aasmcpu.pas 201 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. aasmbase,aasmtai,aasmsym,
  28. ogbase;
  29. const
  30. { "mov reg,reg" source operand number }
  31. O_MOV_SOURCE = 0;
  32. { "mov reg,reg" destination operand number }
  33. O_MOV_DEST = 1;
  34. { Operand types }
  35. OT_NONE = $00000000;
  36. { Bits 0..7: sizes }
  37. OT_BITS8 = $00000001;
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { x86_64 and FPU }
  41. //OT_BITS128 = $10000000; { 16 byte SSE }
  42. //OT_BITS256 = $20000000; { 32 byte AVX }
  43. //OT_BITS512 = $40000000; { 64 byte AVX512 }
  44. OT_BITS128 = $20000000; { 16 byte SSE }
  45. OT_BITS256 = $40000000; { 32 byte AVX }
  46. OT_BITS512 = $80000000; { 64 byte AVX512 }
  47. OT_VECTORMASK = $1000000000; { OPTIONAL VECTORMASK AVX512}
  48. OT_VECTORZERO = $2000000000; { OPTIONAL ZERO-FLAG AVX512}
  49. OT_VECTORBCST = $4000000000; { BROADCAST-MEM-FLAG AVX512}
  50. OT_VECTORSAE = $8000000000; { OPTIONAL SAE-FLAG AVX512}
  51. OT_VECTORER = $10000000000; { OPTIONAL ER-FLAG-FLAG AVX512}
  52. OT_VECTOR_EXT = OT_VECTORMASK or OT_VECTORZERO or OT_VECTORBCST or OT_VECTORSAE or OT_VECTORER;
  53. OT_BITSB32 = OT_BITS32 or OT_VECTORBCST;
  54. OT_BITSB64 = OT_BITS64 or OT_VECTORBCST;
  55. OT_BITS80 = $00000010; { FPU only }
  56. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  57. OT_NEAR = $00000040;
  58. OT_SHORT = $00000080;
  59. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  60. but this requires adjusting the opcode table }
  61. //OT_SIZE_MASK = $3000001F; { all the size attributes }
  62. OT_SIZE_MASK = $E000001F; { all the size attributes }
  63. OT_NON_SIZE = longint(not(longint(OT_SIZE_MASK)));
  64. { Bits 8..11: modifiers }
  65. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  66. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  67. OT_COLON = $00000400; { operand is followed by a colon }
  68. OT_MODIFIER_MASK = $00000F00;
  69. { Bits 12..15: type of operand }
  70. OT_REGISTER = $00001000;
  71. OT_IMMEDIATE = $00002000;
  72. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  73. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  74. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  75. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  76. { Bits 20..22, 24..26: register classes
  77. otf_* consts are not used alone, only to build other constants. }
  78. otf_reg_cdt = $00100000;
  79. otf_reg_gpr = $00200000;
  80. otf_reg_sreg = $00400000;
  81. otf_reg_k = $00800000;
  82. otf_reg_fpu = $01000000;
  83. otf_reg_mmx = $02000000;
  84. otf_reg_xmm = $04000000;
  85. otf_reg_ymm = $08000000;
  86. otf_reg_zmm = $10000000;
  87. otf_reg_extra_mask = $0F000000;
  88. { Bits 16..19: subclasses, meaning depends on classes field }
  89. otf_sub0 = $00010000;
  90. otf_sub1 = $00020000;
  91. otf_sub2 = $00040000;
  92. otf_sub3 = $00080000;
  93. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  94. //OT_REG_EXTRA_MASK = $0F000000;
  95. OT_REG_EXTRA_MASK = $1F000000;
  96. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_k or otf_reg_extra_mask;
  97. { register class 0: CRx, DRx and TRx }
  98. {$ifdef x86_64}
  99. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  100. {$else x86_64}
  101. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  102. {$endif x86_64}
  103. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  104. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  105. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  106. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  107. { register class 1: general-purpose registers }
  108. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  109. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  110. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  111. OT_REG16 = OT_REG_GPR or OT_BITS16;
  112. OT_REG32 = OT_REG_GPR or OT_BITS32;
  113. OT_REG64 = OT_REG_GPR or OT_BITS64;
  114. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  115. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  116. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  117. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  118. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  119. {$ifdef x86_64}
  120. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  121. {$endif x86_64}
  122. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  123. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  124. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  125. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  126. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  127. {$ifdef x86_64}
  128. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  129. {$endif x86_64}
  130. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  131. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  132. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  133. { register class 2: Segment registers }
  134. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  135. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  136. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  137. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  138. { register class 3: FPU registers }
  139. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  140. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  141. { register class 4: MMX (both reg and r/m) }
  142. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  143. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  144. { register class 5: XMM (both reg and r/m) }
  145. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  146. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  147. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  148. OT_XMEM32_M = OT_XMEM32 or OT_VECTORMASK;
  149. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  150. OT_XMEM64_M = OT_XMEM64 or OT_VECTORMASK;
  151. OT_XMMREG_M = OT_XMMREG or OT_VECTORMASK;
  152. OT_XMMREG_MZ = OT_XMMREG or OT_VECTORMASK or OT_VECTORZERO;
  153. OT_XMMRM_MZ = OT_XMMRM or OT_VECTORMASK or OT_VECTORZERO;
  154. OT_XMMREG_SAE = OT_XMMREG or OT_VECTORSAE;
  155. OT_XMMRM_SAE = OT_XMMRM or OT_VECTORSAE;
  156. OT_XMMREG_ER = OT_XMMREG or OT_VECTORER;
  157. OT_XMMRM_ER = OT_XMMRM or OT_VECTORER;
  158. { register class 5: YMM (both reg and r/m) }
  159. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  160. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  161. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  162. OT_YMEM32_M = OT_YMEM32 or OT_VECTORMASK;
  163. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  164. OT_YMEM64_M = OT_YMEM64 or OT_VECTORMASK;
  165. OT_YMMREG_M = OT_YMMREG or OT_VECTORMASK;
  166. OT_YMMREG_MZ = OT_YMMREG or OT_VECTORMASK or OT_VECTORZERO;
  167. OT_YMMRM_MZ = OT_YMMRM or OT_VECTORMASK or OT_VECTORZERO;
  168. OT_YMMREG_SAE = OT_YMMREG or OT_VECTORSAE;
  169. OT_YMMRM_SAE = OT_YMMRM or OT_VECTORSAE;
  170. OT_YMMREG_ER = OT_YMMREG or OT_VECTORER;
  171. OT_YMMRM_ER = OT_YMMRM or OT_VECTORER;
  172. { register class 5: ZMM (both reg and r/m) }
  173. OT_ZMMREG = OT_REGNORM or otf_reg_zmm;
  174. OT_ZMMRM = OT_REGMEM or otf_reg_zmm;
  175. OT_ZMEM32 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS32;
  176. OT_ZMEM32_M = OT_ZMEM32 or OT_VECTORMASK;
  177. OT_ZMEM64 = OT_REGNORM or otf_reg_zmm or otf_reg_gpr or OT_BITS64;
  178. OT_ZMEM64_M = OT_ZMEM64 or OT_VECTORMASK;
  179. OT_ZMMREG_M = OT_ZMMREG or OT_VECTORMASK;
  180. OT_ZMMREG_MZ = OT_ZMMREG or OT_VECTORMASK or OT_VECTORZERO;
  181. OT_ZMMRM_MZ = OT_ZMMRM or OT_VECTORMASK or OT_VECTORZERO;
  182. OT_ZMMREG_SAE = OT_ZMMREG or OT_VECTORSAE;
  183. OT_ZMMRM_SAE = OT_ZMMRM or OT_VECTORSAE;
  184. OT_ZMMREG_ER = OT_ZMMREG or OT_VECTORER;
  185. OT_ZMMRM_ER = OT_ZMMRM or OT_VECTORER;
  186. OT_KREG = OT_REGNORM or otf_reg_k;
  187. OT_KREG_M = OT_KREG or OT_VECTORMASK;
  188. { Vector-Memory operands }
  189. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64 or OT_ZMEM32 or OT_ZMEM64;
  190. { Memory operands }
  191. OT_MEM8 = OT_MEMORY or OT_BITS8;
  192. OT_MEM16 = OT_MEMORY or OT_BITS16;
  193. OT_MEM16_M = OT_MEM16 or OT_VECTORMASK;
  194. OT_MEM32 = OT_MEMORY or OT_BITS32;
  195. OT_MEM32_M = OT_MEMORY or OT_BITS32 or OT_VECTORMASK;
  196. OT_BMEM32 = OT_MEMORY or OT_BITS32 or OT_VECTORBCST;
  197. OT_BMEM32_SAE= OT_MEMORY or OT_BITS32 or OT_VECTORBCST or OT_VECTORSAE;
  198. OT_MEM64 = OT_MEMORY or OT_BITS64;
  199. OT_MEM64_M = OT_MEMORY or OT_BITS64 or OT_VECTORMASK;
  200. OT_BMEM64 = OT_MEMORY or OT_BITS64 or OT_VECTORBCST;
  201. OT_BMEM64_SAE= OT_MEMORY or OT_BITS64 or OT_VECTORBCST or OT_VECTORSAE;
  202. OT_MEM128 = OT_MEMORY or OT_BITS128;
  203. OT_MEM128_M = OT_MEMORY or OT_BITS128 or OT_VECTORMASK;
  204. OT_MEM256 = OT_MEMORY or OT_BITS256;
  205. OT_MEM256_M = OT_MEMORY or OT_BITS256 or OT_VECTORMASK;
  206. OT_MEM512 = OT_MEMORY or OT_BITS512;
  207. OT_MEM512_M = OT_MEMORY or OT_BITS512 or OT_VECTORMASK;
  208. OT_MEM80 = OT_MEMORY or OT_BITS80;
  209. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  210. { simple [address] offset }
  211. { Matches any type of r/m operand }
  212. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK;
  213. { Immediate operands }
  214. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  215. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  216. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  217. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  218. OT_ONENESS = otf_sub0; { special type of immediate operand }
  219. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  220. OTVE_VECTOR_SAE = 1 shl 8;
  221. OTVE_VECTOR_ER = 1 shl 9;
  222. OTVE_VECTOR_ZERO = 1 shl 10;
  223. OTVE_VECTOR_WRITEMASK = 1 shl 11;
  224. OTVE_VECTOR_BCST = 1 shl 12;
  225. OTVE_VECTOR_BCST2 = 0;
  226. OTVE_VECTOR_BCST4 = 1 shl 4;
  227. OTVE_VECTOR_BCST8 = 1 shl 5;
  228. OTVE_VECTOR_BCST16 = 3 shl 4;
  229. OTVE_VECTOR_RNSAE = OTVE_VECTOR_ER or 0;
  230. OTVE_VECTOR_RDSAE = OTVE_VECTOR_ER or 1 shl 6;
  231. OTVE_VECTOR_RUSAE = OTVE_VECTOR_ER or 1 shl 7;
  232. OTVE_VECTOR_RZSAE = OTVE_VECTOR_ER or 3 shl 6;
  233. OTVE_VECTOR_BCST_MASK = OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16;
  234. OTVE_VECTOR_ER_MASK = OTVE_VECTOR_RNSAE or OTVE_VECTOR_RDSAE or OTVE_VECTOR_RUSAE or OTVE_VECTOR_RZSAE;
  235. OTVE_VECTOR_MASK = OTVE_VECTOR_SAE or OTVE_VECTOR_ER or OTVE_VECTOR_ZERO or OTVE_VECTOR_WRITEMASK or OTVE_VECTOR_BCST;
  236. { Size of the instruction table converted by nasmconv.pas }
  237. {$if defined(x86_64)}
  238. instabentries = {$i x8664nop.inc}
  239. {$elseif defined(i386)}
  240. instabentries = {$i i386nop.inc}
  241. {$elseif defined(i8086)}
  242. instabentries = {$i i8086nop.inc}
  243. {$endif}
  244. maxinfolen = 10;
  245. type
  246. { What an instruction can change. Needed for optimizer and spilling code.
  247. Note: The order of this enumeration is should not be changed! }
  248. TInsChange = (Ch_None,
  249. {Read from a register}
  250. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  251. {write from a register}
  252. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  253. {read and write from/to a register}
  254. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  255. {modify the contents of a register with the purpose of using
  256. this changed content afterwards (add/sub/..., but e.g. not rep
  257. or movsd)}
  258. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  259. {read individual flag bits from the flags register}
  260. Ch_RCarryFlag,Ch_RParityFlag,Ch_RAuxiliaryFlag,Ch_RZeroFlag,Ch_RSignFlag,Ch_ROverflowFlag,
  261. {write individual flag bits to the flags register}
  262. Ch_WCarryFlag,Ch_WParityFlag,Ch_WAuxiliaryFlag,Ch_WZeroFlag,Ch_WSignFlag,Ch_WOverflowFlag,
  263. {set individual flag bits to 0 in the flags register}
  264. Ch_W0CarryFlag,Ch_W0ParityFlag,Ch_W0AuxiliaryFlag,Ch_W0ZeroFlag,Ch_W0SignFlag,Ch_W0OverflowFlag,
  265. {set individual flag bits to 1 in the flags register}
  266. Ch_W1CarryFlag,Ch_W1ParityFlag,Ch_W1AuxiliaryFlag,Ch_W1ZeroFlag,Ch_W1SignFlag,Ch_W1OverflowFlag,
  267. {write an undefined value to individual flag bits in the flags register}
  268. Ch_WUCarryFlag,Ch_WUParityFlag,Ch_WUAuxiliaryFlag,Ch_WUZeroFlag,Ch_WUSignFlag,Ch_WUOverflowFlag,
  269. {read and write flag bits}
  270. Ch_RWCarryFlag,Ch_RWParityFlag,Ch_RWAuxiliaryFlag,Ch_RWZeroFlag,Ch_RWSignFlag,Ch_RWOverflowFlag,
  271. {more specialized flag bits (not considered part of NR_DEFAULTFLAGS by the compiler)}
  272. Ch_RDirFlag,Ch_W0DirFlag,Ch_W1DirFlag,Ch_W0IntFlag,Ch_W1IntFlag,
  273. {instruction reads flag bits, according to its condition (used by Jcc/SETcc/CMOVcc)}
  274. Ch_RFLAGScc,
  275. {read/write/read+write the entire flags/eflags/rflags register}
  276. Ch_RFlags, Ch_WFlags, Ch_RWFlags,
  277. Ch_FPU,
  278. Ch_Rop1, Ch_Wop1, Ch_RWop1, Ch_Mop1,
  279. Ch_Rop2, Ch_Wop2, Ch_RWop2, Ch_Mop2,
  280. Ch_Rop3, Ch_WOp3, Ch_RWOp3, Ch_Mop3,
  281. Ch_Rop4, Ch_WOp4, Ch_RWOp4, Ch_Mop4,
  282. { instruction doesn't read it's input register, in case both parameters
  283. are the same register (e.g. xor eax,eax; sub eax,eax; sbb eax,eax (reads flags only), etc.) }
  284. Ch_NoReadIfEqualRegs,
  285. Ch_RMemEDI,Ch_WMemEDI,
  286. Ch_All,
  287. { x86_64 registers }
  288. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  289. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  290. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  291. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI,
  292. { xmm register }
  293. Ch_RXMM0,
  294. Ch_WXMM0,
  295. Ch_RWXMM0,
  296. Ch_MXMM0
  297. );
  298. TInsProp = packed record
  299. Ch : set of TInsChange;
  300. end;
  301. TMemRefSizeInfo = (msiUnknown, msiUnsupported, msiNoSize, msiNoMemRef,
  302. msiMultiple, msiMultipleMinSize8, msiMultipleMinSize16, msiMultipleMinSize32,
  303. msiMultipleMinSize64, msiMultipleMinSize128, msiMultipleminSize256, msiMultipleMinSize512,
  304. msiMemRegSize, msiMemRegx16y32, msiMemRegx16y32z64, msiMemRegx32y64, msiMemRegx32y64z128, msiMemRegx64y128, msiMemRegx64y128z256,
  305. msiMemRegx64y256, msiMemRegx64y256z512,
  306. msiMem8, msiMem16, msiMem32, msiBMem32, msiMem64, msiBMem64, msiMem128, msiMem256, msiMem512,
  307. msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64,
  308. msiVMemMultiple, msiVMemRegSize,
  309. msiMemRegConst128,msiMemRegConst256,msiMemRegConst512);
  310. TMemRefSizeInfoBCST = (msbUnknown, msbBCST32, msbBCST64, msbMultiple);
  311. TMemRefSizeInfoBCSTType = (btUnknown, bt1to2, bt1to4, bt1to8, bt1to16);
  312. TEVEXTupleState = (etsUnknown, etsIsTuple, etsNotTuple);
  313. TConstSizeInfo = (csiUnknown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  314. TInsTabMemRefSizeInfoRec = record
  315. MemRefSize : TMemRefSizeInfo;
  316. MemRefSizeBCST : TMemRefSizeInfoBCST;
  317. BCSTXMMMultiplicator : byte;
  318. ExistsSSEAVX : boolean;
  319. ConstSize : TConstSizeInfo;
  320. BCSTTypes : Set of TMemRefSizeInfoBCSTType;
  321. RegXMMSizeMask : int64;
  322. RegYMMSizeMask : int64;
  323. RegZMMSizeMask : int64;
  324. end;
  325. const
  326. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultipleMinSize8,
  327. msiMultipleMinSize16, msiMultipleMinSize32,
  328. msiMultipleMinSize64, msiMultipleMinSize128,
  329. msiMultipleMinSize256, msiMultipleMinSize512,
  330. msiVMemMultiple];
  331. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  332. msiZMem32, msiZMem64,
  333. msiVMemMultiple, msiVMemRegSize];
  334. InsProp : array[tasmop] of TInsProp =
  335. {$if defined(x86_64)}
  336. {$i x8664pro.inc}
  337. {$elseif defined(i386)}
  338. {$i i386prop.inc}
  339. {$elseif defined(i8086)}
  340. {$i i8086prop.inc}
  341. {$endif}
  342. type
  343. TOperandOrder = (op_intel,op_att);
  344. {Instruction flags }
  345. tinsflag = (
  346. { please keep these in order and in sync with IF_SMASK }
  347. IF_SM, { size match first two operands }
  348. IF_SM2,
  349. IF_SB, { unsized operands can't be non-byte }
  350. IF_SW, { unsized operands can't be non-word }
  351. IF_SD, { unsized operands can't be nondword }
  352. { unsized argument spec }
  353. { please keep these in order and in sync with IF_ARMASK }
  354. IF_AR0, { SB, SW, SD applies to argument 0 }
  355. IF_AR1, { SB, SW, SD applies to argument 1 }
  356. IF_AR2, { SB, SW, SD applies to argument 2 }
  357. IF_PRIV, { it's a privileged instruction }
  358. IF_SMM, { it's only valid in SMM }
  359. IF_PROT, { it's protected mode only }
  360. IF_NOX86_64, { removed instruction in x86_64 }
  361. IF_UNDOC, { it's an undocumented instruction }
  362. IF_FPU, { it's an FPU instruction }
  363. IF_MMX, { it's an MMX instruction }
  364. { it's a 3DNow! instruction }
  365. IF_3DNOW,
  366. { it's a SSE (KNI, MMX2) instruction }
  367. IF_SSE,
  368. { SSE2 instructions }
  369. IF_SSE2,
  370. { SSE3 instructions }
  371. IF_SSE3,
  372. { SSE64 instructions }
  373. IF_SSE64,
  374. { SVM instructions }
  375. IF_SVM,
  376. { SSE4 instructions }
  377. IF_SSE4,
  378. IF_SSSE3,
  379. IF_SSE41,
  380. IF_SSE42,
  381. IF_MOVBE,
  382. IF_CLMUL,
  383. IF_AVX,
  384. IF_AVX2,
  385. IF_AVX512,
  386. IF_BMI1,
  387. IF_BMI2,
  388. { Intel ADX (Multi-Precision Add-Carry Instruction Extensions) }
  389. IF_ADX,
  390. IF_16BITONLY,
  391. IF_FMA,
  392. IF_FMA4,
  393. IF_TSX,
  394. IF_RAND,
  395. IF_XSAVE,
  396. IF_PREFETCHWT1,
  397. IF_SHA,
  398. { mask for processor level }
  399. { please keep these in order and in sync with IF_PLEVEL }
  400. IF_8086, { 8086 instruction }
  401. IF_186, { 186+ instruction }
  402. IF_286, { 286+ instruction }
  403. IF_386, { 386+ instruction }
  404. IF_486, { 486+ instruction }
  405. IF_PENT, { Pentium instruction }
  406. IF_P6, { P6 instruction }
  407. IF_KATMAI, { Katmai instructions }
  408. IF_WILLAMETTE, { Willamette instructions }
  409. IF_PRESCOTT, { Prescott instructions }
  410. IF_X86_64,
  411. IF_SANDYBRIDGE, { Sandybridge-specific instruction }
  412. IF_NEC, { NEC V20/V30 instruction }
  413. { the following are not strictly part of the processor level, because
  414. they are never used standalone, but always in combination with a
  415. separate processor level flag. Therefore, they use bits outside of
  416. IF_PLEVEL, otherwise they would mess up the processor level they're
  417. used in combination with.
