n386add.pas 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599
  1. {
  2. Copyright (c) 2000-2002 by Florian Klaempfl
  3. Code generation for add nodes on the i386
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. unit n386add;
  18. {$i fpcdefs.inc}
  19. interface
  20. uses
  21. node,nadd,cpubase,nx86add;
  22. type
  23. ti386addnode = class(tx86addnode)
  24. function use_generic_mul32to64: boolean; override;
  25. function use_generic_mul64bit: boolean; override;
  26. procedure second_addordinal; override;
  27. procedure second_add64bit;override;
  28. procedure second_cmp64bit;override;
  29. procedure second_mul(unsigned: boolean);
  30. procedure second_mul64bit;
  31. protected
  32. procedure set_mul_result_location;
  33. end;
  34. implementation
  35. uses
  36. globtype,systems,
  37. cutils,verbose,globals,
  38. symconst,symdef,paramgr,defutil,
  39. aasmbase,aasmtai,aasmdata,aasmcpu,
  40. cgbase,procinfo,
  41. ncon,nset,cgutils,tgobj,
  42. cga,ncgutil,cgobj,cg64f32,cgx86,
  43. hlcgobj;
  44. {*****************************************************************************
  45. use_generic_mul32to64
  46. *****************************************************************************}
  47. function ti386addnode.use_generic_mul32to64: boolean;
  48. begin
  49. result := False;
  50. end;
  51. function ti386addnode.use_generic_mul64bit: boolean;
  52. begin
  53. result:=(cs_check_overflow in current_settings.localswitches) or
  54. (cs_opt_size in current_settings.optimizerswitches);
  55. end;
  56. { handles all unsigned multiplications, and 32->64 bit signed ones.
  57. 32bit-only signed mul is handled by generic codegen }
  58. procedure ti386addnode.second_addordinal;
  59. var
  60. unsigned: boolean;
  61. begin
  62. unsigned:=not(is_signed(left.resultdef)) or
  63. not(is_signed(right.resultdef));
  64. { use IMUL instead of MUL in case overflow checking is off and we're
  65. doing a 32->32-bit multiplication }
  66. if not (cs_check_overflow in current_settings.localswitches) and
  67. not is_64bit(resultdef) then
  68. unsigned:=false;
  69. if (nodetype=muln) and (unsigned or is_64bit(resultdef)) then
  70. second_mul(unsigned)
  71. else
  72. inherited second_addordinal;
  73. end;
  74. {*****************************************************************************
  75. Add64bit
  76. *****************************************************************************}
  77. procedure ti386addnode.second_add64bit;
  78. var
  79. op : TOpCG;
  80. op1,op2 : TAsmOp;
  81. opsize : TOpSize;
  82. hregister,
  83. hregister2 : tregister;
  84. hl4 : tasmlabel;
  85. mboverflow,
  86. unsigned:boolean;
  87. r:Tregister;
  88. begin
  89. pass_left_right;
  90. op1:=A_NONE;
  91. op2:=A_NONE;
  92. mboverflow:=false;
  93. opsize:=S_L;
  94. unsigned:=((left.resultdef.typ=orddef) and
  95. (torddef(left.resultdef).ordtype=u64bit)) or
  96. ((right.resultdef.typ=orddef) and
  97. (torddef(right.resultdef).ordtype=u64bit));
  98. case nodetype of
  99. addn :
  100. begin
  101. op:=OP_ADD;
  102. mboverflow:=true;
  103. end;
  104. subn :
  105. begin
  106. op:=OP_SUB;
  107. op1:=A_SUB;
  108. op2:=A_SBB;
  109. mboverflow:=true;
  110. end;
  111. xorn:
  112. op:=OP_XOR;
  113. orn:
  114. op:=OP_OR;
  115. andn:
  116. op:=OP_AND;
  117. muln:
  118. begin
  119. second_mul64bit;
  120. exit;
  121. end
  122. else
  123. begin
  124. { everything should be handled in pass_1 (JM) }
  125. internalerror(200109051);
  126. end;
  127. end;
  128. { left and right no register? }
  129. { then one must be demanded }
  130. if (left.location.loc<>LOC_REGISTER) then
  131. begin
  132. if (right.location.loc<>LOC_REGISTER) then
  133. begin
  134. hregister:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  135. hregister2:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  136. cg64.a_load64_loc_reg(current_asmdata.CurrAsmList,left.location,joinreg64(hregister,hregister2));
  137. location_reset(left.location,LOC_REGISTER,left.location.size);
