12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130 |
- {
- $Id$
- This file is part of the Free Pascal run time library.
- Copyright (c) 1999-2001 by Several contributors
- Generic mathemtical routines (on type real)
- See the file COPYING.FPC, included in this distribution,
- for details about the copyright.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- **********************************************************************}
- {*************************************************************************}
- { Credits }
- {*************************************************************************}
- { Copyright Abandoned, 1987, Fred Fish }
- { }
- { This previously copyrighted work has been placed into the }
- { public domain by the author (Fred Fish) and may be freely used }
- { for any purpose, private or commercial. I would appreciate }
- { it, as a courtesy, if this notice is left in all copies and }
- { derivative works. Thank you, and enjoy... }
- { }
- { The author makes no warranty of any kind with respect to this }
- { product and explicitly disclaims any implied warranties of }
- { merchantability or fitness for any particular purpose. }
- {-------------------------------------------------------------------------}
- { Copyright (c) 1992 Odent Jean Philippe }
- { }
- { The source can be modified as long as my name appears and some }
- { notes explaining the modifications done are included in the file. }
- {-------------------------------------------------------------------------}
- { Copyright (c) 1997 Carl Eric Codere }
- {-------------------------------------------------------------------------}
- {$goto on}
- type
- TabCoef = array[0..6] of Real;
- const
- PIO2 = 1.57079632679489661923; { pi/2 }
- PIO4 = 7.85398163397448309616E-1; { pi/4 }
- SQRT2 = 1.41421356237309504880; { sqrt(2) }
- SQRTH = 7.07106781186547524401E-1; { sqrt(2)/2 }
- LOG2E = 1.4426950408889634073599; { 1/log(2) }
- SQ2OPI = 7.9788456080286535587989E-1; { sqrt( 2/pi )}
- LOGE2 = 6.93147180559945309417E-1; { log(2) }
- LOGSQ2 = 3.46573590279972654709E-1; { log(2)/2 }
- THPIO4 = 2.35619449019234492885; { 3*pi/4 }
- TWOOPI = 6.36619772367581343075535E-1; { 2/pi }
- lossth = 1.073741824e9;
- MAXLOG = 8.8029691931113054295988E1; { log(2**127) }
- MINLOG = -8.872283911167299960540E1; { log(2**-128) }
- DP1 = 7.85398125648498535156E-1;
- DP2 = 3.77489470793079817668E-8;
- DP3 = 2.69515142907905952645E-15;
- const sincof : TabCoef = (
- 1.58962301576546568060E-10,
- -2.50507477628578072866E-8,
- 2.75573136213857245213E-6,
- -1.98412698295895385996E-4,
- 8.33333333332211858878E-3,
- -1.66666666666666307295E-1, 0);
- coscof : TabCoef = (
- -1.13585365213876817300E-11,
- 2.08757008419747316778E-9,
- -2.75573141792967388112E-7,
- 2.48015872888517045348E-5,
- -1.38888888888730564116E-3,
- 4.16666666666665929218E-2, 0);
- { also necessary for Int() on systems with 64bit floats (JM) }
- type
- {$ifdef ENDIAN_LITTLE}
- float64 = packed record
- low: longint;
- high: longint;
- end;
- {$else}
- float64 = packed record
- high: longint;
- low: longint;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_TRUNC}
- type
- float32 = longint;
- flag = byte;
- Function extractFloat64Frac0(a: float64): longint;
- Begin
- extractFloat64Frac0 := a.high and $000FFFFF;
- End;
- Function extractFloat64Frac1(a: float64): longint;
- Begin
- extractFloat64Frac1 := a.low;
- End;
- Function extractFloat64Exp(a: float64): smallint;
- Begin
- extractFloat64Exp:= ( a.high shr 20 ) AND $7FF;
- End;
- Function extractFloat64Sign(a: float64) : flag;
- Begin
- extractFloat64Sign := a.high shr 31;
- End;
- Procedure
- shortShift64Left(
- a0:longint; a1:longint; count:smallint; VAR z0Ptr:longint; VAR z1Ptr:longint );
