigned(InsTabMemRefSizeInfoCache) then
  5144. begin
  5145. dispose(InsTabMemRefSizeInfoCache);
  5146. InsTabMemRefSizeInfoCache:=nil;
  5147. end;
  5148. end;
  5149. begin
  5150. cai_align:=tai_align;
  5151. cai_cpu:=taicpu;
  5152. end.