  138. left.location.register64.reglo:=hregister;
  139. left.location.register64.reghi:=hregister2;
  140. end
  141. else
  142. begin
  143. location_swap(left.location,right.location);
  144. toggleflag(nf_swapped);
  145. end;
  146. end;
  147. { at this point, left.location.loc should be LOC_REGISTER }
  148. if right.location.loc=LOC_REGISTER then
  149. begin
  150. { when swapped another result register }
  151. if (nodetype=subn) and (nf_swapped in flags) then
  152. begin
  153. cg64.a_op64_reg_reg(current_asmdata.CurrAsmList,op,location.size,
  154. left.location.register64,
  155. right.location.register64);
  156. location_swap(left.location,right.location);
  157. toggleflag(nf_swapped);
  158. end
  159. else
  160. begin
  161. cg64.a_op64_reg_reg(current_asmdata.CurrAsmList,op,location.size,
  162. right.location.register64,
  163. left.location.register64);
  164. end;
  165. end
  166. else
  167. begin
  168. { right.location<>LOC_REGISTER }
  169. if (nodetype=subn) and (nf_swapped in flags) then
  170. begin
  171. r:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  172. cg64.a_load64low_loc_reg(current_asmdata.CurrAsmList,right.location,r);
  173. cg.a_reg_alloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
  174. emit_reg_reg(op1,opsize,left.location.register64.reglo,r);
  175. emit_reg_reg(A_MOV,opsize,r,left.location.register64.reglo);
  176. cg64.a_load64high_loc_reg(current_asmdata.CurrAsmList,right.location,r);
  177. { the carry flag is still ok }
  178. emit_reg_reg(op2,opsize,left.location.register64.reghi,r);
  179. cg.a_reg_dealloc(current_asmdata.CurrAsmList,NR_DEFAULTFLAGS);
  180. emit_reg_reg(A_MOV,opsize,r,left.location.register64.reghi);
  181. end
  182. else
  183. begin
  184. cg64.a_op64_loc_reg(current_asmdata.CurrAsmList,op,location.size,right.location,
  185. left.location.register64);
  186. end;
  187. location_freetemp(current_asmdata.CurrAsmList,right.location);
  188. end;
  189. { only in case of overflow operations }
  190. { produce overflow code }
  191. { we must put it here directly, because sign of operation }
  192. { is in unsigned VAR!! }
  193. if mboverflow then
  194. begin
  195. if cs_check_overflow in current_settings.localswitches then
  196. begin
  197. current_asmdata.getjumplabel(hl4);
  198. if unsigned then
  199. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_AE,hl4)
  200. else
  201. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NO,hl4);
  202. cg.a_call_name(current_asmdata.CurrAsmList,'FPC_OVERFLOW',false);
  203. cg.a_label(current_asmdata.CurrAsmList,hl4);
  204. end;
  205. end;
  206. location_copy(location,left.location);
  207. end;
  208. procedure ti386addnode.second_cmp64bit;
  209. var
  210. truelabel,
  211. falselabel,
  212. hlab : tasmlabel;
  213. href : treference;
  214. unsigned : boolean;
  215. procedure firstjmp64bitcmp;
  216. var
  217. oldnodetype : tnodetype;
  218. begin
  219. {$ifdef OLDREGVARS}
  220. load_all_regvars(current_asmdata.CurrAsmList);
  221. {$endif OLDREGVARS}
  222. { the jump the sequence is a little bit hairy }
  223. case nodetype of
  224. ltn,gtn:
  225. begin
  226. if (hlab<>location.truelabel) then
  227. cg.a_jmp_flags(current_asmdata.CurrAsmList,getresflags(unsigned),location.truelabel);
  228. { cheat a little bit for the negative test }
  229. toggleflag(nf_swapped);
  230. if (hlab<>location.falselabel) then
  231. cg.a_jmp_flags(current_asmdata.CurrAsmList,getresflags(unsigned),location.falselabel);
  232. toggleflag(nf_swapped);
  233. end;
  234. lten,gten:
  235. begin
  236. oldnodetype:=nodetype;
  237. if nodetype=lten then
  238. nodetype:=ltn
  239. else
  240. nodetype:=gtn;
  241. if (hlab<>location.truelabel) then
  242. cg.a_jmp_flags(current_asmdata.CurrAsmList,getresflags(unsigned),location.truelabel);
  243. { cheat for the negative test }
  244. if nodetype=ltn then
  245. nodetype:=gtn
  246. else
  247. nodetype:=ltn;
  248. if (hlab<>location.falselabel) then
  249. cg.a_jmp_flags(current_asmdata.CurrAsmList,getresflags(unsigned),location.falselabel);