- Begin
- z1Ptr := a1 shl count;
- if count = 0 then
- z0Ptr := a0
- else
- z0Ptr := ( a0 shl count ) OR ( a1 shr ( ( - count ) AND 31 ) );
- End;
- function float64_to_int32_round_to_zero(a: float64 ): longint;
- Var
- aSign: flag;
- aExp, shiftCount: smallint;
- aSig0, aSig1, absZ, aSigExtra: longint;
- z: smallint;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- shiftCount := aExp - $413;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $41E < aExp ) then
- Begin
- if ( ( aExp = $7FF ) AND (( aSig0 OR aSig1 )<>0) ) then
- aSign := 0;
- goto invalid;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra );
- End
- else
- Begin
- if ( aExp < $3FF ) then
- Begin
- float64_to_int32_round_to_zero := 0;
- exit;
- End;
- aSig0 := aSig0 or $00100000;
- aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1;
- absZ := aSig0 shr ( - shiftCount );
- End;
- if aSign <> 0 then
- z := - absZ
- else
- z := absZ;
- if ( (( aSign xor flag( z < 0 )) <> 0) AND (z<>0) ) then
- Begin
- invalid:
- RunError(207);
- exit;
- End;
- float64_to_int32_round_to_zero := z;
- End;
- Function ExtractFloat32Frac(a : Float32) : longint;
- Begin
- ExtractFloat32Frac := A AND $007FFFFF;
- End;
- Function extractFloat32Exp( a: float32 ): smallint;
- Begin
- extractFloat32Exp := (a shr 23) AND $FF;
- End;
- Function extractFloat32Sign( a: float32 ): Flag;
- Begin
- extractFloat32Sign := a shr 31;
- End;
- Function float32_to_int32_round_to_zero( a: Float32 ): longint;
- Var
- aSign : flag;
- aExp, shiftCount : smallint;
- aSig : longint;
- z : longint;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- shiftCount := aExp - $9E;
- if ( 0 <= shiftCount ) then
- Begin
- if ( a <> $CF000000 ) then
- Begin
- if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
- Begin
- RunError(207);
- exit;
- end;
- End;
- RunError(207);
- exit;
- End
- else
- if ( aExp <= $7E ) then
- Begin
- float32_to_int32_round_to_zero := 0;
- exit;
- End;
- aSig := ( aSig or $00800000 ) shl 8;
- z := aSig shr ( - shiftCount );
- if ( aSign<>0 ) then z := - z;
- float32_to_int32_round_to_zero := z;
- End;
- function trunc(d : real) : longint;[internconst:in_const_trunc];
- var
- l: longint;
- f32 : float32;
- f64 : float64;
- Begin
- { in emulation mode the real is equal to a single }
- { otherwise in fpu mode, it is equal to a double }
- { extended is not supported yet. }
- if sizeof(D) > 8 then
- RunError(255);
- if sizeof(D)=8 then
- begin
- move(d,f64,sizeof(f64));
- trunc:=float64_to_int32_round_to_zero(f64);
- end
- else
- begin
- move(d,f32,sizeof(f32));
- trunc:=float32_to_int32_round_to_zero(f32);
- end;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_INT}
- {$ifdef SUPPORT_DOUBLE}
- { straight Pascal translation of the code for __trunc() in }
- { the file sysdeps/libm-ieee754/s_trunc.c of glibc (JM) }
- function int(d: double): double;[internconst:in_const_int];
- var
- i0, j0: longint;
- i1: cardinal;
- sx: longint;
- begin
- i0 := float64(d).high;
- i1 := cardinal(float64(d).low);
- sx := i0 and $80000000;
- j0 := ((i0 shr 20) and $7ff) - $3ff;
- if (j0 < 20) then
- begin
- if (j0 < 0) then
- begin
- { the magnitude of the number is < 1 so the result is +-0. }
- float64(d).high := sx;
- float64(d).low := 0;
- end
- else
- begin
- float64(d).high := sx or (i0 and not($fffff shr j0));
- float64(d).low := 0;
- end
- end
- else if (j0 > 51) then
- begin
- if (j0 = $400) then
- { d is inf or NaN }
- exit(d + d); { don't know why they do this (JM) }
- end
- else
- begin
- float64(d).high := i0;
- float64(d).low := longint(i1 and not(cardinal($ffffffff) shr (j0 - 20)));
- end;
- result := d;
- end;
- {$else SUPPORT_DOUBLE}