  418. The following combinations are currently used:
  419. [IF_AMD, IF_P6],
  420. [IF_CYRIX, IF_486],
  421. [IF_CYRIX, IF_PENT],
  422. [IF_CYRIX, IF_P6] }
  423. IF_CYRIX, { Cyrix, Centaur or VIA-specific instruction }
  424. IF_AMD, { AMD-specific instruction }
  425. { added flags }
  426. IF_PRE, { it's a prefix instruction }
  427. IF_PASS2, { if the instruction can change in a second pass }
  428. IF_IMM4, { immediate operand is a nibble (must be in range [0..15]) }
  429. IF_IMM3, { immediate operand is a triad (must be in range [0..7]) }
  430. { avx512 flags }
  431. IF_BCST2,
  432. IF_BCST4,
  433. IF_BCST8,
  434. IF_BCST16,
  435. IF_T2, { disp8 - tuple - 2 }
  436. IF_T4, { disp8 - tuple - 4 }
  437. IF_T8, { disp8 - tuple - 8 }
  438. IF_T1S, { disp8 - tuple - 1 scalar }
  439. IF_T1S8, { disp8 - tuple - 1 scalar byte }
  440. IF_T1S16, { disp8 - tuple - 1 scalar word }
  441. IF_T1F32,
  442. IF_T1F64,
  443. IF_TMDDUP,
  444. IF_TFV, { disp8 - tuple - full vector }
  445. IF_TFVM, { disp8 - tuple - full vector memory }
  446. IF_TQVM,
  447. IF_TMEM128,
  448. IF_THV,
  449. IF_THVM,
  450. IF_TOVM
  451. );
  452. tinsflags=set of tinsflag;
  453. const
  454. IF_SMASK=[IF_SM,IF_SM2,IF_SB,IF_SW,IF_SD];
  455. IF_ARMASK=[IF_AR0,IF_AR1,IF_AR2]; { mask for unsized argument spec }
  456. IF_PLEVEL=[IF_8086..IF_NEC]; { mask for processor level }
  457. IF_TUPLEMASK=[IF_T2..IF_TOVM]; { mask for AVX512 disp8-tuples }
  458. type
  459. tinsentry=packed record
  460. opcode : tasmop;
  461. ops : byte;
  462. optypes : array[0..max_operands-1] of int64;
  463. code : array[0..maxinfolen] of char;
  464. flags : tinsflags;
  465. end;
  466. pinsentry=^tinsentry;
  467. { alignment for operator }
  468. tai_align = class(tai_align_abstract)
  469. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  470. end;
  471. { taicpu }
  472. taicpu = class(tai_cpu_abstract_sym)
  473. opsize : topsize;
  474. constructor op_none(op : tasmop);
  475. constructor op_none(op : tasmop;_size : topsize);
  476. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  477. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  478. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  479. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  480. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  481. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  482. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  483. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  484. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  485. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  486. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  487. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  488. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  489. constructor op_reg_ref_reg(op : tasmop;_size : topsize;_op1 : tregister; const _op2 : treference;_op3 : tregister);
  490. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  491. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  492. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  493. constructor op_const_reg_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2, _op3, _op4 : tregister);
  494. { this is for Jmp instructions }
  495. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  496. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  497. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  498. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  499. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  500. procedure changeopsize(siz:topsize); {$ifdef USEINLINE}inline;{$endif USEINLINE}
  501. function GetString:string;
  502. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  503. Early versions of the UnixWare assembler had a bug where some fpu instructions
  504. were reversed and GAS still keeps this "feature" for compatibility.
  505. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  506. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  507. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  508. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  509. when generating output for other assemblers, the opcodes must be fixed before writing them.
  510. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  511. because in case of smartlinking assembler is generated twice so at the second run wrong
  512. assembler is generated.
  513. }
  514. function FixNonCommutativeOpcodes: tasmop;
  515. private
  516. FOperandOrder : TOperandOrder;
  517. procedure init(_size : topsize); { this need to be called by all constructor }
  518. public
  519. { the next will reset all instructions that can change in pass 2 }
  520. procedure ResetPass1;override;
  521. procedure ResetPass2;override;
  522. function CheckIfValid:boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  523. function Pass1(objdata:TObjData):longint;override;
  524. procedure Pass2(objdata:TObjData);override;
  525. procedure SetOperandOrder(order:TOperandOrder);
  526. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  527. { register spilling code }
  528. function spilling_get_operation_type(opnr: longint): topertype;override;
  529. {$ifdef i8086}
  530. procedure loadsegsymbol(opidx:longint;s:tasmsymbol);
  531. {$endif i8086}
  532. property OperandOrder : TOperandOrder read FOperandOrder;
  533. private
  534. { next fields are filled in pass1, so pass2 is faster }
  535. insentry : PInsEntry;
  536. insoffset : longint;
  537. LastInsOffset : longint; { need to be public to be reset }
  538. inssize : shortint;
  539. EVEXTupleState: TEVEXTupleState; { AVX512 disp8*N }
  540. {$ifdef x86_64}
  541. rex : byte;
  542. {$endif x86_64}
  543. function InsEnd:longint;
  544. procedure create_ot(objdata:TObjData);
  545. function Matches(p:PInsEntry):boolean;
  546. function calcsize(p:PInsEntry):shortint;
  547. procedure gencode(objdata:TObjData);
  548. function NeedAddrPrefix(opidx:byte):boolean;
  549. function NeedAddrPrefix:boolean;
  550. procedure write0x66prefix(objdata:TObjData);
  551. procedure write0x67prefix(objdata:TObjData);
  552. procedure Swapoperands;
  553. function FindInsentry(objdata:TObjData):boolean;
  554. function CheckUseEVEX: boolean;
  555. procedure CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  556. end;
  557. function is_64_bit_ref(const ref:treference):boolean;
  558. function is_32_bit_ref(const ref:treference):boolean;
  559. function is_16_bit_ref(const ref:treference):boolean;
  560. function get_ref_address_size(const ref:treference):byte;
  561. function get_default_segment_of_ref(const ref:treference):tregister;
  562. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  563. { returns true if opcode can be used with one memory operand without size }
  564. function NoMemorySizeRequired(opcode : TAsmOp) : Boolean;
  565. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  566. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  567. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  568. function MightHaveExtension(AsmOp : TAsmOp) : Boolean;
  569. procedure InitAsm;
  570. procedure DoneAsm;
  571. {*****************************************************************************
  572. External Symbol Chain
  573. used for agx86nsm and agx86int
  574. *****************************************************************************}
  575. type
  576. PExternChain = ^TExternChain;
  577. TExternChain = Record
  578. psym : pshortstring;
  579. is_defined : boolean;
  580. next : PExternChain;
  581. end;
  582. const
  583. FEC : PExternChain = nil;
  584. procedure AddSymbol(symname : string; defined : boolean);
  585. procedure FreeExternChainList;
  586. implementation
  587. uses
  588. cutils,
  589. globals,
  590. systems,
  591. itcpugas,
  592. cpuinfo;
  593. procedure AddSymbol(symname : string; defined : boolean);
  594. var
  595. EC : PExternChain;
  596. begin
  597. EC:=FEC;
  598. while assigned(EC) do
  599. begin
  600. if EC^.psym^=symname then
  601. begin
  602. if defined then
  603. EC^.is_defined:=true;
  604. exit;
  605. end;
  606. EC:=EC^.next;
  607. end;
  608. New(EC);
  609. EC^.next:=FEC;
  610. FEC:=EC;
  611. FEC^.psym:=stringdup(symname);
  612. FEC^.is_defined := defined;
  613. end;
  614. procedure FreeExternChainList;
  615. var
  616. EC : PExternChain;
  617. begin
  618. EC:=FEC;
  619. while assigned(EC) do
  620. begin
  621. FEC:=EC^.next;
  622. stringdispose(EC^.psym);
  623. Dispose(EC);
  624. EC:=FEC;
  625. end;
  626. end;
  627. {*****************************************************************************
  628. Instruction table
  629. *****************************************************************************}
  630. type
  631. TInsTabCache=array[TasmOp] of longint;
  632. PInsTabCache=^TInsTabCache;
  633. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  634. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  635. const
  636. {$if defined(x86_64)}
  637. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  638. {$elseif defined(i386)}
  639. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  640. {$elseif defined(i8086)}
  641. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  642. {$endif}
  643. var
  644. InsTabCache : PInsTabCache;
  645. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  646. const
  647. {$if defined(x86_64)}
  648. { Intel style operands ! }
  649. opsize_2_type:array[0..2,topsize] of int64=(
  650. (OT_NONE,
  651. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  652. OT_BITS16,OT_BITS32,OT_BITS64,
  653. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  654. OT_BITS64,
  655. OT_NEAR,OT_FAR,OT_SHORT,
  656. OT_NONE,
  657. OT_BITS128,
  658. OT_BITS256,
  659. OT_BITS512
  660. ),
  661. (OT_NONE,
  662. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  663. OT_BITS16,OT_BITS32,OT_BITS64,
  664. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  665. OT_BITS64,
  666. OT_NEAR,OT_FAR,OT_SHORT,
  667. OT_NONE,
  668. OT_BITS128,
  669. OT_BITS256,
  670. OT_BITS512
  671. ),
  672. (OT_NONE,
  673. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  674. OT_BITS16,OT_BITS32,OT_BITS64,
  675. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  676. OT_BITS64,
  677. OT_NEAR,OT_FAR,OT_SHORT,
  678. OT_NONE,
  679. OT_BITS128,
  680. OT_BITS256,
  681. OT_BITS512
  682. )
  683. );
  684. reg_ot_table : array[tregisterindex] of longint = (
  685. {$i r8664ot.inc}
  686. );
  687. {$elseif defined(i386)}
  688. { Intel style operands ! }
  689. opsize_2_type:array[0..2,topsize] of int64=(
  690. (OT_NONE,
  691. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  692. OT_BITS16,OT_BITS32,OT_BITS64,
  693. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  694. OT_BITS64,
  695. OT_NEAR,OT_FAR,OT_SHORT,
  696. OT_NONE,
  697. OT_BITS128,
  698. OT_BITS256,
  699. OT_BITS512
  700. ),
  701. (OT_NONE,
  702. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  703. OT_BITS16,OT_BITS32,OT_BITS64,
  704. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  705. OT_BITS64,
  706. OT_NEAR,OT_FAR,OT_SHORT,
  707. OT_NONE,
  708. OT_BITS128,
  709. OT_BITS256,
  710. OT_BITS512
  711. ),
  712. (OT_NONE,
  713. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  714. OT_BITS16,OT_BITS32,OT_BITS64,
  715. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  716. OT_BITS64,
  717. OT_NEAR,OT_FAR,OT_SHORT,
  718. OT_NONE,
  719. OT_BITS128,
  720. OT_BITS256,
  721. OT_BITS512
  722. )
  723. );
  724. reg_ot_table : array[tregisterindex] of longint = (
  725. {$i r386ot.inc}
  726. );
  727. {$elseif defined(i8086)}
  728. { Intel style operands ! }
  729. opsize_2_type:array[0..2,topsize] of int64=(
  730. (OT_NONE,
  731. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  732. OT_BITS16,OT_BITS32,OT_BITS64,
  733. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  734. OT_BITS64,
  735. OT_NEAR,OT_FAR,OT_SHORT,
  736. OT_NONE,
  737. OT_BITS128,
  738. OT_BITS256,
  739. OT_BITS512
  740. ),
  741. (OT_NONE,
  742. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  743. OT_BITS16,OT_BITS32,OT_BITS64,
  744. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  745. OT_BITS64,
  746. OT_NEAR,OT_FAR,OT_SHORT,
  747. OT_NONE,
  748. OT_BITS128,
  749. OT_BITS256,
  750. OT_BITS512
  751. ),
  752. (OT_NONE,
  753. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  754. OT_BITS16,OT_BITS32,OT_BITS64,
  755. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  756. OT_BITS64,
  757. OT_NEAR,OT_FAR,OT_SHORT,
  758. OT_NONE,
  759. OT_BITS128,
  760. OT_BITS256,
  761. OT_BITS512
  762. )
  763. );
  764. reg_ot_table : array[tregisterindex] of longint = (
  765. {$i r8086ot.inc}
  766. );
  767. {$endif}
  768. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  769. begin
  770. result := InsTabMemRefSizeInfoCache^[aAsmop];
  771. end;
  772. function MightHaveExtension(AsmOp : TAsmOp): Boolean;
  773. var
  774. i,j: LongInt;
  775. insentry: pinsentry;
  776. begin
  777. Result:=true;
  778. i:=InsTabCache^[AsmOp];
  779. if i>=0 then
  780. begin
  781. insentry:=@instab[i];
  782. while insentry^.opcode=AsmOp do
  783. begin
  784. for j:=0 to insentry^.ops-1 do
  785. begin
  786. if (insentry^.optypes[j] and OT_VECTOR_EXT)<>0 then
  787. exit;
  788. end;
  789. inc(i);
  790. if i>high(instab) then
  791. exit;
  792. insentry:=@instab[i];
  793. end;
  794. end;
  795. Result:=false;
  796. end;
  797. { Operation type for spilling code }
  798. type
  799. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  800. var
  801. operation_type_table : ^toperation_type_table;
  802. {****************************************************************************
  803. TAI_ALIGN
  804. ****************************************************************************}
  805. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  806. const
  807. { Updated according to
  808. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  809. and
  810. Intel 64 and IA-32 Architectures Software Developer’s Manual
  811. Volume 2B: Instruction Set Reference, N-Z, January 2015
  812. }
  813. {$ifndef i8086}
  814. alignarray_cmovcpus:array[0..10] of string[11]=(
  815. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  816. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  817. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  818. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  819. #$0F#$1F#$80#$00#$00#$00#$00,
  820. #$66#$0F#$1F#$44#$00#$00,
  821. #$0F#$1F#$44#$00#$00,
  822. #$0F#$1F#$40#$00,
  823. #$0F#$1F#$00,
  824. #$66#$90,
  825. #$90);
  826. {$endif i8086}
  827. {$ifdef i8086}
  828. alignarray:array[0..5] of string[8]=(
  829. #$90#$90#$90#$90#$90#$90#$90,
  830. #$90#$90#$90#$90#$90#$90,
  831. #$90#$90#$90#$90,
  832. #$90#$90#$90,
  833. #$90#$90,
  834. #$90);
  835. {$else i8086}
  836. alignarray:array[0..5] of string[8]=(
  837. #$8D#$B4#$26#$00#$00#$00#$00,
  838. #$8D#$B6#$00#$00#$00#$00,
  839. #$8D#$74#$26#$00,
  840. #$8D#$76#$00,
  841. #$89#$F6,
  842. #$90);
  843. {$endif i8086}
  844. var
  845. bufptr : pchar;
  846. j : longint;
  847. localsize: byte;
  848. begin
  849. inherited calculatefillbuf(buf,executable);
  850. if not(use_op) and executable then
  851. begin
  852. bufptr:=pchar(@buf);
  853. { fillsize may still be used afterwards, so don't modify }
  854. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  855. localsize:=fillsize;
  856. while (localsize>0) do
  857. begin
  858. {$ifndef i8086}
  859. if (CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype]) then
  860. begin
  861. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  862. if (localsize>=length(alignarray_cmovcpus[j])) then
  863. break;
  864. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  865. inc(bufptr,length(alignarray_cmovcpus[j]));
  866. dec(localsize,length(alignarray_cmovcpus[j]));
  867. end
  868. else
  869. {$endif not i8086}
  870. begin
  871. for j:=low(alignarray) to high(alignarray) do
  872. if (localsize>=length(alignarray[j])) then
  873. break;
  874. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  875. inc(bufptr,length(alignarray[j]));
  876. dec(localsize,length(alignarray[j]));
  877. end
  878. end;
  879. end;
  880. calculatefillbuf:=pchar(@buf);
  881. end;
  882. {*****************************************************************************
  883. Taicpu Constructors
  884. *****************************************************************************}
  885. procedure taicpu.changeopsize(siz:topsize); {$ifdef USEINLINE}inline;{$endif USEINLINE}
  886. begin
  887. opsize:=siz;
  888. end;
  889. procedure taicpu.init(_size : topsize);
  890. begin
  891. { default order is att }
  892. FOperandOrder:=op_att;
  893. segprefix:=NR_NO;
  894. opsize:=_size;
  895. insentry:=nil;
  896. LastInsOffset:=-1;
  897. InsOffset:=0;
  898. InsSize:=0;
  899. EVEXTupleState := etsUnknown;
  900. end;
  901. constructor taicpu.op_none(op : tasmop);
  902. begin
  903. inherited create(op);
  904. init(S_NO);
  905. end;
  906. constructor taicpu.op_none(op : tasmop;_size : topsize);
  907. begin
  908. inherited create(op);
  909. init(_size);
  910. end;