  250. nodetype:=oldnodetype;
  251. end;
  252. equaln:
  253. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NE,location.falselabel);
  254. unequaln:
  255. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NE,location.truelabel);
  256. end;
  257. end;
  258. procedure secondjmp64bitcmp;
  259. begin
  260. { the jump the sequence is a little bit hairy }
  261. case nodetype of
  262. ltn,gtn,lten,gten:
  263. begin
  264. { the comparisaion of the low dword have to be }
  265. { always unsigned! }
  266. cg.a_jmp_flags(current_asmdata.CurrAsmList,getresflags(true),location.truelabel);
  267. cg.a_jmp_always(current_asmdata.CurrAsmList,location.falselabel);
  268. end;
  269. equaln:
  270. begin
  271. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NE,location.falselabel);
  272. cg.a_jmp_always(current_asmdata.CurrAsmList,location.truelabel);
  273. end;
  274. unequaln:
  275. begin
  276. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_NE,location.truelabel);
  277. cg.a_jmp_always(current_asmdata.CurrAsmList,location.falselabel);
  278. end;
  279. end;
  280. end;
  281. begin
  282. truelabel:=nil;
  283. falselabel:=nil;
  284. pass_left_right;
  285. unsigned:=((left.resultdef.typ=orddef) and
  286. (torddef(left.resultdef).ordtype=u64bit)) or
  287. ((right.resultdef.typ=orddef) and
  288. (torddef(right.resultdef).ordtype=u64bit));
  289. { we have LOC_JUMP as result }
  290. current_asmdata.getjumplabel(truelabel);
  291. current_asmdata.getjumplabel(falselabel);
  292. location_reset_jump(location,truelabel,falselabel);
  293. { Relational compares against constants having low dword=0 can omit the
  294. second compare based on the fact that any unsigned value is >=0 }
  295. hlab:=nil;
  296. if (right.location.loc=LOC_CONSTANT) and
  297. (lo(right.location.value64)=0) then
  298. begin
  299. case getresflags(true) of
  300. F_AE: hlab:=location.truelabel ;
  301. F_B: hlab:=location.falselabel;
  302. end;
  303. end;
  304. if (right.location.loc=LOC_CONSTANT) and
  305. (left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE]) then
  306. begin
  307. tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,left.location.reference);
  308. href:=left.location.reference;
  309. inc(href.offset,4);
  310. emit_const_ref(A_CMP,S_L,aint(hi(right.location.value64)),href);
  311. firstjmp64bitcmp;
  312. if assigned(hlab) then
  313. cg.a_jmp_always(current_asmdata.CurrAsmList,hlab)
  314. else
  315. begin
  316. emit_const_ref(A_CMP,S_L,aint(lo(right.location.value64)),left.location.reference);
  317. secondjmp64bitcmp;
  318. end;
  319. location_freetemp(current_asmdata.CurrAsmList,left.location);
  320. exit;
  321. end;
  322. { left and right no register? }
  323. { then one must be demanded }
  324. if not (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) then
  325. begin
  326. if not (right.location.loc in [LOC_REGISTER,LOC_CREGISTER]) then
  327. hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,true)
  328. else
  329. begin
  330. location_swap(left.location,right.location);
  331. toggleflag(nf_swapped);
  332. end;
  333. end;
  334. { at this point, left.location.loc should be LOC_[C]REGISTER }
  335. case right.location.loc of
  336. LOC_REGISTER,
  337. LOC_CREGISTER :
  338. begin
  339. emit_reg_reg(A_CMP,S_L,right.location.register64.reghi,left.location.register64.reghi);
  340. firstjmp64bitcmp;
  341. emit_reg_reg(A_CMP,S_L,right.location.register64.reglo,left.location.register64.reglo);
  342. secondjmp64bitcmp;
  343. end;
  344. LOC_CREFERENCE,
  345. LOC_REFERENCE :
  346. begin
  347. tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,right.location.reference);
  348. href:=right.location.reference;
  349. inc(href.offset,4);
  350. emit_ref_reg(A_CMP,S_L,href,left.location.register64.reghi);
  351. firstjmp64bitcmp;
  352. emit_ref_reg(A_CMP,S_L,right.location.reference,left.location.register64.reglo);
  353. secondjmp64bitcmp;
  354. location_freetemp(current_asmdata.CurrAsmList,right.location);