- function int(d : real) : real;[internconst:in_const_int];
- begin
- { this will be correct since real = single in the case of }
- { the motorola version of the compiler... }
- int:=real(trunc(d));
- end;
- {$endif SUPPORT_DOUBLE}
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_ABS}
- function fpc_abs_real(d : Real) : Real; compilerproc;
- begin
- if( d < 0.0 ) then
- fpc_abs_real := -d
- else
- fpc_abs_real := d ;
- end;
- {$endif not FPC_SYSTEM_HAS_ABS}
- function frexp(x:Real; var e:Integer ):Real;
- {* frexp() extracts the exponent from x. It returns an integer *}
- {* power of two to expnt and the significand between 0.5 and 1 *}
- {* to y. Thus x = y * 2**expn. *}
- begin
- e :=0;
- if (abs(x)<0.5) then
- While (abs(x)<0.5) do
- begin
- x := x*2;
- Dec(e);
- end
- else
- While (abs(x)>1) do
- begin
- x := x/2;
- Inc(e);
- end;
- frexp := x;
- end;
- function ldexp( x: Real; N: Integer):Real;
- {* ldexp() multiplies x by 2**n. *}
- var r : Real;
- begin
- R := 1;
- if N>0 then
- while N>0 do
- begin
- R:=R*2;
- Dec(N);
- end
- else
- while N<0 do
- begin
- R:=R/2;
- Inc(N);
- end;
- ldexp := x * R;
- end;
- function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real;
- {*****************************************************************}
- { Evaluate polynomial }
- {*****************************************************************}
- { }
- { SYNOPSIS: }
- { }
- { int N; }
- { double x, y, coef[N+1], polevl[]; }
- { }
- { y = polevl( x, coef, N ); }
- { }
- { DESCRIPTION: }
- { }
- { Evaluates polynomial of degree N: }
- { }
- { 2 N }
- { y = C + C x + C x +...+ C x }
- { 0 1 2 N }
- { }
- { Coefficients are stored in reverse order: }
- { }
- { coef[0] = C , ..., coef[N] = C . }
- { N 0 }
- { }
- { The function p1evl() assumes that coef[N] = 1.0 and is }
- { omitted from the array. Its calling arguments are }
- { otherwise the same as polevl(). }
- { }
- { SPEED: }
- { }
- { In the interest of speed, there are no checks for out }
- { of bounds arithmetic. This routine is used by most of }
- { the functions in the library. Depending on available }
- { equipment features, the user may wish to rewrite the }
- { program in microcode or assembly language. }
- {*****************************************************************}
- var ans : Real;
- i : Integer;
- begin
- ans := Coef[0];
- for i:=1 to N do
- ans := ans * x + Coef[i];
- polevl:=ans;
- end;
- function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real;
- { }
- { Evaluate polynomial when coefficient of x is 1.0. }
- { Otherwise same as polevl. }
- { }
- var
- ans : Real;
- i : Integer;
- begin
- ans := x + Coef[0];
- for i:=1 to N-1 do
- ans := ans * x + Coef[i];
- p1evl := ans;
- end;
- {$ifndef FPC_SYSTEM_HAS_SQR}
- function sqr(d : Real) : Real;[internconst:in_const_sqr];
- begin
- sqr := d*d;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_PI}
- function pi : Real;[internconst:in_const_pi];
- begin
- pi := 3.1415926535897932385;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_SQRT}
- function sqrt(d:Real):Real;[internconst:in_const_sqrt]; [public, alias: 'FPC_SQRT_REAL'];
- {*****************************************************************}
- { Square root }
- {*****************************************************************}
- { }
- { SYNOPSIS: }
- { }
- { double x, y, sqrt(); }
- { }
- { y = sqrt( x ); }
- { }
- { DESCRIPTION: }
- { }
- { Returns the square root of x. }
- { }
- { Range reduction involves isolating the power of two of the }
- { argument and using a polynomial approximation to obtain }
- { a rough value for the square root. Then Heron's iteration }
- { is used three times to converge to an accurate value. }
- {*****************************************************************}