  911. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  912. begin
  913. inherited create(op);
  914. init(_size);
  915. ops:=1;
  916. loadreg(0,_op1);
  917. end;
  918. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  919. begin
  920. inherited create(op);
  921. init(_size);
  922. ops:=1;
  923. loadconst(0,_op1);
  924. end;
  925. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  926. begin
  927. inherited create(op);
  928. init(_size);
  929. ops:=1;
  930. loadref(0,_op1);
  931. end;
  932. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  933. begin
  934. inherited create(op);
  935. init(_size);
  936. ops:=2;
  937. loadreg(0,_op1);
  938. loadreg(1,_op2);
  939. end;
  940. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  941. begin
  942. inherited create(op);
  943. init(_size);
  944. ops:=2;
  945. loadreg(0,_op1);
  946. loadconst(1,_op2);
  947. end;
  948. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  949. begin
  950. inherited create(op);
  951. init(_size);
  952. ops:=2;
  953. loadreg(0,_op1);
  954. loadref(1,_op2);
  955. end;
  956. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  957. begin
  958. inherited create(op);
  959. init(_size);
  960. ops:=2;
  961. loadconst(0,_op1);
  962. loadreg(1,_op2);
  963. end;
  964. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  965. begin
  966. inherited create(op);
  967. init(_size);
  968. ops:=2;
  969. loadconst(0,_op1);
  970. loadconst(1,_op2);
  971. end;
  972. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  973. begin
  974. inherited create(op);
  975. init(_size);
  976. ops:=2;
  977. loadconst(0,_op1);
  978. loadref(1,_op2);
  979. end;
  980. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  981. begin
  982. inherited create(op);
  983. init(_size);
  984. ops:=2;
  985. loadref(0,_op1);
  986. loadreg(1,_op2);
  987. end;
  988. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  989. begin
  990. inherited create(op);
  991. init(_size);
  992. ops:=3;
  993. loadreg(0,_op1);
  994. loadreg(1,_op2);
  995. loadreg(2,_op3);
  996. end;
  997. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  998. begin
  999. inherited create(op);
  1000. init(_size);
  1001. ops:=3;
  1002. loadconst(0,_op1);
  1003. loadreg(1,_op2);
  1004. loadreg(2,_op3);
  1005. end;
  1006. constructor taicpu.op_reg_ref_reg(op : tasmop;_size : topsize;_op1 : tregister; const _op2 : treference;_op3 : tregister);
  1007. begin
  1008. inherited create(op);
  1009. init(_size);
  1010. ops:=3;
  1011. loadreg(0,_op1);
  1012. loadref(1,_op2);
  1013. loadreg(2,_op3);
  1014. end;
  1015. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  1016. begin
  1017. inherited create(op);
  1018. init(_size);
  1019. ops:=3;
  1020. loadref(0,_op1);
  1021. loadreg(1,_op2);
  1022. loadreg(2,_op3);
  1023. end;
  1024. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  1025. begin
  1026. inherited create(op);
  1027. init(_size);
  1028. ops:=3;
  1029. loadconst(0,_op1);
  1030. loadref(1,_op2);
  1031. loadreg(2,_op3);
  1032. end;
  1033. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  1034. begin
  1035. inherited create(op);
  1036. init(_size);
  1037. ops:=3;
  1038. loadconst(0,_op1);
  1039. loadreg(1,_op2);
  1040. loadref(2,_op3);
  1041. end;
  1042. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  1043. begin
  1044. inherited create(op);
  1045. init(_size);
  1046. ops:=3;
  1047. loadreg(0,_op1);
  1048. loadreg(1,_op2);
  1049. loadref(2,_op3);
  1050. end;
  1051. constructor taicpu.op_const_reg_reg_reg(op : tasmop; _size : topsize; _op1 : aint; _op2, _op3, _op4 : tregister);
  1052. begin
  1053. inherited create(op);
  1054. init(_size);
  1055. ops:=4;
  1056. loadconst(0,_op1);
  1057. loadreg(1,_op2);
  1058. loadreg(2,_op3);
  1059. loadreg(3,_op4);
  1060. end;
  1061. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  1062. begin
  1063. inherited create(op);
  1064. init(_size);
  1065. condition:=cond;
  1066. ops:=1;
  1067. loadsymbol(0,_op1,0);
  1068. end;
  1069. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  1070. begin
  1071. inherited create(op);
  1072. init(_size);
  1073. ops:=1;
  1074. loadsymbol(0,_op1,0);
  1075. end;
  1076. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  1077. begin
  1078. inherited create(op);
  1079. init(_size);
  1080. ops:=1;
  1081. loadsymbol(0,_op1,_op1ofs);
  1082. end;
  1083. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  1084. begin
  1085. inherited create(op);
  1086. init(_size);
  1087. ops:=2;
  1088. loadsymbol(0,_op1,_op1ofs);
  1089. loadreg(1,_op2);
  1090. end;
  1091. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  1092. begin
  1093. inherited create(op);
  1094. init(_size);
  1095. ops:=2;
  1096. loadsymbol(0,_op1,_op1ofs);
  1097. loadref(1,_op2);
  1098. end;
  1099. function taicpu.GetString:string;
  1100. var
  1101. i : longint;
  1102. s : string;
  1103. regnr: string;
  1104. addsize : boolean;
  1105. begin
  1106. s:='['+std_op2str[opcode];
  1107. for i:=0 to ops-1 do
  1108. begin
  1109. with oper[i]^ do
  1110. begin
  1111. if i=0 then
  1112. s:=s+' '
  1113. else
  1114. s:=s+',';
  1115. { type }
  1116. addsize:=false;
  1117. regnr := '';
  1118. if getregtype(reg) = R_MMREGISTER then
  1119. str(getsupreg(reg),regnr);
  1120. if (ot and OT_XMMREG)=OT_XMMREG then
  1121. s:=s+'xmmreg' + regnr
  1122. else
  1123. if (ot and OT_YMMREG)=OT_YMMREG then
  1124. s:=s+'ymmreg' + regnr
  1125. else
  1126. if (ot and OT_ZMMREG)=OT_ZMMREG then
  1127. s:=s+'zmmreg' + regnr
  1128. else
  1129. if (ot and OT_REG_EXTRA_MASK)=OT_MMXREG then
  1130. s:=s+'mmxreg'
  1131. else
  1132. if (ot and OT_REG_EXTRA_MASK)=OT_FPUREG then
  1133. s:=s+'fpureg'
  1134. else
  1135. if (ot and OT_REGISTER)=OT_REGISTER then
  1136. begin
  1137. s:=s+'reg';
  1138. addsize:=true;
  1139. end
  1140. else
  1141. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  1142. begin
  1143. s:=s+'imm';
  1144. addsize:=true;
  1145. end
  1146. else
  1147. if (ot and OT_MEMORY)=OT_MEMORY then
  1148. begin
  1149. s:=s+'mem';
  1150. addsize:=true;
  1151. end
  1152. else
  1153. s:=s+'???';
  1154. { size }
  1155. if addsize then
  1156. begin
  1157. if (ot and OT_BITS8)<>0 then
  1158. s:=s+'8'
  1159. else
  1160. if (ot and OT_BITS16)<>0 then
  1161. s:=s+'16'
  1162. else
  1163. if (ot and OT_BITS32)<>0 then
  1164. s:=s+'32'
  1165. else
  1166. if (ot and OT_BITS64)<>0 then
  1167. s:=s+'64'
  1168. else
  1169. if (ot and OT_BITS128)<>0 then
  1170. s:=s+'128'
  1171. else
  1172. if (ot and OT_BITS256)<>0 then
  1173. s:=s+'256'
  1174. else
  1175. if (ot and OT_BITS512)<>0 then
  1176. s:=s+'512'
  1177. else
  1178. s:=s+'??';
  1179. { signed }
  1180. if (ot and OT_SIGNED)<>0 then
  1181. s:=s+'s';
  1182. end;
  1183. if vopext <> 0 then
  1184. begin
  1185. str(vopext and $07, regnr);
  1186. if vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  1187. s := s + ' {k' + regnr + '}';
  1188. if vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then
  1189. s := s + ' {z}';
  1190. if vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  1191. s := s + ' {sae}';
  1192. if vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  1193. case vopext and OTVE_VECTOR_BCST_MASK of
  1194. OTVE_VECTOR_BCST2: s := s + ' {1to2}';
  1195. OTVE_VECTOR_BCST4: s := s + ' {1to4}';
  1196. OTVE_VECTOR_BCST8: s := s + ' {1to8}';
  1197. OTVE_VECTOR_BCST16: s := s + ' {1to16}';
  1198. end;
  1199. if vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  1200. case vopext and OTVE_VECTOR_ER_MASK of
  1201. OTVE_VECTOR_RNSAE: s := s + ' {rn-sae}';
  1202. OTVE_VECTOR_RDSAE: s := s + ' {rd-sae}';
  1203. OTVE_VECTOR_RUSAE: s := s + ' {ru-sae}';
  1204. OTVE_VECTOR_RZSAE: s := s + ' {rz-sae}';
  1205. end;
  1206. end;
  1207. end;
  1208. end;
  1209. GetString:=s+']';
  1210. end;
  1211. procedure taicpu.Swapoperands;
  1212. var
  1213. p : POper;
  1214. begin
  1215. { Fix the operands which are in AT&T style and we need them in Intel style }
  1216. case ops of
  1217. 0,1:
  1218. ;
  1219. 2 : begin
  1220. { 0,1 -> 1,0 }
  1221. p:=oper[0];
  1222. oper[0]:=oper[1];
  1223. oper[1]:=p;
  1224. end;
  1225. 3 : begin
  1226. { 0,1,2 -> 2,1,0 }
  1227. p:=oper[0];
  1228. oper[0]:=oper[2];
  1229. oper[2]:=p;
  1230. end;
  1231. 4 : begin
  1232. { 0,1,2,3 -> 3,2,1,0 }
  1233. p:=oper[0];
  1234. oper[0]:=oper[3];
  1235. oper[3]:=p;
  1236. p:=oper[1];
  1237. oper[1]:=oper[2];
  1238. oper[2]:=p;
  1239. end;
  1240. else
  1241. internalerror(201108141);
  1242. end;
  1243. end;
  1244. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  1245. begin
  1246. if FOperandOrder<>order then
  1247. begin
  1248. Swapoperands;
  1249. FOperandOrder:=order;
  1250. end;
  1251. end;
  1252. function taicpu.FixNonCommutativeOpcodes: tasmop;
  1253. begin
  1254. result:=opcode;
  1255. { we need ATT order }
  1256. SetOperandOrder(op_att);
  1257. if (
  1258. (ops=2) and
  1259. (oper[0]^.typ=top_reg) and
  1260. (oper[1]^.typ=top_reg) and
  1261. { if the first is ST and the second is also a register
  1262. it is necessarily ST1 .. ST7 }
  1263. ((oper[0]^.reg=NR_ST) or
  1264. (oper[0]^.reg=NR_ST0))
  1265. ) or
  1266. { ((ops=1) and
  1267. (oper[0]^.typ=top_reg) and
  1268. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  1269. (ops=0) then
  1270. begin
  1271. if opcode=A_FSUBR then
  1272. result:=A_FSUB
  1273. else if opcode=A_FSUB then
  1274. result:=A_FSUBR
  1275. else if opcode=A_FDIVR then
  1276. result:=A_FDIV
  1277. else if opcode=A_FDIV then
  1278. result:=A_FDIVR
  1279. else if opcode=A_FSUBRP then
  1280. result:=A_FSUBP
  1281. else if opcode=A_FSUBP then
  1282. result:=A_FSUBRP
  1283. else if opcode=A_FDIVRP then
  1284. result:=A_FDIVP
  1285. else if opcode=A_FDIVP then
  1286. result:=A_FDIVRP;
  1287. end;
  1288. if (
  1289. (ops=1) and
  1290. (oper[0]^.typ=top_reg) and
  1291. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  1292. (oper[0]^.reg<>NR_ST)
  1293. ) then
  1294. begin
  1295. if opcode=A_FSUBRP then
  1296. result:=A_FSUBP
  1297. else if opcode=A_FSUBP then
  1298. result:=A_FSUBRP
  1299. else if opcode=A_FDIVRP then
  1300. result:=A_FDIVP
  1301. else if opcode=A_FDIVP then
  1302. result:=A_FDIVRP;
  1303. end;
  1304. end;
  1305. {*****************************************************************************
  1306. Assembler
  1307. *****************************************************************************}
  1308. type
  1309. ea = packed record
  1310. sib_present : boolean;
  1311. bytes : byte;
  1312. size : byte;
  1313. modrm : byte;
  1314. sib : byte;
  1315. {$ifdef x86_64}
  1316. rex : byte;
  1317. {$endif x86_64}
  1318. end;
  1319. procedure taicpu.create_ot(objdata:TObjData);
  1320. {
  1321. this function will also fix some other fields which only needs to be once
  1322. }
  1323. var
  1324. i,l,relsize : longint;
  1325. currsym : TObjSymbol;
  1326. begin
  1327. if ops=0 then
  1328. exit;
  1329. { update oper[].ot field }
  1330. for i:=0 to ops-1 do
  1331. with oper[i]^ do
  1332. begin
  1333. case typ of
  1334. top_reg :
  1335. begin
  1336. ot:=reg_ot_table[findreg_by_number(reg)];
  1337. end;
  1338. top_ref :
  1339. begin
  1340. if (ref^.refaddr in [addr_no{$ifdef x86_64},addr_tpoff{$endif x86_64}{$ifdef i386},addr_ntpoff{$endif i386}])
  1341. {$ifdef i386}
  1342. or (
  1343. (ref^.refaddr in [addr_pic,addr_tlsgd]) and
  1344. ((ref^.base<>NR_NO) or (ref^.index<>NR_NO))
  1345. )
  1346. {$endif i386}
  1347. {$ifdef x86_64}
  1348. or (
  1349. (ref^.refaddr in [addr_pic,addr_pic_no_got,addr_tlsgd]) and
  1350. (ref^.base<>NR_NO)
  1351. )
  1352. {$endif x86_64}
  1353. then
  1354. begin
  1355. { create ot field }
  1356. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1357. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1358. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1359. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1360. ) then
  1361. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1362. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1363. (reg_ot_table[findreg_by_number(ref^.index)])
  1364. else if (ref^.base = NR_NO) and
  1365. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1366. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG) or
  1367. (reg_ot_table[findreg_by_number(ref^.index)] = OT_ZMMREG)
  1368. ) then
  1369. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1370. ot := (OT_REG_GPR) or
  1371. (reg_ot_table[findreg_by_number(ref^.index)])
  1372. else if (ot and OT_SIZE_MASK)=0 then
  1373. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1374. else
  1375. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1376. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1377. ot:=ot or OT_MEM_OFFS;
  1378. { fix scalefactor }
  1379. if (ref^.index=NR_NO) then
  1380. ref^.scalefactor:=0
  1381. else
  1382. if (ref^.scalefactor=0) then
  1383. ref^.scalefactor:=1;
  1384. end
  1385. else
  1386. begin
  1387. { Jumps use a relative offset which can be 8bit,
  1388. for other opcodes we always need to generate the full
  1389. 32bit address }
  1390. if assigned(objdata) and
  1391. is_jmp then
  1392. begin
  1393. currsym:=objdata.symbolref(ref^.symbol);
  1394. l:=ref^.offset;
  1395. {$push}
  1396. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1397. if assigned(currsym) then
  1398. inc(l,currsym.address);
  1399. {$pop}
  1400. { when it is a forward jump we need to compensate the
  1401. offset of the instruction since the previous time,
  1402. because the symbol address is then still using the
  1403. 'old-style' addressing.
  1404. For backwards jumps this is not required because the
  1405. address of the symbol is already adjusted to the
  1406. new offset }
  1407. if (l>InsOffset) and (LastInsOffset<>-1) then
  1408. inc(l,InsOffset-LastInsOffset);
  1409. { instruction size will then always become 2 (PFV) }
  1410. relsize:=(InsOffset+2)-l;
  1411. if (relsize>=-128) and (relsize<=127) and
  1412. (
  1413. not assigned(currsym) or
  1414. (currsym.objsection=objdata.currobjsec)
  1415. ) then
  1416. ot:=OT_IMM8 or OT_SHORT
  1417. else
  1418. {$ifdef i8086}
  1419. ot:=OT_IMM16 or OT_NEAR;
  1420. {$else i8086}
  1421. ot:=OT_IMM32 or OT_NEAR;
  1422. {$endif i8086}
  1423. end
  1424. else
  1425. {$ifdef i8086}
  1426. if opsize=S_FAR then
  1427. ot:=OT_IMM16 or OT_FAR
  1428. else
  1429. ot:=OT_IMM16 or OT_NEAR;
  1430. {$else i8086}
  1431. ot:=OT_IMM32 or OT_NEAR;
  1432. {$endif i8086}
  1433. end;
  1434. end;
  1435. top_local :
  1436. begin
  1437. if (ot and OT_SIZE_MASK)=0 then
  1438. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1439. else
  1440. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1441. end;
  1442. top_const :
  1443. begin
  1444. // if opcode is a SSE or AVX-instruction then we need a
  1445. // special handling (opsize can different from const-size)
  1446. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1447. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1448. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnknown])) then
  1449. begin
  1450. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1451. csiNoSize: ot := ot and OT_NON_SIZE or OT_IMMEDIATE;
  1452. csiMem8: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS8;
  1453. csiMem16: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS16;
  1454. csiMem32: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS32;
  1455. csiMem64: ot := ot and OT_NON_SIZE or OT_IMMEDIATE or OT_BITS64;
  1456. else
  1457. ;
  1458. end;
  1459. end
  1460. else
  1461. begin
  1462. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1463. { further, allow ENTER, AAD and AAM with imm. operand }
  1464. if (opsize=S_NO) and not((i in [1,2,3])
  1465. or ((i=0) and (opcode in [A_ENTER]))
  1466. {$ifndef x86_64}
  1467. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1468. {$endif x86_64}
  1469. ) then
  1470. message(asmr_e_invalid_opcode_and_operand);
  1471. if
  1472. {$ifdef i8086}
  1473. (longint(val)>=-128) and (val<=127) then
  1474. {$else i8086}
  1475. (opsize<>S_W) and
  1476. (aint(val)>=-128) and (val<=127) then
  1477. {$endif not i8086}
  1478. ot:=OT_IMM8 or OT_SIGNED
  1479. else
  1480. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1481. if (val=1) and (i=1) then
  1482. ot := ot or OT_ONENESS;
  1483. end;
  1484. end;
  1485. top_none :
  1486. begin
  1487. { generated when there was an error in the
  1488. assembler reader. It never happends when generating
  1489. assembler }
  1490. end;
  1491. else
  1492. internalerror(200402266);
  1493. end;
  1494. end;
  1495. end;
  1496. function taicpu.InsEnd:longint;
  1497. begin
  1498. InsEnd:=InsOffset+InsSize;
  1499. end;
  1500. function taicpu.Matches(p:PInsEntry):boolean;
  1501. { * IF_SM stands for Size Match: any operand whose size is not
  1502. * explicitly specified by the template is `really' intended to be
  1503. * the same size as the first size-specified operand.
  1504. * Non-specification is tolerated in the input instruction, but
  1505. * _wrong_ specification is not.