  355. end;
  356. LOC_CONSTANT :
  357. begin
  358. current_asmdata.CurrAsmList.concat(taicpu.op_const_reg(A_CMP,S_L,aint(hi(right.location.value64)),left.location.register64.reghi));
  359. firstjmp64bitcmp;
  360. if assigned(hlab) then
  361. cg.a_jmp_always(current_asmdata.CurrAsmList,hlab)
  362. else
  363. begin
  364. current_asmdata.CurrAsmList.concat(taicpu.op_const_reg(A_CMP,S_L,aint(lo(right.location.value64)),left.location.register64.reglo));
  365. secondjmp64bitcmp;
  366. end;
  367. end;
  368. else
  369. internalerror(200203282);
  370. end;
  371. end;
  372. {*****************************************************************************
  373. x86 MUL
  374. *****************************************************************************}
  375. procedure ti386addnode.set_mul_result_location;
  376. begin
  377. location_reset(location,LOC_REGISTER,def_cgsize(resultdef));
  378. {Free EAX,EDX}
  379. cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EDX);
  380. if is_64bit(resultdef) then
  381. begin
  382. {Allocate a couple of registers and store EDX:EAX into it}
  383. location.register64.reghi := cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  384. cg.a_load_reg_reg(current_asmdata.CurrAsmList, OS_INT, OS_INT, NR_EDX, location.register64.reghi);
  385. cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
  386. location.register64.reglo := cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  387. cg.a_load_reg_reg(current_asmdata.CurrAsmList, OS_INT, OS_INT, NR_EAX, location.register64.reglo);
  388. end
  389. else
  390. begin
  391. {Allocate a new register and store the result in EAX in it.}
  392. location.register:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  393. cg.ungetcpuregister(current_asmdata.CurrAsmList,NR_EAX);
  394. cg.a_load_reg_reg(current_asmdata.CurrAsmList,OS_INT,OS_INT,NR_EAX,location.register);
  395. end;
  396. location_freetemp(current_asmdata.CurrAsmList,left.location);
  397. location_freetemp(current_asmdata.CurrAsmList,right.location);
  398. end;
  399. procedure ti386addnode.second_mul(unsigned: boolean);
  400. var reg:Tregister;
  401. ref:Treference;
  402. use_ref:boolean;
  403. hl4 : tasmlabel;
  404. const
  405. asmops: array[boolean] of tasmop = (A_IMUL, A_MUL);
  406. begin
  407. pass_left_right;
  408. reg:=NR_NO;
  409. reference_reset(ref,sizeof(pint),[]);
  410. { Mul supports registers and references, so if not register/reference,
  411. load the location into a register.
  412. The variant of IMUL which is capable of doing 32->64 bits has the same restrictions. }
  413. use_ref:=false;
  414. if left.location.loc in [LOC_REGISTER,LOC_CREGISTER] then
  415. reg:=left.location.register
  416. else if left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
  417. begin
  418. tcgx86(cg).make_simple_ref(current_asmdata.CurrAsmList,left.location.reference);
  419. ref:=left.location.reference;
  420. use_ref:=true;
  421. end
  422. else
  423. begin
  424. {LOC_CONSTANT for example.}
  425. reg:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  426. hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,left.resultdef,osuinttype,left.location,reg);
  427. end;
  428. {Allocate EAX.}
  429. cg.getcpuregister(current_asmdata.CurrAsmList,NR_EAX);
  430. {Load the right value.}
  431. hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,osuinttype,right.location,NR_EAX);
  432. {Also allocate EDX, since it is also modified by a mul (JM).}
  433. cg.getcpuregister(current_asmdata.CurrAsmList,NR_EDX);
  434. if use_ref then
  435. emit_ref(asmops[unsigned],S_L,ref)
  436. else
  437. emit_reg(asmops[unsigned],S_L,reg);
  438. if (cs_check_overflow in current_settings.localswitches) and
  439. { 32->64 bit cannot overflow }
  440. (not is_64bit(resultdef)) then
  441. begin
  442. current_asmdata.getjumplabel(hl4);
  443. cg.a_jmp_flags(current_asmdata.CurrAsmList,F_AE,hl4);
  444. cg.a_call_name(current_asmdata.CurrAsmList,'FPC_OVERFLOW',false);