- var e : Integer;
- w,z : Real;
- begin
- if( d <= 0.0 ) then
- begin
- if( d < 0.0 ) then
- RunError(207);
- sqrt := 0.0;
- end
- else
- begin
- w := d;
- { separate exponent and significand }
- z := frexp( d, e );
- { approximate square root of number between 0.5 and 1 }
- { relative error of approximation = 7.47e-3 }
- d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
- { adjust for odd powers of 2 }
- if odd(e) then
- d := d*SQRT2;
- { re-insert exponent }
- d := ldexp( d, (e div 2) );
- { Newton iterations: }
- d := 0.5*(d + w/d);
- d := 0.5*(d + w/d);
- d := 0.5*(d + w/d);
- d := 0.5*(d + w/d);
- d := 0.5*(d + w/d);
- d := 0.5*(d + w/d);
- sqrt := d;
- end;
- end;
- {$ifdef hascompilerproc}
- function fpc_sqrt_real(d:Real):Real;compilerproc; external name 'FPC_SQRT_REAL';
- {$endif hascompilerproc}
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_EXP}
- function Exp(d:Real):Real;[internconst:in_const_exp];
- {*****************************************************************}
- { Exponential Function }
- {*****************************************************************}
- { }
- { SYNOPSIS: }
- { }
- { double x, y, exp(); }
- { }
- { y = exp( x ); }
- { }
- { DESCRIPTION: }
- { }
- { Returns e (2.71828...) raised to the x power. }
- { }
- { Range reduction is accomplished by separating the argument }
- { into an integer k and fraction f such that }
- { }
- { x k f }
- { e = 2 e. }
- { }
- { A Pade' form of degree 2/3 is used to approximate exp(f)- 1 }
- { in the basic range [-0.5 ln 2, 0.5 ln 2]. }
- {*****************************************************************}
- const P : TabCoef = (
- 1.26183092834458542160E-4,
- 3.02996887658430129200E-2,
- 1.00000000000000000000E0, 0, 0, 0, 0);
- Q : TabCoef = (
- 3.00227947279887615146E-6,
- 2.52453653553222894311E-3,
- 2.27266044198352679519E-1,
- 2.00000000000000000005E0, 0 ,0 ,0);
- C1 = 6.9335937500000000000E-1;
- C2 = 2.1219444005469058277E-4;
- var n : Integer;
- px, qx, xx : Real;
- begin
- if( d > MAXLOG) then
- RunError(205)
- else
- if( d < MINLOG ) then
- begin
- Runerror(205);
- end
- else
- begin
- { Express e**x = e**g 2**n }
- { = e**g e**( n loge(2) ) }
- { = e**( g + n loge(2) ) }
- px := d * LOG2E;
- qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
- n := Trunc(qx);
- d := d - qx * C1;
- d := d + qx * C2;
- { rational approximation for exponential }
- { of the fractional part: }
- { e**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) ) }
- xx := d * d;
- px := d * polevl( xx, P, 2 );
- d := px/( polevl( xx, Q, 3 ) - px );
- d := ldexp( d, 1 );
- d := d + 1.0;
- d := ldexp( d, n );
- Exp := d;
- end;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_ROUND}
- {$ifdef hascompilerproc}
- function round(d : Real) : int64;[internconst:in_const_round, external name 'FPC_ROUND'];
- function fpc_round(d : Real) : int64;assembler;[public, alias:'FPC_ROUND'];{$ifdef hascompilerproc}compilerproc;{$endif hascompilerproc}
- {$else}
- function round(d : Real) : int64;assembler;[internconst:in_const_round];
- {$endif hascompilerproc}
- var
- fr: Real;
- tr: Real;
- Begin
- fr := Frac(d);
- tr := Trunc(d);
- if fr > 0.5 then
- Round:=Trunc(d)+1
- else
- if fr < 0.5 then
- Round:=Trunc(d)
- else { fr = 0.5 }
- { check sign to decide ... }
- { as in Turbo Pascal... }
- if d >= 0.0 then
- Round := Trunc(d)+1
- else
- Round := Trunc(d);
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_LN}
- function Ln(d:Real):Real;[internconst:in_const_ln];
- {*****************************************************************}
- { Natural Logarithm }
- {*****************************************************************}
- { }
- { SYNOPSIS: }