  1506. *
  1507. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1508. * three-operand instructions such as SHLD: it implies that the
  1509. * first two operands must match in size, but that the third is
  1510. * required to be _unspecified_.
  1511. *
  1512. * IF_SB invokes Size Byte: operands with unspecified size in the
  1513. * template are really bytes, and so no non-byte specification in
  1514. * the input instruction will be tolerated. IF_SW similarly invokes
  1515. * Size Word, and IF_SD invokes Size Doubleword.
  1516. *
  1517. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1518. * that any operand with unspecified size in the template is
  1519. * required to have unspecified size in the instruction too...)
  1520. }
  1521. var
  1522. insot,
  1523. currot: int64;
  1524. i,j,asize,oprs : longint;
  1525. insflags:tinsflags;
  1526. vopext: int64;
  1527. siz : array[0..max_operands-1] of longint;
  1528. begin
  1529. result:=false;
  1530. { Check the opcode and operands }
  1531. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1532. exit;
  1533. {$ifdef i8086}
  1534. { On i8086, we need to skip the i386+ version of Jcc near, if the target
  1535. cpu is earlier than 386. There's another entry, later in the table for
  1536. i8086, which simulates it with i8086 instructions:
  1537. JNcc short +3
  1538. JMP near target }
  1539. if (p^.opcode=A_Jcc) and (current_settings.cputype<cpu_386) and
  1540. (IF_386 in p^.flags) then
  1541. exit;
  1542. {$endif i8086}
  1543. for i:=0 to p^.ops-1 do
  1544. begin
  1545. insot:=p^.optypes[i];
  1546. currot:=oper[i]^.ot;
  1547. { Check the operand flags }
  1548. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1549. exit;
  1550. // IGNORE VECTOR-MEMORY-SIZE
  1551. if insot and OT_TYPE_MASK = OT_MEMORY then
  1552. insot := insot and not(int64(OT_BITS128 or OT_BITS256 or OT_BITS512));
  1553. { Check if the passed operand size matches with one of
  1554. the supported operand sizes }
  1555. if ((insot and OT_SIZE_MASK)<>0) and
  1556. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1557. exit;
  1558. { "far" matches only with "far" }
  1559. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1560. exit;
  1561. end;
  1562. { Check operand sizes }
  1563. insflags:=p^.flags;
  1564. if (insflags*IF_SMASK)<>[] then
  1565. begin
  1566. { as default an untyped size can get all the sizes, this is different
  1567. from nasm, but else we need to do a lot checking which opcodes want
  1568. size or not with the automatic size generation }
  1569. asize:=-1;
  1570. if IF_SB in insflags then
  1571. asize:=OT_BITS8
  1572. else if IF_SW in insflags then
  1573. asize:=OT_BITS16
  1574. else if IF_SD in insflags then
  1575. asize:=OT_BITS32;
  1576. if insflags*IF_ARMASK<>[] then
  1577. begin
  1578. siz[0]:=-1;
  1579. siz[1]:=-1;
  1580. siz[2]:=-1;
  1581. if IF_AR0 in insflags then
  1582. siz[0]:=asize
  1583. else if IF_AR1 in insflags then
  1584. siz[1]:=asize
  1585. else if IF_AR2 in insflags then
  1586. siz[2]:=asize
  1587. else
  1588. internalerror(2017092101);
  1589. end
  1590. else
  1591. begin
  1592. siz[0]:=asize;
  1593. siz[1]:=asize;
  1594. siz[2]:=asize;
  1595. end;
  1596. if insflags*[IF_SM,IF_SM2]<>[] then
  1597. begin
  1598. if IF_SM2 in insflags then
  1599. oprs:=2
  1600. else
  1601. oprs:=p^.ops;
  1602. for i:=0 to oprs-1 do
  1603. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1604. begin
  1605. for j:=0 to oprs-1 do
  1606. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1607. break;
  1608. end;
  1609. end
  1610. else
  1611. oprs:=2;
  1612. { Check operand sizes }
  1613. for i:=0 to p^.ops-1 do
  1614. begin
  1615. insot:=p^.optypes[i];
  1616. currot:=oper[i]^.ot;
  1617. if ((insot and OT_SIZE_MASK)=0) and
  1618. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1619. { Immediates can always include smaller size }
  1620. ((currot and OT_IMMEDIATE)=0) and
  1621. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1622. exit;
  1623. if (insot and OT_FAR)<>(currot and OT_FAR) then
  1624. exit;
  1625. end;
  1626. end;
  1627. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1628. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1629. begin
  1630. for i:=0 to p^.ops-1 do
  1631. begin
  1632. insot:=p^.optypes[i];
  1633. currot:=oper[i]^.ot;
  1634. { Check the operand flags }
  1635. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1636. exit;
  1637. { Check if the passed operand size matches with one of
  1638. the supported operand sizes }
  1639. if ((insot and OT_SIZE_MASK)<>0) and
  1640. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1641. exit;
  1642. end;
  1643. end;
  1644. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1645. begin
  1646. for i:=0 to p^.ops-1 do
  1647. begin
  1648. // check vectoroperand-extention e.g. {k1} {z}
  1649. vopext := 0;
  1650. if (oper[i]^.vopext and OTVE_VECTOR_WRITEMASK) = OTVE_VECTOR_WRITEMASK then
  1651. begin
  1652. vopext := vopext or OT_VECTORMASK;
  1653. if (oper[i]^.vopext and OTVE_VECTOR_ZERO) = OTVE_VECTOR_ZERO then
  1654. vopext := vopext or OT_VECTORZERO;
  1655. end;
  1656. if (oper[i]^.vopext and OTVE_VECTOR_BCST) = OTVE_VECTOR_BCST then
  1657. begin
  1658. vopext := vopext or OT_VECTORBCST;
  1659. if (InsTabMemRefSizeInfoCache^[opcode].BCSTTypes <> []) then
  1660. begin
  1661. // any opcodes needs a special handling
  1662. // default broadcast calculation is
  1663. // bmem32
  1664. // xmmreg: {1to4}
  1665. // ymmreg: {1to8}
  1666. // zmmreg: {1to16}
  1667. // bmem64
  1668. // xmmreg: {1to2}
  1669. // ymmreg: {1to4}
  1670. // zmmreg: {1to8}
  1671. // in any opcodes not exists a mmregister
  1672. // e.g. vfpclasspd k1, [RAX] {1to8}, 0
  1673. // =>> check flags
  1674. case oper[i]^.vopext and (OTVE_VECTOR_BCST2 or OTVE_VECTOR_BCST4 or OTVE_VECTOR_BCST8 or OTVE_VECTOR_BCST16) of
  1675. OTVE_VECTOR_BCST2: if not(IF_BCST2 in p^.flags) then exit;
  1676. OTVE_VECTOR_BCST4: if not(IF_BCST4 in p^.flags) then exit;
  1677. OTVE_VECTOR_BCST8: if not(IF_BCST8 in p^.flags) then exit;
  1678. OTVE_VECTOR_BCST16: if not(IF_BCST16 in p^.flags) then exit;
  1679. else exit;
  1680. end;
  1681. end;
  1682. end;
  1683. if (oper[i]^.vopext and OTVE_VECTOR_ER) = OTVE_VECTOR_ER then
  1684. vopext := vopext or OT_VECTORER;
  1685. if (oper[i]^.vopext and OTVE_VECTOR_SAE) = OTVE_VECTOR_SAE then
  1686. vopext := vopext or OT_VECTORSAE;
  1687. if p^.optypes[i] and vopext <> vopext then
  1688. exit;
  1689. end;
  1690. end;
  1691. result:=true;
  1692. end;
  1693. procedure taicpu.ResetPass1;
  1694. begin
  1695. { we need to reset everything here, because the choosen insentry
  1696. can be invalid for a new situation where the previously optimized
  1697. insentry is not correct }
  1698. InsEntry:=nil;
  1699. InsSize:=0;
  1700. LastInsOffset:=-1;
  1701. end;
  1702. procedure taicpu.ResetPass2;
  1703. begin
  1704. { we are here in a second pass, check if the instruction can be optimized }
  1705. if assigned(InsEntry) and
  1706. (IF_PASS2 in InsEntry^.flags) then
  1707. begin
  1708. InsEntry:=nil;
  1709. InsSize:=0;
  1710. end;
  1711. LastInsOffset:=-1;
  1712. end;
  1713. function taicpu.CheckIfValid:boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  1714. begin
  1715. result:=FindInsEntry(nil);
  1716. end;
  1717. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1718. var
  1719. i : longint;
  1720. begin
  1721. result:=false;
  1722. { Things which may only be done once, not when a second pass is done to
  1723. optimize }
  1724. if (Insentry=nil) or (IF_PASS2 in InsEntry^.flags) then
  1725. begin
  1726. current_filepos:=fileinfo;
  1727. { We need intel style operands }
  1728. SetOperandOrder(op_intel);
  1729. { create the .ot fields }
  1730. create_ot(objdata);
  1731. { set the file postion }
  1732. end
  1733. else
  1734. begin
  1735. { we've already an insentry so it's valid }
  1736. result:=true;
  1737. exit;
  1738. end;
  1739. { Lookup opcode in the table }
  1740. InsSize:=-1;
  1741. i:=instabcache^[opcode];
  1742. if i=-1 then
  1743. begin
  1744. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1745. exit;
  1746. end;
  1747. insentry:=@instab[i];
  1748. while (insentry^.opcode=opcode) do
  1749. begin
  1750. if matches(insentry) then
  1751. begin
  1752. result:=true;
  1753. exit;
  1754. end;
  1755. inc(i);
  1756. if i>high(instab) then
  1757. exit;
  1758. insentry:=@instab[i];
  1759. end;
  1760. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1761. { No instruction found, set insentry to nil and inssize to -1 }
  1762. insentry:=nil;
  1763. inssize:=-1;
  1764. end;
  1765. function taicpu.CheckUseEVEX: boolean;
  1766. var
  1767. i: integer;
  1768. begin
  1769. result := false;
  1770. for i := 0 to ops - 1 do
  1771. begin
  1772. if (oper[i]^.typ=top_reg) and
  1773. (getregtype(oper[i]^.reg) = R_MMREGISTER) then
  1774. if getsupreg(oper[i]^.reg)>=16 then
  1775. result := true;
  1776. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  1777. result := true;
  1778. end;
  1779. end;
  1780. procedure taicpu.CheckEVEXTuple(const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  1781. var
  1782. i: integer;
  1783. tuplesize: integer;
  1784. memsize: integer;
  1785. begin
  1786. if EVEXTupleState = etsUnknown then
  1787. begin
  1788. EVEXTupleState := etsNotTuple;
  1789. if aInsEntry^.Flags * IF_TUPLEMASK <> [] then
  1790. begin
  1791. tuplesize := 0;
  1792. if IF_TFV in aInsEntry^.Flags then
  1793. begin
  1794. for i := 0 to aInsEntry^.ops - 1 do
  1795. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1796. begin
  1797. tuplesize := 4;
  1798. break;
  1799. end
  1800. else if (aInsEntry^.optypes[i] and OT_BMEM64 = OT_BMEM64) then
  1801. begin
  1802. tuplesize := 8;
  1803. break;
  1804. end
  1805. else if (aInsEntry^.optypes[i] and OT_MEMORY = OT_MEMORY) then
  1806. begin
  1807. if aIsVector512 then tuplesize := 64
  1808. else if aIsVector256 then tuplesize := 32
  1809. else tuplesize := 16;
  1810. break;
  1811. end
  1812. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1813. begin
  1814. if aIsVector512 then tuplesize := 64
  1815. else if aIsVector256 then tuplesize := 32
  1816. else tuplesize := 16;
  1817. break;
  1818. end;
  1819. end
  1820. else if IF_THV in aInsEntry^.Flags then
  1821. begin
  1822. for i := 0 to aInsEntry^.ops - 1 do
  1823. if (aInsEntry^.optypes[i] and OT_BMEM32 = OT_BMEM32) then
  1824. begin
  1825. tuplesize := 4;
  1826. break;
  1827. end
  1828. else if (aInsEntry^.optypes[i] and OT_REGNORM = OT_REGMEM) then
  1829. begin
  1830. if aIsVector512 then tuplesize := 32
  1831. else if aIsVector256 then tuplesize := 16
  1832. else tuplesize := 8;
  1833. break;
  1834. end
  1835. end
  1836. else if IF_TFVM in aInsEntry^.Flags then
  1837. begin
  1838. if aIsVector512 then tuplesize := 64
  1839. else if aIsVector256 then tuplesize := 32
  1840. else tuplesize := 16;
  1841. end
  1842. else
  1843. begin
  1844. memsize := 0;
  1845. for i := 0 to aInsEntry^.ops - 1 do
  1846. begin
  1847. if aInsEntry^.optypes[i] and (OT_REGNORM or OT_MEMORY) = OT_REGMEM then
  1848. begin
  1849. case aInsEntry^.optypes[i] and (OT_BITS32 or OT_BITS64) of
  1850. OT_BITS32: begin
  1851. memsize := 32;
  1852. break;
  1853. end;
  1854. OT_BITS64: begin
  1855. memsize := 64;
  1856. break;
  1857. end;
  1858. end;
  1859. end
  1860. else
  1861. case aInsEntry^.optypes[i] and (OT_MEM8 or OT_MEM16 or OT_MEM32 or OT_MEM64) of
  1862. OT_MEM8: begin
  1863. memsize := 8;
  1864. break;
  1865. end;
  1866. OT_MEM16: begin
  1867. memsize := 16;
  1868. break;
  1869. end;
  1870. OT_MEM32: begin
  1871. memsize := 32;
  1872. break;
  1873. end;
  1874. OT_MEM64: //if aIsEVEXW1 then
  1875. begin
  1876. memsize := 64;
  1877. break;
  1878. end;
  1879. end;
  1880. end;
  1881. if IF_T1S in aInsEntry^.Flags then
  1882. begin
  1883. case memsize of
  1884. 8: tuplesize := 1;
  1885. 16: tuplesize := 2;
  1886. else if aIsEVEXW1 then tuplesize := 8
  1887. else tuplesize := 4;
  1888. end;
  1889. end
  1890. else if IF_T1S8 in aInsEntry^.Flags then tuplesize := 1
  1891. else if IF_T1S16 in aInsEntry^.Flags then tuplesize := 2
  1892. else if IF_T1F32 in aInsEntry^.Flags then tuplesize := 4
  1893. else if IF_T1F64 in aInsEntry^.Flags then tuplesize := 8
  1894. else if IF_T2 in aInsEntry^.Flags then
  1895. begin
  1896. case aIsEVEXW1 of
  1897. false: tuplesize := 8;
  1898. else if aIsVector256 or aIsVector512 then tuplesize := 16;
  1899. end;
  1900. end
  1901. else if IF_T4 in aInsEntry^.Flags then
  1902. begin
  1903. case aIsEVEXW1 of
  1904. false: if aIsVector256 or aIsVector512 then tuplesize := 16;
  1905. else if aIsVector512 then tuplesize := 32;
  1906. end;
  1907. end
  1908. else if IF_T8 in aInsEntry^.Flags then
  1909. begin
  1910. case aIsEVEXW1 of
  1911. false: if aIsVector512 then tuplesize := 32;
  1912. else
  1913. Internalerror(2019081013);
  1914. end;
  1915. end
  1916. else if IF_THVM in aInsEntry^.Flags then
  1917. begin
  1918. tuplesize := 8; // default 128bit-vectorlength
  1919. if aIsVector256 then tuplesize := 16
  1920. else if aIsVector512 then tuplesize := 32;
  1921. end
  1922. else if IF_TQVM in aInsEntry^.Flags then
  1923. begin
  1924. tuplesize := 4; // default 128bit-vectorlength
  1925. if aIsVector256 then tuplesize := 8
  1926. else if aIsVector512 then tuplesize := 16;
  1927. end
  1928. else if IF_TOVM in aInsEntry^.Flags then
  1929. begin
  1930. tuplesize := 2; // default 128bit-vectorlength
  1931. if aIsVector256 then tuplesize := 4
  1932. else if aIsVector512 then tuplesize := 8;
  1933. end
  1934. else if IF_TMEM128 in aInsEntry^.Flags then tuplesize := 16
  1935. else if IF_TMDDUP in aInsEntry^.Flags then
  1936. begin
  1937. tuplesize := 8; // default 128bit-vectorlength
  1938. if aIsVector256 then tuplesize := 32
  1939. else if aIsVector512 then tuplesize := 64;
  1940. end;
  1941. end;
  1942. if tuplesize > 0 then
  1943. begin
  1944. if aInput.typ = top_ref then
  1945. begin
  1946. if aInput.ref^.base <> NR_NO then
  1947. begin
  1948. if (aInput.ref^.offset <> 0) and
  1949. ((aInput.ref^.offset mod tuplesize) = 0) and
  1950. (abs(aInput.ref^.offset) div tuplesize <= 127) then
  1951. begin
  1952. aInput.ref^.offset := aInput.ref^.offset div tuplesize;
  1953. EVEXTupleState := etsIsTuple;
  1954. end;
  1955. end;
  1956. end;
  1957. end;
  1958. end;
  1959. end;
  1960. end;
  1961. function taicpu.Pass1(objdata:TObjData):longint;
  1962. begin
  1963. Pass1:=0;
  1964. { Save the old offset and set the new offset }
  1965. InsOffset:=ObjData.CurrObjSec.Size;
  1966. { Error? }
  1967. if (Insentry=nil) and (InsSize=-1) then
  1968. exit;
  1969. { set the file postion }
  1970. current_filepos:=fileinfo;
  1971. { Get InsEntry }
  1972. if FindInsEntry(ObjData) then
  1973. begin
  1974. { Calculate instruction size }
  1975. InsSize:=calcsize(insentry);
  1976. if segprefix<>NR_NO then
  1977. inc(InsSize);
  1978. if NeedAddrPrefix then
  1979. inc(InsSize);
  1980. { Fix opsize if size if forced }
  1981. if insentry^.flags*[IF_SB,IF_SW,IF_SD]<>[] then
  1982. begin
  1983. if insentry^.flags*IF_ARMASK=[] then
  1984. begin
  1985. if IF_SB in insentry^.flags then
  1986. begin
  1987. if opsize=S_NO then
  1988. opsize:=S_B;
  1989. end
  1990. else if IF_SW in insentry^.flags then
  1991. begin
  1992. if opsize=S_NO then
  1993. opsize:=S_W;
  1994. end
  1995. else if IF_SD in insentry^.flags then
  1996. begin
  1997. if opsize=S_NO then
  1998. opsize:=S_L;
  1999. end;
  2000. end;
  2001. end;
  2002. LastInsOffset:=InsOffset;
  2003. Pass1:=InsSize;
  2004. exit;
  2005. end;
  2006. LastInsOffset:=-1;
  2007. end;
  2008. const
  2009. segprefixes: array[NR_ES..NR_GS] of Byte=(
  2010. // es cs ss ds fs gs
  2011. $26, $2E, $36, $3E, $64, $65
  2012. );
  2013. procedure taicpu.Pass2(objdata:TObjData);
  2014. begin
  2015. { error in pass1 ? }
  2016. if insentry=nil then
  2017. exit;
  2018. current_filepos:=fileinfo;
  2019. { Segment override }
  2020. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  2021. begin
  2022. {$ifdef i8086}
  2023. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) and
  2024. ((segprefix=NR_FS) or (segprefix=NR_GS)) then
  2025. Message(asmw_e_instruction_not_supported_by_cpu);
  2026. {$endif i8086}
  2027. objdata.writebytes(segprefixes[segprefix],1);
  2028. { fix the offset for GenNode }
  2029. inc(InsOffset);
  2030. end
  2031. else if segprefix<>NR_NO then
  2032. InternalError(201001071);
  2033. { Address size prefix? }
  2034. if NeedAddrPrefix then
  2035. begin
  2036. write0x67prefix(objdata);
  2037. { fix the offset for GenNode }
  2038. inc(InsOffset);
  2039. end;
  2040. { Generate the instruction }
  2041. GenCode(objdata);
  2042. end;
  2043. function is_64_bit_ref(const ref:treference):boolean;
  2044. begin
  2045. {$if defined(x86_64)}
  2046. result:=not is_32_bit_ref(ref);
  2047. {$elseif defined(i386) or defined(i8086)}
  2048. result:=false;
  2049. {$endif}
  2050. end;
  2051. function is_32_bit_ref(const ref:treference):boolean;
  2052. begin
  2053. {$if defined(x86_64)}
  2054. result:=(ref.refaddr=addr_no) and
  2055. (ref.base<>NR_RIP) and
  2056. (
  2057. ((ref.index<>NR_NO) and (getsubreg(ref.index)=R_SUBD)) or
  2058. ((ref.base<>NR_NO) and (getsubreg(ref.base)=R_SUBD))
  2059. );
  2060. {$elseif defined(i386) or defined(i8086)}
  2061. result:=not is_16_bit_ref(ref);
  2062. {$endif}
  2063. end;
  2064. function is_16_bit_ref(const ref:treference):boolean;
  2065. var
  2066. ir,br : Tregister;
  2067. isub,bsub : tsubregister;
  2068. begin
  2069. if (ref.index<>NR_NO) and (getregtype(ref.index)=R_MMREGISTER) then
  2070. exit(false);
  2071. ir:=ref.index;
  2072. br:=ref.base;
  2073. isub:=getsubreg(ir);
  2074. bsub:=getsubreg(br);
  2075. { it's a direct address }
  2076. if (br=NR_NO) and (ir=NR_NO) then
  2077. begin
  2078. {$ifdef i8086}
  2079. result:=true;
  2080. {$else i8086}
  2081. result:=false;
  2082. {$endif}
  2083. end
  2084. else
  2085. { it's an indirection }
  2086. begin
  2087. result := ((ir<>NR_NO) and (isub=R_SUBW)) or
  2088. ((br<>NR_NO) and (bsub=R_SUBW));
  2089. end;
  2090. end;
  2091. function get_ref_address_size(const ref:treference):byte;
  2092. begin
  2093. if is_64_bit_ref(ref) then
  2094. result:=64
  2095. else if is_32_bit_ref(ref) then
  2096. result:=32
  2097. else if is_16_bit_ref(ref) then
  2098. result:=16
  2099. else
  2100. internalerror(2017101601);
  2101. end;
  2102. function get_default_segment_of_ref(const ref:treference):tregister;
  2103. begin
  2104. { for 16-bit registers, we allow base and index to be swapped, that's
  2105. why we also we check whether ref.index=NR_BP. For 32-bit registers,
  2106. however, index=NR_EBP is encoded differently than base=NR_EBP and has
  2107. a different default segment. }
  2108. if (ref.base=NR_BP) or (ref.index=NR_BP) or
  2109. (ref.base=NR_EBP) or (ref.base=NR_ESP)
  2110. {$ifdef x86_64}
  2111. or (ref.base=NR_RBP) or (ref.base=NR_RSP)
  2112. {$endif x86_64}
  2113. then
  2114. result:=NR_SS
  2115. else
  2116. result:=NR_DS;
  2117. end;
  2118. procedure optimize_ref(var ref:treference; inlineasm: boolean);
  2119. var
  2120. ss_equals_ds: boolean;
  2121. tmpreg: TRegister;
  2122. begin
  2123. {$ifdef x86_64}
  2124. { x86_64 in long mode ignores all segment base, limit and access rights
  2125. checks for the DS, ES and SS registers, so we can set ss_equals_ds to
  2126. true (and thus, perform stronger optimizations on the reference),
  2127. regardless of whether this is inline asm or not (so, even if the user
  2128. is doing tricks by loading different values into DS and SS, it still
  2129. doesn't matter while the processor is in long mode) }
  2130. ss_equals_ds:=True;
  2131. {$else x86_64}
  2132. { for i8086 and i386 inline asm, we assume SS<>DS, even if we're
  2133. compiling for a memory model, where SS=DS, because the user might be
  2134. doing something tricky with the segment registers (and may have
  2135. temporarily set them differently) }
  2136. if inlineasm then
  2137. ss_equals_ds:=False
  2138. else
  2139. ss_equals_ds:=segment_regs_equal(NR_DS,NR_SS);
  2140. {$endif x86_64}
  2141. { remove redundant segment overrides }
  2142. if (ref.segment<>NR_NO) and
  2143. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2144. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2145. ref.segment:=NR_NO;
  2146. if not is_16_bit_ref(ref) then
  2147. begin
  2148. { Switching index to base position gives shorter assembler instructions.
