12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- \chapter{TSet}
- Implements container for storing ordered set of unique elements.
- Takes 2 arguments for specialization, first one is type of elements, second one is comparator class.
- Usage example:
- \lstinputlisting[language=Pascal]{setexample.pp}
- Some methods return type of PNode. It has field Data, which can be used for retrieving data from
- that node. This node can be also used for navigation between elements by methods of set class.
- (But don't do anything else with it, you can lose data integrity.)
- Memory complexity:
- Size of stored base + constant overhead for each stored element (3 pointers + one boolean).
- Members list:
- \begin{longtable}{|m{10cm}|m{5cm}|}
- \hline
- Method & Complexity guarantees \\ \hline
- \multicolumn{2}{|m{15cm}|}{Description} \\ \hline\hline
- \verb!Create! & O(1) \\ \hline
- \multicolumn{2}{|m{15cm}|}{Constructor. Creates empty set.} \\ \hline\hline
- \verb!function Size(): SizeUInt! & O(1) \\ \hline
- \multicolumn{2}{|m{15cm}|}{Returns number of elements in set.} \\\hline\hline
- \verb!procedure Insert(value: T)! &
- O(lg N), N is number of elements in set \\ \hline
- \multicolumn{2}{|m{15cm}|}{Inserts element into set.} \\\hline\hline
- \verb!procedure Delete(value: T)! &
- O(lg N), N is number of elements in set \\ \hline
- \multicolumn{2}{|m{15cm}|}{Deletes value from set. If element is not in set, nothing happens.} \\\hline\hline
- \verb!function Find(value: T):PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Searches for value in set. If value is not there returns nil. Otherwise
- returns pointer to tree node (type PNode), which can be used for retrieving data from set.} \\\hline\hline
- \verb!function FindLess(value: T):PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Searches for greatest element less than value in set. If such element is not there returns nil. Otherwise
- returns pointer to tree node (type PNode), which can be used for retrieving data from set.} \\\hline\hline
- \verb!function FindLessEqual(value: T):PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Searches for greatest element less or equal than value in set. If such element is not there returns nil. Otherwise
- returns pointer to tree node (type PNode), which can be used for retrieving data from set.} \\\hline\hline
- \verb!function FindGreater(value: T):PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Searches for smallest element greater than value in set. If such element is not there returns nil. Otherwise
- returns pointer to tree node (type PNode), which can be used for retrieving data from set.} \\\hline\hline
- \verb!function FindGreaterEqual(value: T):PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Searches for smallest element greater or equal than value in set. If such element is not there returns nil. Otherwise
- returns pointer to tree node (type PNode), which can be used for retrieving data from set.} \\\hline\hline
- \verb!function Min:PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Returns node containing smallest element of set. If set is empty returns
- nil.} \\\hline\hline
- \verb!function Max:PNode! & O(lg N) \\\hline
- \multicolumn{2}{|m{15cm}|}{Returns node containing largest element of set. If set is empty returns
- nil.} \\\hline\hline
- \verb!function Next(x:PNode):PNode! & O(lg N) worst case, but traversal from smallest element to
- largest takes O(N) time \\\hline
- \multicolumn{2}{|m{15cm}|}{Returns successor of x. If x is largest element of set, returns nil.} \\\hline\hline
- \verb!function Prev(x:PNode):PNode! & O(lg N) worst case, but traversal from largest element to
- smallest takes O(N) time \\\hline
- \multicolumn{2}{|m{15cm}|}{Returns predecessor of x. If x is smallest element of set, returns nil.} \\\hline\hline
- \verb!function IsEmpty(): boolean! & O(1) \\ \hline
- \multicolumn{2}{|m{15cm}|}{Returns true when set is empty.} \\\hline
- \end{longtable}
|