  445. cg.a_label(current_asmdata.CurrAsmList,hl4);
  446. end;
  447. set_mul_result_location;
  448. end;
  449. procedure ti386addnode.second_mul64bit;
  450. var
  451. list: TAsmList;
  452. hreg1,hreg2: tregister;
  453. begin
  454. { 64x64 multiplication yields 128-bit result, but we're only
  455. interested in its lower 64 bits. This lower part is independent
  456. of operand signs, and so is the generated code. }
  457. { pass_left_right already called from second_add64bit }
  458. list:=current_asmdata.CurrAsmList;
  459. if left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
  460. tcgx86(cg).make_simple_ref(list,left.location.reference);
  461. if right.location.loc in [LOC_REFERENCE,LOC_CREFERENCE] then
  462. tcgx86(cg).make_simple_ref(list,right.location.reference);
  463. { calculate 32-bit terms lo(right)*hi(left) and hi(left)*lo(right) }
  464. if (right.location.loc=LOC_CONSTANT) then
  465. begin
  466. { Omit zero terms, if any }
  467. hreg1:=NR_NO;
  468. hreg2:=NR_NO;
  469. if lo(right.location.value64)<>0 then
  470. hreg1:=cg.getintregister(list,OS_INT);
  471. if hi(right.location.value64)<>0 then
  472. hreg2:=cg.getintregister(list,OS_INT);
  473. { Take advantage of 3-operand form of IMUL }
  474. case left.location.loc of
  475. LOC_REGISTER,LOC_CREGISTER:
  476. begin
  477. if hreg1<>NR_NO then
  478. emit_const_reg_reg(A_IMUL,S_L,longint(lo(right.location.value64)),left.location.register64.reghi,hreg1);
  479. if hreg2<>NR_NO then
  480. emit_const_reg_reg(A_IMUL,S_L,longint(hi(right.location.value64)),left.location.register64.reglo,hreg2);
  481. end;
  482. LOC_REFERENCE,LOC_CREFERENCE:
  483. begin
  484. if hreg2<>NR_NO then
  485. list.concat(taicpu.op_const_ref_reg(A_IMUL,S_L,longint(hi(right.location.value64)),left.location.reference,hreg2));
  486. inc(left.location.reference.offset,4);
  487. if hreg1<>NR_NO then
  488. list.concat(taicpu.op_const_ref_reg(A_IMUL,S_L,longint(lo(right.location.value64)),left.location.reference,hreg1));
  489. dec(left.location.reference.offset,4);
  490. end;
  491. else
  492. InternalError(2014011602);
  493. end;
  494. end
  495. else
  496. begin
  497. hreg1:=cg.getintregister(list,OS_INT);
  498. hreg2:=cg.getintregister(list,OS_INT);
  499. cg64.a_load64low_loc_reg(list,left.location,hreg1);
  500. cg64.a_load64high_loc_reg(list,left.location,hreg2);
  501. case right.location.loc of
  502. LOC_REGISTER,LOC_CREGISTER:
  503. begin
  504. emit_reg_reg(A_IMUL,S_L,right.location.register64.reghi,hreg1);
  505. emit_reg_reg(A_IMUL,S_L,right.location.register64.reglo,hreg2);
  506. end;
  507. LOC_REFERENCE,LOC_CREFERENCE:
  508. begin
  509. emit_ref_reg(A_IMUL,S_L,right.location.reference,hreg2);
  510. inc(right.location.reference.offset,4);
  511. emit_ref_reg(A_IMUL,S_L,right.location.reference,hreg1);
  512. dec(right.location.reference.offset,4);
  513. end;
  514. else
  515. InternalError(2014011603);
  516. end;
  517. end;
  518. { add hi*lo and lo*hi terms together }
  519. if (hreg1<>NR_NO) and (hreg2<>NR_NO) then
  520. emit_reg_reg(A_ADD,S_L,hreg2,hreg1);
  521. { load lo(right) into EAX }
  522. cg.getcpuregister(list,NR_EAX);
  523. cg64.a_load64low_loc_reg(list,right.location,NR_EAX);
  524. { multiply EAX by lo(left), producing 64-bit value in EDX:EAX }
  525. cg.getcpuregister(list,NR_EDX);
  526. if (left.location.loc in [LOC_REGISTER,LOC_CREGISTER]) then
  527. emit_reg(A_MUL,S_L,left.location.register64.reglo)
  528. else if (left.location.loc in [LOC_REFERENCE,LOC_CREFERENCE]) then
  529. emit_ref(A_MUL,S_L,left.location.reference)
  530. else
  531. InternalError(2014011604);
  532. { add previously calculated terms to the high half }
  533. if (hreg1<>NR_NO) then
  534. emit_reg_reg(A_ADD,S_L,hreg1,NR_EDX)
  535. else if (hreg2<>NR_NO) then
  536. emit_reg_reg(A_ADD,S_L,hreg2,NR_EDX)
  537. else
  538. InternalError(2014011604);
  539. { Result is now in EDX:EAX. Copy it to virtual registers. }
  540. set_mul_result_location;
  541. end;
  542. begin
  543. caddnode:=ti386addnode;
  544. end.