  2149. Converting index*2 to base+index also gives shorter instructions. }
  2150. if (ref.base=NR_NO) and (ref.index<>NR_NO) and (ref.scalefactor<=2) and
  2151. (ss_equals_ds or (ref.segment<>NR_NO) or (ref.index<>NR_EBP))
  2152. { do not mess with tls references, they have the (,reg,1) format on purpose
  2153. else the linker cannot resolve/replace them }
  2154. {$ifdef i386} and (ref.refaddr<>addr_tlsgd) {$endif i386} then
  2155. begin
  2156. ref.base:=ref.index;
  2157. if ref.scalefactor=2 then
  2158. ref.scalefactor:=1
  2159. else
  2160. begin
  2161. ref.index:=NR_NO;
  2162. ref.scalefactor:=0;
  2163. end;
  2164. end;
  2165. { Switching rBP+reg to reg+rBP sometimes gives shorter instructions (if there's no offset)
  2166. On x86_64 this also works for switching r13+reg to reg+r13. }
  2167. if ((ref.base=NR_EBP) {$ifdef x86_64}or (ref.base=NR_RBP) or (ref.base=NR_R13) or (ref.base=NR_R13D){$endif}) and
  2168. (ref.index<>NR_NO) and
  2169. (ref.index<>NR_EBP) and {$ifdef x86_64}(ref.index<>NR_RBP) and (ref.index<>NR_R13) and (ref.index<>NR_R13D) and{$endif}
  2170. (ref.scalefactor<=1) and (ref.offset=0) and (ref.refaddr=addr_no) and
  2171. (ss_equals_ds or (ref.segment<>NR_NO)) then
  2172. begin
  2173. tmpreg:=ref.base;
  2174. ref.base:=ref.index;
  2175. ref.index:=tmpreg;
  2176. end;
  2177. end;
  2178. { remove redundant segment overrides again }
  2179. if (ref.segment<>NR_NO) and
  2180. ((inlineasm and (ref.segment=get_default_segment_of_ref(ref))) or
  2181. ((not inlineasm) and (segment_regs_equal(ref.segment,get_default_segment_of_ref(ref))))) then
  2182. ref.segment:=NR_NO;
  2183. end;
  2184. function taicpu.NeedAddrPrefix(opidx: byte): boolean;
  2185. begin
  2186. {$if defined(x86_64)}
  2187. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2188. {$elseif defined(i386)}
  2189. result:=(oper[opidx]^.typ=top_ref) and is_16_bit_ref(oper[opidx]^.ref^);
  2190. {$elseif defined(i8086)}
  2191. result:=(oper[opidx]^.typ=top_ref) and is_32_bit_ref(oper[opidx]^.ref^);
  2192. {$endif}
  2193. end;
  2194. function taicpu.NeedAddrPrefix:boolean;
  2195. var
  2196. i: Integer;
  2197. begin
  2198. for i:=0 to ops-1 do
  2199. if needaddrprefix(i) then
  2200. exit(true);
  2201. result:=false;
  2202. end;
  2203. procedure badreg(r:Tregister);
  2204. begin
  2205. Message1(asmw_e_invalid_register,generic_regname(r));
  2206. end;
  2207. function regval(r:Tregister):byte;
  2208. const
  2209. intsupreg2opcode: array[0..7] of byte=
  2210. // ax cx dx bx si di bp sp -- in x86reg.dat
  2211. // ax cx dx bx sp bp si di -- needed order
  2212. (0, 1, 2, 3, 6, 7, 5, 4);
  2213. maxsupreg: array[tregistertype] of tsuperregister=
  2214. {$ifdef x86_64}
  2215. (0, 16, 9, 8, 32, 32, 8, 0, 0, 0, 0, 0);
  2216. {$else x86_64}
  2217. (0, 8, 9, 8, 8, 32, 8, 0, 0, 0, 0, 0);
  2218. {$endif x86_64}
  2219. var
  2220. rs: tsuperregister;
  2221. rt: tregistertype;
  2222. begin
  2223. rs:=getsupreg(r);
  2224. rt:=getregtype(r);
  2225. if (rs>=maxsupreg[rt]) then
  2226. badreg(r);
  2227. result:=rs and 7;
  2228. if (rt=R_INTREGISTER) then
  2229. begin
  2230. if (rs<8) then
  2231. result:=intsupreg2opcode[rs];
  2232. if getsubreg(r)=R_SUBH then
  2233. inc(result,4);
  2234. end;
  2235. end;
  2236. {$if defined(x86_64)}
  2237. function rexbits(r: tregister): byte;
  2238. begin
  2239. result:=0;
  2240. case getregtype(r) of
  2241. R_INTREGISTER:
  2242. if (getsupreg(r)>=RS_R8) then
  2243. { Either B,X or R bits can be set, depending on register role in instruction.
  2244. Set all three bits here, caller will discard unnecessary ones. }
  2245. result:=result or $47
  2246. else if (getsubreg(r)=R_SUBL) and
  2247. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  2248. result:=result or $40
  2249. else if (getsubreg(r)=R_SUBH) then
  2250. { Not an actual REX bit, used to detect incompatible usage of
  2251. AH/BH/CH/DH }
  2252. result:=result or $80;
  2253. R_MMREGISTER:
  2254. //if getsupreg(r)>=RS_XMM8 then
  2255. // AVX512 = 32 register
  2256. // rexbit = 0 => MMRegister 0..7 or 16..23
  2257. // rexbit = 1 => MMRegister 8..15 or 24..31
  2258. if (getsupreg(r) and $08) = $08 then
  2259. result:=result or $47;
  2260. else
  2261. ;
  2262. end;
  2263. end;
  2264. function process_ea_ref_64_32(const input:toper;var output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2265. var
  2266. sym : tasmsymbol;
  2267. md,s : byte;
  2268. base,index,scalefactor,
  2269. o : longint;
  2270. ir,br : Tregister;
  2271. isub,bsub : tsubregister;
  2272. begin
  2273. result:=false;
  2274. ir:=input.ref^.index;
  2275. br:=input.ref^.base;
  2276. isub:=getsubreg(ir);
  2277. bsub:=getsubreg(br);
  2278. s:=input.ref^.scalefactor;
  2279. o:=input.ref^.offset;
  2280. sym:=input.ref^.symbol;
  2281. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  2282. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2283. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  2284. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  2285. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  2286. internalerror(200301081);
  2287. { it's direct address }
  2288. if (br=NR_NO) and (ir=NR_NO) then
  2289. begin
  2290. output.sib_present:=true;
  2291. output.bytes:=4;
  2292. output.modrm:=4 or (rfield shl 3);
  2293. output.sib:=$25;
  2294. end
  2295. else if (br=NR_RIP) and (ir=NR_NO) then
  2296. begin
  2297. { rip based }
  2298. output.sib_present:=false;
  2299. output.bytes:=4;
  2300. output.modrm:=5 or (rfield shl 3);
  2301. end
  2302. else
  2303. { it's an indirection }
  2304. begin
  2305. if ((br=NR_RIP) and (ir<>NR_NO)) or
  2306. (ir=NR_RIP) then
  2307. message(asmw_e_illegal_use_of_rip);
  2308. if ir=NR_STACK_POINTER_REG then
  2309. Message(asmw_e_illegal_use_of_sp);
  2310. { 16 bit? }
  2311. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2312. (br<>NR_NO) and (bsub=R_SUBQ)
  2313. ) then
  2314. begin
  2315. // vector memory (AVX2) =>> ignore
  2316. end
  2317. else if ((ir<>NR_NO) and (isub<>R_SUBQ) and (isub<>R_SUBD)) or
  2318. ((br<>NR_NO) and (bsub<>R_SUBQ) and (bsub<>R_SUBD)) then
  2319. begin
  2320. message(asmw_e_16bit_32bit_not_supported);
  2321. end;
  2322. { wrong, for various reasons }
  2323. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2324. exit;
  2325. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  2326. result:=true;
  2327. { base }
  2328. case br of
  2329. NR_R8D,
  2330. NR_EAX,
  2331. NR_R8,
  2332. NR_RAX : base:=0;
  2333. NR_R9D,
  2334. NR_ECX,
  2335. NR_R9,
  2336. NR_RCX : base:=1;
  2337. NR_R10D,
  2338. NR_EDX,
  2339. NR_R10,
  2340. NR_RDX : base:=2;
  2341. NR_R11D,
  2342. NR_EBX,
  2343. NR_R11,
  2344. NR_RBX : base:=3;
  2345. NR_R12D,
  2346. NR_ESP,
  2347. NR_R12,
  2348. NR_RSP : base:=4;
  2349. NR_R13D,
  2350. NR_EBP,
  2351. NR_R13,
  2352. NR_NO,
  2353. NR_RBP : base:=5;
  2354. NR_R14D,
  2355. NR_ESI,
  2356. NR_R14,
  2357. NR_RSI : base:=6;
  2358. NR_R15D,
  2359. NR_EDI,
  2360. NR_R15,
  2361. NR_RDI : base:=7;
  2362. else
  2363. exit;
  2364. end;
  2365. { index }
  2366. case ir of
  2367. NR_R8D,
  2368. NR_EAX,
  2369. NR_R8,
  2370. NR_RAX,
  2371. NR_XMM0,
  2372. NR_XMM8,
  2373. NR_XMM16,
  2374. NR_XMM24,
  2375. NR_YMM0,
  2376. NR_YMM8,
  2377. NR_YMM16,
  2378. NR_YMM24,
  2379. NR_ZMM0,
  2380. NR_ZMM8,
  2381. NR_ZMM16,
  2382. NR_ZMM24: index:=0;
  2383. NR_R9D,
  2384. NR_ECX,
  2385. NR_R9,
  2386. NR_RCX,
  2387. NR_XMM1,
  2388. NR_XMM9,
  2389. NR_XMM17,
  2390. NR_XMM25,
  2391. NR_YMM1,
  2392. NR_YMM9,
  2393. NR_YMM17,
  2394. NR_YMM25,
  2395. NR_ZMM1,
  2396. NR_ZMM9,
  2397. NR_ZMM17,
  2398. NR_ZMM25: index:=1;
  2399. NR_R10D,
  2400. NR_EDX,
  2401. NR_R10,
  2402. NR_RDX,
  2403. NR_XMM2,
  2404. NR_XMM10,
  2405. NR_XMM18,
  2406. NR_XMM26,
  2407. NR_YMM2,
  2408. NR_YMM10,
  2409. NR_YMM18,
  2410. NR_YMM26,
  2411. NR_ZMM2,
  2412. NR_ZMM10,
  2413. NR_ZMM18,
  2414. NR_ZMM26: index:=2;
  2415. NR_R11D,
  2416. NR_EBX,
  2417. NR_R11,
  2418. NR_RBX,
  2419. NR_XMM3,
  2420. NR_XMM11,
  2421. NR_XMM19,
  2422. NR_XMM27,
  2423. NR_YMM3,
  2424. NR_YMM11,
  2425. NR_YMM19,
  2426. NR_YMM27,
  2427. NR_ZMM3,
  2428. NR_ZMM11,
  2429. NR_ZMM19,
  2430. NR_ZMM27: index:=3;
  2431. NR_R12D,
  2432. NR_ESP,
  2433. NR_R12,
  2434. NR_NO,
  2435. NR_XMM4,
  2436. NR_XMM12,
  2437. NR_XMM20,
  2438. NR_XMM28,
  2439. NR_YMM4,
  2440. NR_YMM12,
  2441. NR_YMM20,
  2442. NR_YMM28,
  2443. NR_ZMM4,
  2444. NR_ZMM12,
  2445. NR_ZMM20,
  2446. NR_ZMM28: index:=4;
  2447. NR_R13D,
  2448. NR_EBP,
  2449. NR_R13,
  2450. NR_RBP,
  2451. NR_XMM5,
  2452. NR_XMM13,
  2453. NR_XMM21,
  2454. NR_XMM29,
  2455. NR_YMM5,
  2456. NR_YMM13,
  2457. NR_YMM21,
  2458. NR_YMM29,
  2459. NR_ZMM5,
  2460. NR_ZMM13,
  2461. NR_ZMM21,
  2462. NR_ZMM29: index:=5;
  2463. NR_R14D,
  2464. NR_ESI,
  2465. NR_R14,
  2466. NR_RSI,
  2467. NR_XMM6,
  2468. NR_XMM14,
  2469. NR_XMM22,
  2470. NR_XMM30,
  2471. NR_YMM6,
  2472. NR_YMM14,
  2473. NR_YMM22,
  2474. NR_YMM30,
  2475. NR_ZMM6,
  2476. NR_ZMM14,
  2477. NR_ZMM22,
  2478. NR_ZMM30: index:=6;
  2479. NR_R15D,
  2480. NR_EDI,
  2481. NR_R15,
  2482. NR_RDI,
  2483. NR_XMM7,
  2484. NR_XMM15,
  2485. NR_XMM23,
  2486. NR_XMM31,
  2487. NR_YMM7,
  2488. NR_YMM15,
  2489. NR_YMM23,
  2490. NR_YMM31,
  2491. NR_ZMM7,
  2492. NR_ZMM15,
  2493. NR_ZMM23,
  2494. NR_ZMM31: index:=7;
  2495. else
  2496. exit;
  2497. end;
  2498. case s of
  2499. 0,
  2500. 1 : scalefactor:=0;
  2501. 2 : scalefactor:=1;
  2502. 4 : scalefactor:=2;
  2503. 8 : scalefactor:=3;
  2504. else
  2505. exit;
  2506. end;
  2507. { If rbp or r13 is used we must always include an offset }
  2508. if (br=NR_NO) or
  2509. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  2510. md:=0
  2511. else
  2512. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2513. md:=1
  2514. else
  2515. md:=2;
  2516. if (br=NR_NO) or (md=2) then
  2517. output.bytes:=4
  2518. else
  2519. output.bytes:=md;
  2520. { SIB needed ? }
  2521. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  2522. begin
  2523. output.sib_present:=false;
  2524. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  2525. end
  2526. else
  2527. begin
  2528. output.sib_present:=true;
  2529. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  2530. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2531. end;
  2532. end;
  2533. output.size:=1+ord(output.sib_present)+output.bytes;
  2534. result:=true;
  2535. end;
  2536. {$elseif defined(i386) or defined(i8086)}
  2537. function process_ea_ref_32(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2538. var
  2539. sym : tasmsymbol;
  2540. md,s : byte;
  2541. base,index,scalefactor,
  2542. o : longint;
  2543. ir,br : Tregister;
  2544. isub,bsub : tsubregister;
  2545. begin
  2546. result:=false;
  2547. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  2548. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  2549. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2550. internalerror(2003010802);
  2551. ir:=input.ref^.index;
  2552. br:=input.ref^.base;
  2553. isub:=getsubreg(ir);
  2554. bsub:=getsubreg(br);
  2555. s:=input.ref^.scalefactor;
  2556. o:=input.ref^.offset;
  2557. sym:=input.ref^.symbol;
  2558. { it's direct address }
  2559. if (br=NR_NO) and (ir=NR_NO) then
  2560. begin
  2561. { it's a pure offset }
  2562. output.sib_present:=false;
  2563. output.bytes:=4;
  2564. output.modrm:=5 or (rfield shl 3);
  2565. end
  2566. else
  2567. { it's an indirection }
  2568. begin
  2569. { 16 bit address? }
  2570. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY,R_SUBMMZ]) and
  2571. (br<>NR_NO) and (bsub=R_SUBD)
  2572. ) then
  2573. begin
  2574. // vector memory (AVX2) =>> ignore
  2575. end
  2576. else if ((ir<>NR_NO) and (isub<>R_SUBD)) or
  2577. ((br<>NR_NO) and (bsub<>R_SUBD)) then
  2578. message(asmw_e_16bit_not_supported);
  2579. {$ifdef OPTEA}
  2580. { make single reg base }
  2581. if (br=NR_NO) and (s=1) then
  2582. begin
  2583. br:=ir;
  2584. ir:=NR_NO;
  2585. end;
  2586. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  2587. if (br=NR_NO) and
  2588. (((s=2) and (ir<>NR_ESP)) or
  2589. (s=3) or (s=5) or (s=9)) then
  2590. begin
  2591. br:=ir;
  2592. dec(s);
  2593. end;
  2594. { swap ESP into base if scalefactor is 1 }
  2595. if (s=1) and (ir=NR_ESP) then
  2596. begin
  2597. ir:=br;
  2598. br:=NR_ESP;
  2599. end;
  2600. {$endif OPTEA}
  2601. { wrong, for various reasons }
  2602. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  2603. exit;
  2604. { base }
  2605. case br of
  2606. NR_EAX : base:=0;
  2607. NR_ECX : base:=1;
  2608. NR_EDX : base:=2;
  2609. NR_EBX : base:=3;
  2610. NR_ESP : base:=4;
  2611. NR_NO,
  2612. NR_EBP : base:=5;
  2613. NR_ESI : base:=6;
  2614. NR_EDI : base:=7;
  2615. else
  2616. exit;
  2617. end;
  2618. { index }
  2619. case ir of
  2620. NR_EAX,
  2621. NR_XMM0,
  2622. NR_YMM0,
  2623. NR_ZMM0: index:=0;
  2624. NR_ECX,
  2625. NR_XMM1,
  2626. NR_YMM1,
  2627. NR_ZMM1: index:=1;
  2628. NR_EDX,
  2629. NR_XMM2,
  2630. NR_YMM2,
  2631. NR_ZMM2: index:=2;
  2632. NR_EBX,
  2633. NR_XMM3,
  2634. NR_YMM3,
  2635. NR_ZMM3: index:=3;
  2636. NR_NO,
  2637. NR_XMM4,
  2638. NR_YMM4,
  2639. NR_ZMM4: index:=4;
  2640. NR_EBP,
  2641. NR_XMM5,
  2642. NR_YMM5,
  2643. NR_ZMM5: index:=5;
  2644. NR_ESI,
  2645. NR_XMM6,
  2646. NR_YMM6,
  2647. NR_ZMM6: index:=6;
  2648. NR_EDI,
  2649. NR_XMM7,
  2650. NR_YMM7,
  2651. NR_ZMM7: index:=7;