- { }
- { double x, y, log(); }
- { }
- { y = ln( x ); }
- { }
- { DESCRIPTION: }
- { }
- { Returns the base e (2.718...) logarithm of x. }
- { }
- { The argument is separated into its exponent and fractional }
- { parts. If the exponent is between -1 and +1, the logarithm }
- { of the fraction is approximated by }
- { }
- { log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). }
- { }
- { Otherwise, setting z = 2(x-1)/x+1), }
- { }
- { log(x) = z + z**3 P(z)/Q(z). }
- { }
- {*****************************************************************}
- const P : TabCoef = (
- { Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
- 1/sqrt(2) <= x < sqrt(2) }
- 4.58482948458143443514E-5,
- 4.98531067254050724270E-1,
- 6.56312093769992875930E0,
- 2.97877425097986925891E1,
- 6.06127134467767258030E1,
- 5.67349287391754285487E1,
- 1.98892446572874072159E1);
- Q : TabCoef = (
- 1.50314182634250003249E1,
- 8.27410449222435217021E1,
- 2.20664384982121929218E2,
- 3.07254189979530058263E2,
- 2.14955586696422947765E2,
- 5.96677339718622216300E1, 0);
- { Coefficients for log(x) = z + z**3 P(z)/Q(z),
- where z = 2(x-1)/(x+1)
- 1/sqrt(2) <= x < sqrt(2) }
- R : TabCoef = (
- -7.89580278884799154124E-1,
- 1.63866645699558079767E1,
- -6.41409952958715622951E1, 0, 0, 0, 0);
- S : TabCoef = (
- -3.56722798256324312549E1,
- 3.12093766372244180303E2,
- -7.69691943550460008604E2, 0, 0, 0, 0);
- var e : Integer;
- z, y : Real;
- Label Ldone;
- begin
- if( d <= 0.0 ) then
- RunError(207);
- d := frexp( d, e );
- { logarithm using log(x) = z + z**3 P(z)/Q(z),
- where z = 2(x-1)/x+1) }
- if( (e > 2) or (e < -2) ) then
- begin
- if( d < SQRTH ) then
- begin
- { 2( 2x-1 )/( 2x+1 ) }
- Dec(e, 1);
- z := d - 0.5;
- y := 0.5 * z + 0.5;
- end
- else
- begin
- { 2 (x-1)/(x+1) }
- z := d - 0.5;
- z := z - 0.5;
- y := 0.5 * d + 0.5;
- end;
- d := z / y;
- { /* rational form */ }
- z := d*d;
- z := d + d * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) );
- goto ldone;
- end;
- { logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) }
- if( d < SQRTH ) then
- begin
- Dec(e, 1);
- d := ldexp( d, 1 ) - 1.0; { 2x - 1 }
- end
- else
- d := d - 1.0;
- { rational form }
- z := d*d;
- y := d * ( z * polevl( d, P, 6 ) / p1evl( d, Q, 6 ) );
- y := y - ldexp( z, -1 ); { y - 0.5 * z }
- z := d + y;
- ldone:
- { recombine with exponent term }
- if( e <> 0 ) then
- begin
- y := e;
- z := z - y * 2.121944400546905827679e-4;
- z := z + y * 0.693359375;
- end;
- Ln:= z;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_SIN}
- function Sin(d:Real):Real;[internconst:in_const_sin];
- {*****************************************************************}
- { Circular Sine }
- {*****************************************************************}
- { }
- { SYNOPSIS: }
- { }
- { double x, y, sin(); }
- { }
- { y = sin( x ); }
- { }
- { DESCRIPTION: }
- { }
- { Range reduction is into intervals of pi/4. The reduction }
- { error is nearly eliminated by contriving an extended }
- { precision modular arithmetic. }
- { }
- { Two polynomial approximating functions are employed. }
- { Between 0 and pi/4 the sine is approximated by }
- { x + x**3 P(x**2). }
- { Between pi/4 and pi/2 the cosine is represented as }
- { 1 - x**2 Q(x**2). }
- {*****************************************************************}
- var y, z, zz : Real;
- j, sign : Integer;
- begin
- { make argument positive but save the sign }
- sign := 1;
- if( d < 0 ) then
- begin
- d := -d;
- sign := -1;
- end;
- { above this value, approximate towards 0 }
- if( d > lossth ) then
- begin
- sin := 0.0;
- exit;
- end;
- y := Trunc( d/PIO4 ); { integer part of x/PIO4 }
- { strip high bits of integer part to prevent integer overflow }