  2652. else
  2653. exit;
  2654. end;
  2655. case s of
  2656. 0,
  2657. 1 : scalefactor:=0;
  2658. 2 : scalefactor:=1;
  2659. 4 : scalefactor:=2;
  2660. 8 : scalefactor:=3;
  2661. else
  2662. exit;
  2663. end;
  2664. if (br=NR_NO) or
  2665. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  2666. md:=0
  2667. else
  2668. if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2669. md:=1
  2670. else
  2671. md:=2;
  2672. if (br=NR_NO) or (md=2) then
  2673. output.bytes:=4
  2674. else
  2675. output.bytes:=md;
  2676. { SIB needed ? }
  2677. if (ir=NR_NO) and (br<>NR_ESP) then
  2678. begin
  2679. output.sib_present:=false;
  2680. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2681. end
  2682. else
  2683. begin
  2684. output.sib_present:=true;
  2685. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  2686. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  2687. end;
  2688. end;
  2689. if output.sib_present then
  2690. output.size:=2+output.bytes
  2691. else
  2692. output.size:=1+output.bytes;
  2693. result:=true;
  2694. end;
  2695. procedure maybe_swap_index_base(var br,ir:Tregister);
  2696. var
  2697. tmpreg: Tregister;
  2698. begin
  2699. if ((br=NR_NO) or (br=NR_SI) or (br=NR_DI)) and
  2700. ((ir=NR_NO) or (ir=NR_BP) or (ir=NR_BX)) then
  2701. begin
  2702. tmpreg:=br;
  2703. br:=ir;
  2704. ir:=tmpreg;
  2705. end;
  2706. end;
  2707. function process_ea_ref_16(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2708. var
  2709. sym : tasmsymbol;
  2710. md,s : byte;
  2711. base,
  2712. o : longint;
  2713. ir,br : Tregister;
  2714. isub,bsub : tsubregister;
  2715. begin
  2716. result:=false;
  2717. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  2718. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  2719. internalerror(2003010803);
  2720. ir:=input.ref^.index;
  2721. br:=input.ref^.base;
  2722. isub:=getsubreg(ir);
  2723. bsub:=getsubreg(br);
  2724. s:=input.ref^.scalefactor;
  2725. o:=input.ref^.offset;
  2726. sym:=input.ref^.symbol;
  2727. { it's a direct address }
  2728. if (br=NR_NO) and (ir=NR_NO) then
  2729. begin
  2730. { it's a pure offset }
  2731. output.bytes:=2;
  2732. output.modrm:=6 or (rfield shl 3);
  2733. end
  2734. else
  2735. { it's an indirection }
  2736. begin
  2737. { 32 bit address? }
  2738. if ((ir<>NR_NO) and (isub<>R_SUBW)) or
  2739. ((br<>NR_NO) and (bsub<>R_SUBW)) then
  2740. message(asmw_e_32bit_not_supported);
  2741. { scalefactor can only be 1 in 16-bit addresses }
  2742. if (s<>1) and (ir<>NR_NO) then
  2743. exit;
  2744. maybe_swap_index_base(br,ir);
  2745. if (br=NR_BX) and (ir=NR_SI) then
  2746. base:=0
  2747. else if (br=NR_BX) and (ir=NR_DI) then
  2748. base:=1
  2749. else if (br=NR_BP) and (ir=NR_SI) then
  2750. base:=2
  2751. else if (br=NR_BP) and (ir=NR_DI) then
  2752. base:=3
  2753. else if (br=NR_NO) and (ir=NR_SI) then
  2754. base:=4
  2755. else if (br=NR_NO) and (ir=NR_DI) then
  2756. base:=5
  2757. else if (br=NR_BP) and (ir=NR_NO) then
  2758. base:=6
  2759. else if (br=NR_BX) and (ir=NR_NO) then
  2760. base:=7
  2761. else
  2762. exit;
  2763. if (base<>6) and (o=0) and (sym=nil) then
  2764. md:=0
  2765. else if ((o>=-128) and (o<=127) and (sym=nil) and (not(uselargeoffset) or (o = 0))) then
  2766. md:=1
  2767. else
  2768. md:=2;
  2769. output.bytes:=md;
  2770. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  2771. end;
  2772. output.size:=1+output.bytes;
  2773. output.sib_present:=false;
  2774. result:=true;
  2775. end;
  2776. {$endif}
  2777. function process_ea(const input:toper;out output:ea;rfield:longint; uselargeoffset: boolean):boolean;
  2778. var
  2779. rv : byte;
  2780. begin
  2781. result:=false;
  2782. fillchar(output,sizeof(output),0);
  2783. {Register ?}
  2784. if (input.typ=top_reg) then
  2785. begin
  2786. rv:=regval(input.reg);
  2787. output.modrm:=$c0 or (rfield shl 3) or rv;
  2788. output.size:=1;
  2789. {$ifdef x86_64}
  2790. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  2791. {$endif x86_64}
  2792. result:=true;
  2793. exit;
  2794. end;
  2795. {No register, so memory reference.}
  2796. if input.typ<>top_ref then
  2797. internalerror(200409263);
  2798. {$if defined(x86_64)}
  2799. result:=process_ea_ref_64_32(input,output,rfield, uselargeoffset);
  2800. {$elseif defined(i386) or defined(i8086)}
  2801. if is_16_bit_ref(input.ref^) then
  2802. result:=process_ea_ref_16(input,output,rfield, uselargeoffset)
  2803. else
  2804. result:=process_ea_ref_32(input,output,rfield, uselargeoffset);
  2805. {$endif}
  2806. end;
  2807. function taicpu.calcsize(p:PInsEntry):shortint;
  2808. var
  2809. codes : pchar;
  2810. c : byte;
  2811. len : shortint;
  2812. ea_data : ea;
  2813. exists_evex: boolean;
  2814. exists_vex: boolean;
  2815. exists_vex_extension: boolean;
  2816. exists_prefix_66: boolean;
  2817. exists_prefix_F2: boolean;
  2818. exists_prefix_F3: boolean;
  2819. exists_l256: boolean;
  2820. exists_l512: boolean;
  2821. exists_EVEXW1: boolean;
  2822. {$ifdef x86_64}
  2823. omit_rexw : boolean;
  2824. {$endif x86_64}
  2825. begin
  2826. len:=0;
  2827. codes:=@p^.code[0];
  2828. exists_vex := false;
  2829. exists_vex_extension := false;
  2830. exists_prefix_66 := false;
  2831. exists_prefix_F2 := false;
  2832. exists_prefix_F3 := false;
  2833. exists_evex := false;
  2834. exists_l256 := false;
  2835. exists_l512 := false;
  2836. exists_EVEXW1 := false;
  2837. {$ifdef x86_64}
  2838. rex:=0;
  2839. omit_rexw:=false;
  2840. {$endif x86_64}
  2841. repeat
  2842. c:=ord(codes^);
  2843. inc(codes);
  2844. case c of
  2845. &0 :
  2846. break;
  2847. &1,&2,&3 :
  2848. begin
  2849. inc(codes,c);
  2850. inc(len,c);
  2851. end;
  2852. &10,&11,&12 :
  2853. begin
  2854. {$ifdef x86_64}
  2855. rex:=rex or (rexbits(oper[c-&10]^.reg) and $F1);
  2856. {$endif x86_64}
  2857. inc(codes);
  2858. inc(len);
  2859. end;
  2860. &13,&23 :
  2861. begin
  2862. inc(codes);
  2863. inc(len);
  2864. end;
  2865. &4,&5,&6,&7 :
  2866. begin
  2867. if opsize={$ifdef i8086}S_L{$else}S_W{$endif} then
  2868. inc(len,2)
  2869. else
  2870. inc(len);
  2871. end;
  2872. &14,&15,&16,
  2873. &20,&21,&22,
  2874. &24,&25,&26,&27,
  2875. &50,&51,&52 :
  2876. inc(len);
  2877. &30,&31,&32,
  2878. &37,
  2879. &60,&61,&62 :
  2880. inc(len,2);
  2881. &34,&35,&36:
  2882. begin
  2883. {$ifdef i8086}
  2884. inc(len,2);
  2885. {$else i8086}
  2886. if opsize=S_Q then
  2887. inc(len,8)
  2888. else
  2889. inc(len,4);
  2890. {$endif i8086}
  2891. end;
  2892. &44,&45,&46:
  2893. inc(len,sizeof(pint));
  2894. &54,&55,&56:
  2895. inc(len,8);
  2896. &40,&41,&42,
  2897. &70,&71,&72,
  2898. &254,&255,&256 :
  2899. inc(len,4);
  2900. &64,&65,&66:
  2901. {$ifdef i8086}
  2902. inc(len,2);
  2903. {$else i8086}
  2904. inc(len,4);
  2905. {$endif i8086}
  2906. &74,&75,&76,&77: ; // ignore vex-coded operand-idx
  2907. &320,&321,&322 :
  2908. begin
  2909. case (oper[c-&320]^.ot and OT_SIZE_MASK) of
  2910. {$if defined(i386) or defined(x86_64)}
  2911. OT_BITS16 :
  2912. {$elseif defined(i8086)}
  2913. OT_BITS32 :
  2914. {$endif}
  2915. inc(len);
  2916. {$ifdef x86_64}
  2917. OT_BITS64:
  2918. begin
  2919. rex:=rex or $48;
  2920. end;
  2921. {$endif x86_64}
  2922. end;
  2923. end;
  2924. &310 :
  2925. {$if defined(x86_64)}
  2926. { every insentry with code 0310 must be marked with NOX86_64 }
  2927. InternalError(2011051301);
  2928. {$elseif defined(i386)}
  2929. inc(len);
  2930. {$elseif defined(i8086)}
  2931. {nothing};
  2932. {$endif}
  2933. &311 :
  2934. {$if defined(x86_64) or defined(i8086)}
  2935. inc(len)
  2936. {$endif x86_64 or i8086}
  2937. ;
  2938. &324 :
  2939. {$ifndef i8086}
  2940. inc(len)
  2941. {$endif not i8086}
  2942. ;
  2943. &326 :
  2944. begin
  2945. {$ifdef x86_64}
  2946. rex:=rex or $48;
  2947. {$endif x86_64}
  2948. end;
  2949. &312,
  2950. &323,
  2951. &327,
  2952. &331,&332: ;
  2953. &325:
  2954. {$ifdef i8086}
  2955. inc(len)
  2956. {$endif i8086}
  2957. ;
  2958. &333:
  2959. begin
  2960. inc(len);
  2961. exists_prefix_F2 := true;
  2962. end;
  2963. &334:
  2964. begin
  2965. inc(len);
  2966. exists_prefix_F3 := true;
  2967. end;
  2968. &361:
  2969. begin
  2970. {$ifndef i8086}
  2971. inc(len);
  2972. exists_prefix_66 := true;
  2973. {$endif not i8086}
  2974. end;
  2975. &335:
  2976. {$ifdef x86_64}
  2977. omit_rexw:=true
  2978. {$endif x86_64}
  2979. ;
  2980. &336,
  2981. &337: {nothing};
  2982. &100..&227 :
  2983. begin
  2984. {$ifdef x86_64}
  2985. if (c<&177) then
  2986. begin
  2987. if (oper[c and 7]^.typ=top_reg) then
  2988. begin
  2989. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2990. end;
  2991. end;
  2992. {$endif x86_64}
  2993. if (oper[(c shr 3) and 7]^.typ = top_ref) and
  2994. (oper[(c shr 3) and 7]^.ref^.offset <> 0) then
  2995. begin
  2996. if (exists_vex and exists_evex and CheckUseEVEX) or
  2997. (not(exists_vex) and exists_evex) then
  2998. begin
  2999. CheckEVEXTuple(oper[(c shr 3) and 7]^, p, not(exists_l256 or exists_l512), exists_l256, exists_l512, exists_EVEXW1);
  3000. //const aInput:toper; aInsEntry: pInsentry; aIsVector128, aIsVector256, aIsVector512, aIsEVEXW1: boolean);
  3001. end;
  3002. end;
  3003. if process_ea(oper[(c shr 3) and 7]^, ea_data, 0, EVEXTupleState = etsNotTuple) then
  3004. inc(len,ea_data.size)
  3005. else Message(asmw_e_invalid_effective_address);
  3006. {$ifdef x86_64}
  3007. rex:=rex or ea_data.rex;
  3008. {$endif x86_64}
  3009. end;
  3010. &350:
  3011. begin
  3012. exists_evex := true;
  3013. end;
  3014. &351: exists_l512 := true; // EVEX length bit 512
  3015. &352: exists_EVEXW1 := true; // EVEX W1
  3016. &362: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  3017. // =>> DEFAULT = 2 Bytes
  3018. begin
  3019. //if not(exists_vex) then
  3020. //begin
  3021. // inc(len, 2);
  3022. //end;
  3023. exists_vex := true;
  3024. end;
  3025. &363: // REX.W = 1
  3026. // =>> VEX prefix length = 3
  3027. begin
  3028. if not(exists_vex_extension) then
  3029. begin
  3030. //inc(len);
  3031. exists_vex_extension := true;
  3032. end;
  3033. end;
  3034. &364: exists_l256 := true; // VEX length bit 256
  3035. &366, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  3036. &367: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  3037. &370: // VEX-Extension prefix $0F
  3038. // ignore for calculating length
  3039. ;
  3040. &371, // VEX-Extension prefix $0F38
  3041. &372: // VEX-Extension prefix $0F3A
  3042. begin
  3043. if not(exists_vex_extension) then
  3044. begin
  3045. //inc(len);
  3046. exists_vex_extension := true;
  3047. end;
  3048. end;
  3049. &300,&301,&302:
  3050. begin
  3051. {$if defined(x86_64) or defined(i8086)}
  3052. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  3053. inc(len);
  3054. {$endif x86_64 or i8086}
  3055. end;
  3056. else
  3057. InternalError(200603141);
  3058. end;
  3059. until false;
  3060. {$ifdef x86_64}
  3061. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  3062. Message(asmw_e_bad_reg_with_rex);
  3063. rex:=rex and $4F; { reset extra bits in upper nibble }
  3064. if omit_rexw then
  3065. begin
  3066. if rex=$48 then { remove rex entirely? }
  3067. rex:=0
  3068. else
  3069. rex:=rex and $F7;
  3070. end;
  3071. if not(exists_vex or exists_evex) then
  3072. begin
  3073. if rex<>0 then
  3074. Inc(len);
  3075. end;
  3076. {$endif}
  3077. if exists_evex and
  3078. exists_vex then
  3079. begin
  3080. if CheckUseEVEX then
  3081. begin
  3082. inc(len, 4);
  3083. end
  3084. else
  3085. begin
  3086. inc(len, 2);
  3087. if exists_vex_extension then inc(len);
  3088. {$ifdef x86_64}
  3089. if not(exists_vex_extension) then
  3090. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3091. {$endif x86_64}
  3092. end;
  3093. if exists_prefix_66 then dec(len);
  3094. if exists_prefix_F2 then dec(len);
  3095. if exists_prefix_F3 then dec(len);
  3096. end
  3097. else if exists_evex then
  3098. begin
  3099. inc(len, 4);
  3100. if exists_prefix_66 then dec(len);
  3101. if exists_prefix_F2 then dec(len);
  3102. if exists_prefix_F3 then dec(len);
  3103. end
  3104. else
  3105. begin
  3106. if exists_vex then
  3107. begin
  3108. inc(len,2);
  3109. if exists_prefix_66 then dec(len);
  3110. if exists_prefix_F2 then dec(len);
  3111. if exists_prefix_F3 then dec(len);
  3112. if exists_vex_extension then inc(len);
  3113. {$ifdef x86_64}
  3114. if not(exists_vex_extension) then
  3115. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  3116. {$endif x86_64}
  3117. end;
  3118. end;
  3119. calcsize:=len;
  3120. end;
  3121. procedure taicpu.write0x66prefix(objdata:TObjData);
  3122. const
  3123. b66: Byte=$66;
  3124. begin
  3125. {$ifdef i8086}
  3126. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3127. Message(asmw_e_instruction_not_supported_by_cpu);
  3128. {$endif i8086}
  3129. objdata.writebytes(b66,1);
  3130. end;
  3131. procedure taicpu.write0x67prefix(objdata:TObjData);
  3132. const
  3133. b67: Byte=$67;
  3134. begin
  3135. {$ifdef i8086}
  3136. if (objdata.CPUType<>cpu_none) and (objdata.CPUType<cpu_386) then
  3137. Message(asmw_e_instruction_not_supported_by_cpu);
  3138. {$endif i8086}
  3139. objdata.writebytes(b67,1);
  3140. end;
  3141. procedure taicpu.gencode(objdata: TObjData);
  3142. {
  3143. * the actual codes (C syntax, i.e. octal):
  3144. * \0 - terminates the code. (Unless it's a literal of course.)
  3145. * \1, \2, \3 - that many literal bytes follow in the code stream
  3146. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  3147. * (POP is never used for CS) depending on operand 0
  3148. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  3149. * on operand 0
  3150. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  3151. * to the register value of operand 0, 1 or 2
  3152. * \13 - a literal byte follows in the code stream, to be added
  3153. * to the condition code value of the instruction.
  3154. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  3155. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  3156. * \23 - a literal byte follows in the code stream, to be added
  3157. * to the inverted condition code value of the instruction
  3158. * (inverted version of \13).
  3159. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  3160. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  3161. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  3162. * assembly mode or the address-size override on the operand
  3163. * \37 - a word constant, from the _segment_ part of operand 0
  3164. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  3165. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  3166. on the address size of instruction
  3167. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  3168. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  3169. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  3170. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  3171. * assembly mode or the address-size override on the operand
  3172. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  3173. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  3174. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  3175. * field the register value of operand b.
  3176. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  3177. * field equal to digit b.
  3178. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  3179. * \300,\301,\302 - might be an 0x67, depending on the address size of
  3180. * the memory reference in operand x.
  3181. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  3182. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  3183. * \312 - (disassembler only) invalid with non-default address size.
  3184. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  3185. * size of operand x.
  3186. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  3187. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  3188. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  3189. * \327 - indicates that this instruction is only valid when the
  3190. * operand size is the default (instruction to disassembler,
  3191. * generates no code in the assembler)
  3192. * \331 - instruction not valid with REP prefix. Hint for
  3193. * disassembler only; for SSE instructions.
  3194. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  3195. * \333 - 0xF3 prefix for SSE instructions
  3196. * \334 - 0xF2 prefix for SSE instructions
  3197. * \335 - Indicates 64-bit operand size with REX.W not necessary / 64-bit scalar vector operand size
  3198. * \336 - Indicates 32-bit scalar vector operand size
  3199. * \337 - Indicates 64-bit scalar vector operand size
  3200. * \350 - EVEX prefix for AVX instructions
  3201. * \351 - EVEX Vector length 512
  3202. * \352 - EVEX W1
  3203. * \361 - 0x66 prefix for SSE instructions
  3204. * \362 - VEX prefix for AVX instructions
  3205. * \363 - VEX W1
  3206. * \364 - VEX Vector length 256
  3207. * \366 - operand 2 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3208. * \367 - operand 3 (ymmreg,zmmreg) encoded in bit 4-7 of the immediate byte
  3209. * \370 - VEX 0F-FLAG
  3210. * \371 - VEX 0F38-FLAG
  3211. * \372 - VEX 0F3A-FLAG
  3212. }
  3213. var
  3214. {$ifdef i8086}
  3215. currval : longint;
  3216. {$else i8086}
  3217. currval : aint;
  3218. {$endif i8086}
  3219. currsym : tobjsymbol;
  3220. currrelreloc,
  3221. currabsreloc,
  3222. currabsreloc32 : TObjRelocationType;
  3223. {$ifdef x86_64}
  3224. rexwritten : boolean;
  3225. {$endif x86_64}
  3226. procedure getvalsym(opidx:longint);
  3227. begin
  3228. case oper[opidx]^.typ of
  3229. top_ref :
  3230. begin
  3231. currval:=oper[opidx]^.ref^.offset;
  3232. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  3233. {$ifdef i8086}
  3234. if oper[opidx]^.ref^.refaddr=addr_seg then
  3235. begin
  3236. currrelreloc:=RELOC_SEGREL;
  3237. currabsreloc:=RELOC_SEG;
  3238. currabsreloc32:=RELOC_SEG;
  3239. end
  3240. else if oper[opidx]^.ref^.refaddr=addr_dgroup then
  3241. begin
  3242. currrelreloc:=RELOC_DGROUPREL;
  3243. currabsreloc:=RELOC_DGROUP;
  3244. currabsreloc32:=RELOC_DGROUP;
  3245. end
  3246. else if oper[opidx]^.ref^.refaddr=addr_fardataseg then
  3247. begin
  3248. currrelreloc:=RELOC_FARDATASEGREL;
  3249. currabsreloc:=RELOC_FARDATASEG;
  3250. currabsreloc32:=RELOC_FARDATASEG;
  3251. end
  3252. else
  3253. {$endif i8086}
  3254. {$ifdef i386}
  3255. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  3256. (tf_pic_uses_got in target_info.flags) then
  3257. begin
  3258. currrelreloc:=RELOC_PLT32;
  3259. currabsreloc:=RELOC_GOT32;
  3260. currabsreloc32:=RELOC_GOT32;
  3261. end
  3262. else if oper[opidx]^.ref^.refaddr=addr_ntpoff then
  3263. begin
  3264. currrelreloc:=RELOC_NTPOFF;
  3265. currabsreloc:=RELOC_NTPOFF;
  3266. currabsreloc32:=RELOC_NTPOFF;
  3267. end
  3268. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  3269. begin
  3270. currrelreloc:=RELOC_TLSGD;
  3271. currabsreloc:=RELOC_TLSGD;
  3272. currabsreloc32:=RELOC_TLSGD;
  3273. end
  3274. else
  3275. {$endif i386}
  3276. {$ifdef x86_64}
  3277. if oper[opidx]^.ref^.refaddr=addr_pic then
  3278. begin
  3279. currrelreloc:=RELOC_PLT32;
  3280. currabsreloc:=RELOC_GOTPCREL;
  3281. currabsreloc32:=RELOC_GOTPCREL;
  3282. end
  3283. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  3284. begin
  3285. currrelreloc:=RELOC_RELATIVE;
  3286. currabsreloc:=RELOC_RELATIVE;
  3287. currabsreloc32:=RELOC_RELATIVE;
  3288. end
  3289. else if oper[opidx]^.ref^.refaddr=addr_tpoff then
  3290. begin
  3291. currrelreloc:=RELOC_TPOFF;
  3292. currabsreloc:=RELOC_TPOFF;
  3293. currabsreloc32:=RELOC_TPOFF;
  3294. end
  3295. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  3296. begin
  3297. currrelreloc:=RELOC_TLSGD;
  3298. currabsreloc:=RELOC_TLSGD;
  3299. currabsreloc32:=RELOC_TLSGD;
  3300. end
  3301. else
  3302. {$endif x86_64}
  3303. begin
  3304. currrelreloc:=RELOC_RELATIVE;
  3305. currabsreloc:=RELOC_ABSOLUTE;
  3306. currabsreloc32:=RELOC_ABSOLUTE32;
  3307. end;
  3308. end;
  3309. top_const :
  3310. begin
  3311. {$ifdef i8086}
  3312. currval:=longint(oper[opidx]^.val);
  3313. {$else i8086}
  3314. currval:=aint(oper[opidx]^.val);
  3315. {$endif i8086}
  3316. currsym:=nil;
  3317. currabsreloc:=RELOC_ABSOLUTE;
  3318. currabsreloc32:=RELOC_ABSOLUTE32;
  3319. end;
  3320. else
  3321. Message(asmw_e_immediate_or_reference_expected);
  3322. end;
  3323. end;
  3324. {$ifdef x86_64}
  3325. procedure maybewriterex;
  3326. begin
  3327. if (rex<>0) and not(rexwritten) then
  3328. begin
  3329. rexwritten:=true;
  3330. objdata.writebytes(rex,1);
  3331. end;
  3332. end;
  3333. {$endif x86_64}
  3334. procedure objdata_writereloc(Data:TRelocDataInt;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  3335. begin
  3336. {$ifdef i386}
  3337. { Special case of '_GLOBAL_OFFSET_TABLE_'
  3338. which needs a special relocation type R_386_GOTPC }
  3339. if assigned (p) and
  3340. (p.name='_GLOBAL_OFFSET_TABLE_') and
  3341. (tf_pic_uses_got in target_info.flags) then
  3342. begin
  3343. { nothing else than a 4 byte relocation should occur
  3344. for GOT }
  3345. if len<>4 then
  3346. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3347. Reloctype:=RELOC_GOTPC;
  3348. { We need to add the offset of the relocation
  3349. of _GLOBAL_OFFSET_TABLE symbol within
  3350. the current instruction }
  3351. inc(data,objdata.currobjsec.size-insoffset);
  3352. end;
  3353. {$endif i386}
  3354. objdata.writereloc(data,len,p,Reloctype);
  3355. {$ifdef x86_64}
  3356. { Computed offset is not yet correct for GOTPC relocation }
  3357. { RELOC_GOTPCREL, RELOC_REX_GOTPCRELX, RELOC_GOTPCRELX need special handling }
  3358. if assigned(p) and (RelocType in [RELOC_GOTPCREL, RELOC_REX_GOTPCRELX, RELOC_GOTPCRELX]) and
  3359. { These relocations seem to be used only for ELF
  3360. which always has relocs_use_addend set to true
  3361. so that it is the orgsize of the last relocation which needs to be fixed PM }
  3362. (insend<>objdata.CurrObjSec.size) then
  3363. dec(TObjRelocation(objdata.CurrObjSec.ObjRelocations.Last).orgsize,insend-objdata.CurrObjSec.size);
  3364. {$endif}
  3365. end;
  3366. const
  3367. CondVal:array[TAsmCond] of byte=($0,
  3368. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  3369. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  3370. $0, $A, $A, $B, $8, $4);
  3371. var
  3372. i: integer;
  3373. c : byte;
  3374. pb : pbyte;
  3375. codes : pchar;
  3376. bytes : array[0..3] of byte;
  3377. rfield,
  3378. data,s,opidx : longint;
  3379. ea_data : ea;
  3380. relsym : TObjSymbol;
  3381. needed_VEX_Extension: boolean;
  3382. needed_VEX: boolean;
  3383. needed_EVEX: boolean;
  3384. {$ifdef x86_64}
  3385. needed_VSIB: boolean;
  3386. {$endif x86_64}
  3387. opmode: integer;
  3388. VEXvvvv: byte;
  3389. VEXmmmmm: byte;
  3390. {
  3391. VEXw : byte;
  3392. VEXpp : byte;
  3393. VEXll : byte;
  3394. }
  3395. EVEXvvvv: byte;
  3396. EVEXpp: byte;
  3397. EVEXr: byte;
  3398. EVEXx: byte;
  3399. EVEXv: byte;
  3400. EVEXll: byte;
  3401. EVEXw1: byte;
  3402. EVEXz : byte;
  3403. EVEXaaa : byte;
  3404. EVEXb : byte;
  3405. EVEXmm : byte;
  3406. begin
  3407. { safety check }
  3408. if objdata.currobjsec.size<>longword(insoffset) then
  3409. internalerror(200130121);
  3410. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  3411. currsym:=nil;
  3412. currabsreloc:=RELOC_NONE;
  3413. currabsreloc32:=RELOC_NONE;
  3414. currrelreloc:=RELOC_NONE;
  3415. currval:=0;
  3416. { check instruction's processor level }
  3417. { todo: maybe adapt and enable this code for i386 and x86_64 as well }
  3418. {$ifdef i8086}
  3419. if objdata.CPUType<>cpu_none then
  3420. begin
  3421. if IF_8086 in insentry^.flags then
  3422. else if IF_186 in insentry^.flags then
  3423. begin
  3424. if objdata.CPUType<cpu_186 then
  3425. Message(asmw_e_instruction_not_supported_by_cpu);
  3426. end
  3427. else if IF_286 in insentry^.flags then
  3428. begin
  3429. if objdata.CPUType<cpu_286 then
  3430. Message(asmw_e_instruction_not_supported_by_cpu);
  3431. end
  3432. else if IF_386 in insentry^.flags then
  3433. begin
  3434. if objdata.CPUType<cpu_386 then
  3435. Message(asmw_e_instruction_not_supported_by_cpu);
  3436. end
  3437. else if IF_486 in insentry^.flags then
  3438. begin
  3439. if objdata.CPUType<cpu_486 then
  3440. Message(asmw_e_instruction_not_supported_by_cpu);
  3441. end
  3442. else if IF_PENT in insentry^.flags then
  3443. begin
  3444. if objdata.CPUType<cpu_Pentium then
  3445. Message(asmw_e_instruction_not_supported_by_cpu);
  3446. end
  3447. else if IF_P6 in insentry^.flags then
  3448. begin
  3449. if objdata.CPUType<cpu_Pentium2 then
  3450. Message(asmw_e_instruction_not_supported_by_cpu);
  3451. end
  3452. else if IF_KATMAI in insentry^.flags then
  3453. begin
  3454. if objdata.CPUType<cpu_Pentium3 then
  3455. Message(asmw_e_instruction_not_supported_by_cpu);
  3456. end
  3457. else if insentry^.flags*[IF_WILLAMETTE,IF_PRESCOTT]<>[] then
  3458. begin
  3459. if objdata.CPUType<cpu_Pentium4 then
  3460. Message(asmw_e_instruction_not_supported_by_cpu);
  3461. end
  3462. else if IF_NEC in insentry^.flags then
  3463. begin
  3464. { the NEC V20/V30 extensions are incompatible with 386+, due to overlapping opcodes }
  3465. if objdata.CPUType>=cpu_386 then
  3466. Message(asmw_e_instruction_not_supported_by_cpu);
  3467. end
  3468. else if IF_SANDYBRIDGE in insentry^.flags then
  3469. begin
  3470. { todo: handle these properly }
  3471. end;
  3472. end;
  3473. {$endif i8086}
  3474. { load data to write }
  3475. codes:=insentry^.code;
  3476. {$ifdef x86_64}
  3477. rexwritten:=false;
  3478. {$endif x86_64}
  3479. { Force word push/pop for registers }
  3480. if (opsize={$ifdef i8086}S_L{$else}S_W{$endif}) and ((codes[0]=#4) or (codes[0]=#6) or
  3481. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  3482. write0x66prefix(objdata);
  3483. // needed VEX Prefix (for AVX etc.)
  3484. needed_VEX := false;
  3485. needed_EVEX := false;
  3486. needed_VEX_Extension := false;
  3487. {$ifdef x86_64}
  3488. needed_VSIB := false;
  3489. {$endif x86_64}
  3490. opmode := -1;
  3491. VEXvvvv := 0;
  3492. VEXmmmmm := 0;
  3493. {
  3494. VEXll := 0;
  3495. VEXw := 0;
  3496. VEXpp := 0;
  3497. }
  3498. EVEXpp := 0;
  3499. EVEXvvvv := 0;
  3500. EVEXr := 0;
  3501. EVEXx := 0;
  3502. EVEXv := 0;
  3503. EVEXll := 0;
  3504. EVEXw1 := 0;
  3505. EVEXz := 0;
  3506. EVEXaaa := 0;
  3507. EVEXb := 0;
  3508. EVEXmm := 0;
  3509. repeat
  3510. c:=ord(codes^);
  3511. inc(codes);
  3512. case c of
  3513. &0: break;
  3514. &1,
  3515. &2,
  3516. &3: inc(codes,c);
  3517. &10,
  3518. &11,
  3519. &12: inc(codes, 1);
  3520. &74: opmode := 0;
  3521. &75: opmode := 1;
  3522. &76: opmode := 2;
  3523. &100..&227: begin
  3524. // AVX 512 - EVEX
  3525. // check operands
  3526. if (c shr 6) = 1 then
  3527. begin
  3528. opidx := c and 7;
  3529. if ops > opidx then
  3530. begin
  3531. if (oper[opidx]^.typ=top_reg) then
  3532. if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXr := 1;
  3533. end
  3534. end
  3535. else EVEXr := 1; // modrm:reg not used =>> 1
  3536. opidx := (c shr 3) and 7;
  3537. if ops > opidx then
  3538. case oper[opidx]^.typ of
  3539. top_reg: if getsupreg(oper[opidx]^.reg) and $10 = $0 then EVEXx := 1;
  3540. top_ref: begin
  3541. if getsupreg(oper[opidx]^.ref^.index) and $08 = $0 then EVEXx := 1;
  3542. if getsubreg(oper[opidx]^.ref^.index) in [R_SUBMMX,R_SUBMMY,R_SUBMMZ] then
  3543. begin
  3544. // VSIB memory addresing
  3545. if getsupreg(oper[opidx]^.ref^.index) and $10 = $0 then EVEXv := 1; // VECTOR-Index
  3546. {$ifdef x86_64}
  3547. needed_VSIB := true;
  3548. {$endif x86_64}
  3549. end;
  3550. end;
  3551. else
  3552. Internalerror(2019081014);
  3553. end;
  3554. end;
  3555. &333: begin
  3556. VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  3557. //VEXpp := $02; // set SIMD-prefix $F3
  3558. EVEXpp := $02; // set SIMD-prefix $F3
  3559. end;
  3560. &334: begin
  3561. VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  3562. //VEXpp := $03; // set SIMD-prefix $F2
  3563. EVEXpp := $03; // set SIMD-prefix $F2
  3564. end;
  3565. &350: needed_EVEX := true; // AVX512 instruction or AVX128/256/512-instruction (depended on operands [x,y,z]mm16..)