- z := ldexp( y, -4 );
- z := Trunc(z); { integer part of y/8 }
- z := y - ldexp( z, 4 ); { y - 16 * (y/16) }
- j := Trunc(z); { convert to integer for tests on the phase angle }
- { map zeros to origin }
- { typecast is to avoid "can't determine which overloaded function }
- { to call" }
- if odd( longint(j) ) then
- begin
- inc(j);
- y := y + 1.0;
- end;
- j := j and 7; { octant modulo 360 degrees }
- { reflect in x axis }
- if( j > 3) then
- begin
- sign := -sign;
- dec(j, 4);
- end;
- { Extended precision modular arithmetic }
- z := ((d - y * DP1) - y * DP2) - y * DP3;
- zz := z * z;
- if( (j=1) or (j=2) ) then
- y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
- else
- { y = z + z * (zz * polevl( zz, sincof, 5 )); }
- y := z + z * z * z * polevl( zz, sincof, 5 );
- if(sign < 0) then
- y := -y;
- sin := y;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_COS}
- function Cos(d:Real):Real;[internconst:in_const_cos];
- {*****************************************************************}
- { Circular cosine }
- {*****************************************************************}
- { }
- { Circular cosine }
- { }
- { SYNOPSIS: }
- { }
- { double x, y, cos(); }
- { }
- { y = cos( x ); }
- { }
- { DESCRIPTION: }
- { }
- { Range reduction is into intervals of pi/4. The reduction }
- { error is nearly eliminated by contriving an extended }
- { precision modular arithmetic. }
- { }
- { Two polynomial approximating functions are employed. }
- { Between 0 and pi/4 the cosine is approximated by }
- { 1 - x**2 Q(x**2). }
- { Between pi/4 and pi/2 the sine is represented as }
- { x + x**3 P(x**2). }
- {*****************************************************************}
- var y, z, zz : Real;
- j, sign : Integer;
- i : LongInt;
- begin
- { make argument positive }
- sign := 1;
- if( d < 0 ) then
- d := -d;
- { above this value, round towards zero }
- if( d > lossth ) then
- begin
- cos := 0.0;
- exit;
- end;
- y := Trunc( d/PIO4 );
- z := ldexp( y, -4 );
- z := Trunc(z); { integer part of y/8 }
- z := y - ldexp( z, 4 ); { y - 16 * (y/16) }
- { integer and fractional part modulo one octant }
- i := Trunc(z);
- if odd( i ) then { map zeros to origin }
- begin
- inc(i);
- y := y + 1.0;
- end;
- j := i and 07;
- if( j > 3) then
- begin
- dec(j,4);
- sign := -sign;
- end;
- if( j > 1 ) then
- sign := -sign;
- { Extended precision modular arithmetic }
- z := ((d - y * DP1) - y * DP2) - y * DP3;
- zz := z * z;
- if( (j=1) or (j=2) ) then
- { y = z + z * (zz * polevl( zz, sincof, 5 )); }
- y := z + z * z * z * polevl( zz, sincof, 5 )
- else
- y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
- if(sign < 0) then
- y := -y;
- cos := y ;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_ARCTAN}
- function ArcTan(d:Real):Real;[internconst:in_const_arctan];
- {*****************************************************************}
- { Inverse circular tangent (arctangent) }
- {*****************************************************************}
- { }
- { SYNOPSIS: }
- { }
- { double x, y, atan(); }
- { }
- { y = atan( x ); }
- { }
- { DESCRIPTION: }
- { }
- { Returns radian angle between -pi/2 and +pi/2 whose tangent }
- { is x. }
- { }
- { Range reduction is from four intervals into the interval }
- { from zero to tan( pi/8 ). The approximant uses a rational }
- { function of degree 3/4 of the form x + x**3 P(x)/Q(x). }
- {*****************************************************************}
- const P : TabCoef = (
- -8.40980878064499716001E-1,
- -8.83860837023772394279E0,
- -2.18476213081316705724E1,
- -1.48307050340438946993E1, 0, 0, 0);
- Q : TabCoef = (
- 1.54974124675307267552E1,
- 6.27906555762653017263E1,
- 9.22381329856214406485E1,
- 4.44921151021319438465E1, 0, 0, 0);
- { tan( 3*pi/8 ) }
- T3P8 = 2.41421356237309504880;
- { tan( pi/8 ) }
- TP8 = 0.41421356237309504880;
- var y,z : Real;
- Sign : Integer;
- begin
- { make argument positive and save the sign }
- sign := 1;
- if( d < 0.0 ) then
- begin
- sign := -1;
- d := -d;
- end;
- { range reduction }
- if( d > T3P8 ) then
- begin
- y := PIO2;
- d := -( 1.0/d );
- end
- else if( d > TP8 ) then
- begin
- y := PIO4;
- d := (d-1.0)/(d+1.0);
- end
- else
- y := 0.0;
- { rational form in x**2 }
- z := d * d;
- y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * d + d;
- if( sign < 0 ) then
- y := -y;
- Arctan := y;
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_FRAC}
- function frac(d : Real) : Real;[internconst:in_const_frac];
- begin
- frac := d - Int(d);
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_POWER}
- function power(bas,expo : real) : real;
- begin
- if bas=0.0 then
- begin
- if expo<>0.0 then
- power:=0.0
- else
- HandleError(207);
- end
- else if expo=0.0 then
- power:=1
- else
- { bas < 0 is not allowed }
- if bas<0.0 then
- handleerror(207)
- else
- power:=exp(ln(bas)*expo);
- end;
- {$endif}
- {$ifndef FPC_SYSTEM_HAS_POWER_INT64}
- function power(bas,expo : int64) : int64;
- begin
- if bas=0 then
- begin
- if expo<>0 then
- power:=0
- else
- HandleError(207);
- end
- else if expo=0 then
- power:=1
- else
- begin
- if bas<0 then
- begin
- if odd(expo) then
- power:=-round(exp(ln(-bas)*expo))
- else
- power:=round(exp(ln(-bas)*expo));
- end
- else
- power:=round(exp(ln(bas)*expo));
- end;
- end;
- {$endif}
- {$ifdef SUPPORT_DOUBLE}
- {****************************************************************************
- Helper routines to support old TP styled reals
- ****************************************************************************}
- {$ifndef FPC_SYSTEM_HAS_REAL2DOUBLE}
- function real2double(r : real48) : double;
- var
- res : array[0..7] of byte;
- exponent : word;
- begin
- { copy mantissa }
- res[0]:=0;
- res[1]:=r[1] shl 5;
- res[2]:=(r[1] shr 3) or (r[2] shl 5);
- res[3]:=(r[2] shr 3) or (r[3] shl 5);
- res[4]:=(r[3] shr 3) or (r[4] shl 5);
- res[5]:=(r[4] shr 3) or (r[5] and $7f) shl 5;
- res[6]:=(r[5] and $7f) shr 3;
- { copy exponent }
- { correct exponent: }
- exponent:=(word(r[0])+(1023-129));
- res[6]:=res[6] or ((exponent and $f) shl 4);
- res[7]:=exponent shr 4;
- { set sign }
- res[7]:=res[7] or (r[5] and $80);
- real2double:=double(res);
- end;
- {$endif FPC_SYSTEM_HAS_REAL2DOUBLE}
- {$endif SUPPORT_DOUBLE}
- {
- $Log$
- Revision 1.14 2003-05-24 13:39:32 jonas
- * fsqrt is an optional instruction in the ppc architecture and isn't
- implemented by any current ppc afaik, so use the generic sqrt routine
- instead (adapted so it works with compilerproc)
- Revision 1.13 2003/05/23 22:58:31 jonas
- * added longint typecase to odd(smallint_var) call to avoid overload
- problem
- Revision 1.12 2003/05/02 15:12:19 jonas
- - removed empty ppc-specific frac()
- + added correct generic frac() implementation for doubles (translated
- from glibc code)
- Revision 1.11 2003/04/23 21:28:21 peter
- * fpc_round added, needed for int64 currency
- Revision 1.10 2003/01/15 00:45:17 peter
- * use generic int64 power
- Revision 1.9 2002/10/12 20:28:49 carl
- * round returns int64
- Revision 1.8 2002/10/07 15:15:02 florian
- * fixed wrong commit
- Revision 1.7 2002/10/07 15:10:45 florian
- + variant wrappers for cmp operators added
- Revision 1.6 2002/09/07 15:07:45 peter
- * old logs removed and tabs fixed
- Revision 1.5 2002/07/28 21:39:29 florian
- * made abs a compiler proc if it is generic
- Revision 1.4 2002/07/28 20:43:48 florian
- * several fixes for linux/powerpc
- * several fixes to MT
- }
|