  3566. &351: EVEXll := $02; // vectorlength = 512 bits AND no scalar
  3567. &352: EVEXw1 := $01;
  3568. &361: begin
  3569. VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  3570. //VEXpp := $01; // set SIMD-prefix $66
  3571. EVEXpp := $01; // set SIMD-prefix $66
  3572. end;
  3573. &362: needed_VEX := true;
  3574. &363: begin
  3575. needed_VEX_Extension := true;
  3576. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  3577. //VEXw := 1;
  3578. end;
  3579. &364: begin
  3580. VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  3581. //VEXll := $01;
  3582. EVEXll := $01;
  3583. end;
  3584. &366,
  3585. &367: begin
  3586. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  3587. if (ops > opidx) and
  3588. (oper[opidx]^.typ=top_reg) and
  3589. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_xmm) or
  3590. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_ymm) or
  3591. (oper[opidx]^.ot and OT_REG_EXTRA_MASK = otf_reg_zmm)) then
  3592. if (getsupreg(oper[opidx]^.reg) and $10 = $0) then EVEXx := 1;
  3593. end;
  3594. &370: begin
  3595. VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  3596. EVEXmm := $01;
  3597. end;
  3598. &371: begin
  3599. needed_VEX_Extension := true;
  3600. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  3601. EVEXmm := $02;
  3602. end;
  3603. &372: begin
  3604. needed_VEX_Extension := true;
  3605. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  3606. EVEXmm := $03;
  3607. end;
  3608. end;
  3609. until false;
  3610. {$ifndef x86_64}
  3611. EVEXv := 1;
  3612. EVEXx := 1;
  3613. EVEXr := 1;
  3614. {$endif}
  3615. if needed_VEX or needed_EVEX then
  3616. begin
  3617. if (opmode > ops) or
  3618. (opmode < -1) then
  3619. begin
  3620. Internalerror(777100);
  3621. end
  3622. else if opmode = -1 then
  3623. begin
  3624. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  3625. EVEXvvvv := $0F;
  3626. {$ifdef x86_64}
  3627. if not(needed_vsib) then EVEXv := 1;
  3628. {$endif x86_64}
  3629. end
  3630. else if oper[opmode]^.typ = top_reg then
  3631. begin
  3632. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  3633. EVEXvvvv := not(regval(oper[opmode]^.reg)) and $07;
  3634. {$ifdef x86_64}
  3635. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  3636. if rexbits(oper[opmode]^.reg) = 0 then EVEXvvvv := EVEXvvvv or (1 shl 3);
  3637. if getsupreg(oper[opmode]^.reg) and $10 = 0 then EVEXv := 1;
  3638. {$else}
  3639. VEXvvvv := VEXvvvv or (1 shl 6);
  3640. EVEXvvvv := EVEXvvvv or (1 shl 3);
  3641. {$endif x86_64}
  3642. end
  3643. else Internalerror(777101);
  3644. if not(needed_VEX_Extension) then
  3645. begin
  3646. {$ifdef x86_64}
  3647. if rex and $0B <> 0 then needed_VEX_Extension := true;
  3648. {$endif x86_64}
  3649. end;
  3650. //TG
  3651. if needed_EVEX and needed_VEX then
  3652. begin
  3653. needed_EVEX := false;
  3654. if CheckUseEVEX then
  3655. begin
  3656. // EVEX-Flags r,v,x indicate extended-MMregister
  3657. // Flag = 0 =>> [x,y,z]mm16..[x,y,z]mm31
  3658. // Flag = 1 =>> [x,y,z]mm00..[x,y,z]mm15
  3659. needed_EVEX := true;
  3660. needed_VEX := false;
  3661. needed_VEX_Extension := false;
  3662. end;
  3663. end;
  3664. if needed_EVEX then
  3665. begin
  3666. EVEXaaa:= 0;
  3667. EVEXz := 0;
  3668. for i := 0 to ops - 1 do
  3669. if (oper[i]^.vopext and OTVE_VECTOR_MASK) <> 0 then
  3670. begin
  3671. if oper[i]^.vopext and OTVE_VECTOR_WRITEMASK = OTVE_VECTOR_WRITEMASK then
  3672. begin
  3673. EVEXaaa := oper[i]^.vopext and $07;
  3674. if oper[i]^.vopext and OTVE_VECTOR_ZERO = OTVE_VECTOR_ZERO then EVEXz := 1;
  3675. end;
  3676. if oper[i]^.vopext and OTVE_VECTOR_BCST = OTVE_VECTOR_BCST then
  3677. begin
  3678. EVEXb := 1;
  3679. end;
  3680. // flag EVEXb is multiple use (broadcast, sae and er)
  3681. if oper[i]^.vopext and OTVE_VECTOR_SAE = OTVE_VECTOR_SAE then
  3682. begin
  3683. EVEXb := 1;
  3684. end;
  3685. if oper[i]^.vopext and OTVE_VECTOR_ER = OTVE_VECTOR_ER then
  3686. begin
  3687. EVEXb := 1;
  3688. case oper[i]^.vopext and OTVE_VECTOR_ER_MASK of
  3689. OTVE_VECTOR_RNSAE: EVEXll := 0;
  3690. OTVE_VECTOR_RDSAE: EVEXll := 1;
  3691. OTVE_VECTOR_RUSAE: EVEXll := 2;
  3692. OTVE_VECTOR_RZSAE: EVEXll := 3;
  3693. else EVEXll := 0;
  3694. end;
  3695. end;
  3696. end;
  3697. bytes[0] := $62;
  3698. bytes[1] := ((EVEXmm and $03) shl 0) or
  3699. {$ifdef x86_64}
  3700. ((not(rex) and $05) shl 5) or
  3701. {$else}
  3702. (($05) shl 5) or
  3703. {$endif x86_64}
  3704. ((EVEXr and $01) shl 4) or
  3705. ((EVEXx and $01) shl 6);
  3706. bytes[2] := ((EVEXpp and $03) shl 0) or
  3707. ((1 and $01) shl 2) or // fixed in AVX512
  3708. ((EVEXvvvv and $0F) shl 3) or
  3709. ((EVEXw1 and $01) shl 7);
  3710. bytes[3] := ((EVEXaaa and $07) shl 0) or
  3711. ((EVEXv and $01) shl 3) or
  3712. ((EVEXb and $01) shl 4) or
  3713. ((EVEXll and $03) shl 5) or
  3714. ((EVEXz and $01) shl 7);
  3715. objdata.writebytes(bytes,4);
  3716. end
  3717. else if needed_VEX_Extension then
  3718. begin
  3719. // VEX-Prefix-Length = 3 Bytes
  3720. {$ifdef x86_64}
  3721. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  3722. VEXvvvv := VEXvvvv or ((rex and $08) shl 7); // set REX.w
  3723. {$else}
  3724. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  3725. {$endif x86_64}
  3726. bytes[0]:=$C4;
  3727. bytes[1]:=VEXmmmmm;
  3728. bytes[2]:=VEXvvvv;
  3729. objdata.writebytes(bytes,3);
  3730. end
  3731. else
  3732. begin
  3733. // VEX-Prefix-Length = 2 Bytes
  3734. {$ifdef x86_64}
  3735. if rex and $04 = 0 then
  3736. {$endif x86_64}
  3737. begin
  3738. VEXvvvv := VEXvvvv or (1 shl 7);
  3739. end;
  3740. bytes[0]:=$C5;
  3741. bytes[1]:=VEXvvvv;
  3742. objdata.writebytes(bytes,2);
  3743. end;
  3744. end
  3745. else
  3746. begin
  3747. needed_VEX_Extension := false;
  3748. opmode := -1;
  3749. end;
  3750. if not(needed_EVEX) then
  3751. begin
  3752. for opidx := 0 to ops - 1 do
  3753. begin
  3754. if ops > opidx then
  3755. if (oper[opidx]^.typ=top_reg) and
  3756. (getregtype(oper[opidx]^.reg) = R_MMREGISTER) then
  3757. if getsupreg(oper[opidx]^.reg) and $10 = $10 then
  3758. begin
  3759. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  3760. break;
  3761. end;
  3762. //badreg(oper[opidx]^.reg);
  3763. end;
  3764. end;
  3765. { load data to write }
  3766. codes:=insentry^.code;
  3767. repeat
  3768. c:=ord(codes^);
  3769. inc(codes);
  3770. case c of
  3771. &0 :
  3772. break;
  3773. &1,&2,&3 :
  3774. begin
  3775. {$ifdef x86_64}
  3776. if not(needed_VEX or needed_EVEX) then // TG
  3777. maybewriterex;
  3778. {$endif x86_64}
  3779. objdata.writebytes(codes^,c);
  3780. inc(codes,c);
  3781. end;
  3782. &4,&6 :
  3783. begin
  3784. case oper[0]^.reg of
  3785. NR_CS:
  3786. bytes[0]:=$e;
  3787. NR_NO,
  3788. NR_DS:
  3789. bytes[0]:=$1e;
  3790. NR_ES:
  3791. bytes[0]:=$6;
  3792. NR_SS:
  3793. bytes[0]:=$16;
  3794. else
  3795. internalerror(777004);
  3796. end;
  3797. if c=&4 then
  3798. inc(bytes[0]);
  3799. objdata.writebytes(bytes,1);
  3800. end;
  3801. &5,&7 :
  3802. begin
  3803. case oper[0]^.reg of
  3804. NR_FS:
  3805. bytes[0]:=$a0;
  3806. NR_GS:
  3807. bytes[0]:=$a8;
  3808. else
  3809. internalerror(777005);
  3810. end;
  3811. if c=&5 then
  3812. inc(bytes[0]);
  3813. objdata.writebytes(bytes,1);
  3814. end;
  3815. &10,&11,&12 :
  3816. begin
  3817. {$ifdef x86_64}
  3818. if not(needed_VEX or needed_EVEX) then // TG
  3819. maybewriterex;
  3820. {$endif x86_64}
  3821. bytes[0]:=ord(codes^)+regval(oper[c-&10]^.reg);
  3822. inc(codes);
  3823. objdata.writebytes(bytes,1);
  3824. end;
  3825. &13 :
  3826. begin
  3827. bytes[0]:=ord(codes^)+condval[condition];
  3828. inc(codes);
  3829. objdata.writebytes(bytes,1);
  3830. end;
  3831. &14,&15,&16 :
  3832. begin
  3833. getvalsym(c-&14);
  3834. if (currval<-128) or (currval>127) then
  3835. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  3836. if assigned(currsym) then
  3837. objdata_writereloc(currval,1,currsym,currabsreloc)
  3838. else
  3839. objdata.writeint8(shortint(currval));
  3840. end;
  3841. &20,&21,&22 :
  3842. begin
  3843. getvalsym(c-&20);
  3844. if (currval<-256) or (currval>255) then
  3845. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  3846. if assigned(currsym) then
  3847. objdata_writereloc(currval,1,currsym,currabsreloc)
  3848. else
  3849. objdata.writeuint8(byte(currval));
  3850. end;
  3851. &23 :
  3852. begin
  3853. bytes[0]:=ord(codes^)+condval[inverse_cond(condition)];
  3854. inc(codes);
  3855. objdata.writebytes(bytes,1);
  3856. end;
  3857. &24,&25,&26,&27 :
  3858. begin
  3859. getvalsym(c-&24);
  3860. if IF_IMM3 in insentry^.flags then
  3861. begin
  3862. if (currval<0) or (currval>7) then
  3863. Message2(asmw_e_value_exceeds_bounds,'unsigned triad',tostr(currval));
  3864. end
  3865. else if IF_IMM4 in insentry^.flags then
  3866. begin
  3867. if (currval<0) or (currval>15) then
  3868. Message2(asmw_e_value_exceeds_bounds,'unsigned nibble',tostr(currval));
  3869. end
  3870. else
  3871. if (currval<0) or (currval>255) then
  3872. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  3873. if assigned(currsym) then
  3874. objdata_writereloc(currval,1,currsym,currabsreloc)
  3875. else
  3876. objdata.writeuint8(byte(currval));
  3877. end;
  3878. &30,&31,&32 : // 030..032
  3879. begin
  3880. getvalsym(c-&30);
  3881. {$ifndef i8086}
  3882. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  3883. if (currval<-65536) or (currval>65535) then
  3884. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  3885. {$endif i8086}
  3886. if assigned(currsym)
  3887. {$ifdef i8086}
  3888. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3889. {$endif i8086}
  3890. then
  3891. objdata_writereloc(currval,2,currsym,currabsreloc)
  3892. else
  3893. objdata.writeInt16LE(int16(currval));
  3894. end;
  3895. &34,&35,&36 : // 034..036
  3896. { !!! These are intended (and used in opcode table) to select depending
  3897. on address size, *not* operand size. Works by coincidence only. }
  3898. begin
  3899. getvalsym(c-&34);
  3900. {$ifdef i8086}
  3901. if assigned(currsym) then
  3902. objdata_writereloc(currval,2,currsym,currabsreloc)
  3903. else
  3904. objdata.writeInt16LE(int16(currval));
  3905. {$else i8086}
  3906. if opsize=S_Q then
  3907. begin
  3908. if assigned(currsym) then
  3909. objdata_writereloc(currval,8,currsym,currabsreloc)
  3910. else
  3911. objdata.writeInt64LE(int64(currval));
  3912. end
  3913. else
  3914. begin
  3915. if assigned(currsym) then
  3916. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3917. else
  3918. objdata.writeInt32LE(int32(currval));
  3919. end
  3920. {$endif i8086}
  3921. end;
  3922. &40,&41,&42 : // 040..042
  3923. begin
  3924. getvalsym(c-&40);
  3925. if assigned(currsym)
  3926. {$ifdef i8086}
  3927. or (currabsreloc in [RELOC_DGROUP,RELOC_FARDATASEG])
  3928. {$endif i8086}
  3929. then
  3930. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3931. else
  3932. objdata.writeInt32LE(int32(currval));
  3933. end;
  3934. &44,&45,&46 :// 044..046 - select between word/dword/qword depending on
  3935. begin // address size (we support only default address sizes).
  3936. getvalsym(c-&44);
  3937. {$if defined(x86_64)}
  3938. if assigned(currsym) then
  3939. objdata_writereloc(currval,8,currsym,currabsreloc)
  3940. else
  3941. objdata.writeInt64LE(int64(currval));
  3942. {$elseif defined(i386)}
  3943. if assigned(currsym) then
  3944. objdata_writereloc(currval,4,currsym,currabsreloc32)
  3945. else
  3946. objdata.writeInt32LE(int32(currval));
  3947. {$elseif defined(i8086)}
  3948. if assigned(currsym) then
  3949. objdata_writereloc(currval,2,currsym,currabsreloc)
  3950. else
  3951. objdata.writeInt16LE(int16(currval));
  3952. {$endif}
  3953. end;
  3954. &50,&51,&52 : // 050..052 - byte relative operand
  3955. begin
  3956. getvalsym(c-&50);
  3957. data:=currval-insend;
  3958. {$push}
  3959. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  3960. if assigned(currsym) then
  3961. inc(data,currsym.address);
  3962. {$pop}
  3963. if (data>127) or (data<-128) then
  3964. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  3965. objdata.writeint8(shortint(data));
  3966. end;
  3967. &54,&55,&56: // 054..056 - qword immediate operand
  3968. begin
  3969. getvalsym(c-&54);
  3970. if assigned(currsym) then
  3971. objdata_writereloc(currval,8,currsym,currabsreloc)
  3972. else
  3973. objdata.writeInt64LE(int64(currval));
  3974. end;
  3975. &60,&61,&62 :
  3976. begin
  3977. getvalsym(c-&60);
  3978. {$ifdef i8086}
  3979. if assigned(currsym) then
  3980. objdata_writereloc(currval,2,currsym,currrelreloc)
  3981. else
  3982. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3983. {$else i8086}
  3984. InternalError(2020100821);
  3985. {$endif i8086}
  3986. end;
  3987. &64,&65,&66 : // 064..066 - select between 16/32 address mode, but we support only 32 (only 16 on i8086)
  3988. begin
  3989. getvalsym(c-&64);
  3990. {$ifdef i8086}
  3991. if assigned(currsym) then
  3992. objdata_writereloc(currval,2,currsym,currrelreloc)
  3993. else
  3994. objdata_writereloc(currval-insend,2,nil,currabsreloc)
  3995. {$else i8086}
  3996. if assigned(currsym) then
  3997. objdata_writereloc(currval,4,currsym,currrelreloc)
  3998. else
  3999. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  4000. {$endif i8086}
  4001. end;
  4002. &70,&71,&72 : // 070..072 - long relative operand
  4003. begin
  4004. getvalsym(c-&70);
  4005. if assigned(currsym) then
  4006. objdata_writereloc(currval,4,currsym,currrelreloc)
  4007. else
  4008. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  4009. end;
  4010. &74,&75,&76 : ; // 074..076 - vex-coded vector operand
  4011. // ignore
  4012. &254,&255,&256 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  4013. begin
  4014. getvalsym(c-&254);
  4015. {$ifdef x86_64}
  4016. { for i386 as aint type is longint the
  4017. following test is useless }
  4018. if (currval<low(longint)) or (currval>high(longint)) then
  4019. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  4020. {$endif x86_64}
  4021. if assigned(currsym) then
  4022. objdata_writereloc(currval,4,currsym,currabsreloc32)
  4023. else
  4024. objdata.writeInt32LE(int32(currval));
  4025. end;
  4026. &300,&301,&302:
  4027. begin
  4028. {$if defined(x86_64) or defined(i8086)}
  4029. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  4030. write0x67prefix(objdata);
  4031. {$endif x86_64 or i8086}
  4032. end;
  4033. &310 : { fixed 16-bit addr }
  4034. {$if defined(x86_64)}
  4035. { every insentry having code 0310 must be marked with NOX86_64 }
  4036. InternalError(2011051302);
  4037. {$elseif defined(i386)}
  4038. write0x67prefix(objdata);
  4039. {$elseif defined(i8086)}
  4040. {nothing};
  4041. {$endif}
  4042. &311 : { fixed 32-bit addr }
  4043. {$if defined(x86_64) or defined(i8086)}
  4044. write0x67prefix(objdata)
  4045. {$endif x86_64 or i8086}
  4046. ;
  4047. &320,&321,&322 :
  4048. begin
  4049. case oper[c-&320]^.ot and OT_SIZE_MASK of
  4050. {$if defined(i386) or defined(x86_64)}
  4051. OT_BITS16 :
  4052. {$elseif defined(i8086)}
  4053. OT_BITS32 :
  4054. {$endif}
  4055. write0x66prefix(objdata);
  4056. {$ifndef x86_64}
  4057. OT_BITS64 :
  4058. Message(asmw_e_64bit_not_supported);
  4059. {$endif x86_64}
  4060. end;
  4061. end;
  4062. &323 : {no action needed};
  4063. &325:
  4064. {$ifdef i8086}
  4065. write0x66prefix(objdata);
  4066. {$else i8086}
  4067. {no action needed};
  4068. {$endif i8086}
  4069. &324,
  4070. &361:
  4071. begin
  4072. {$ifndef i8086}
  4073. if not(needed_VEX or needed_EVEX) then
  4074. write0x66prefix(objdata);
  4075. {$endif not i8086}
  4076. end;
  4077. &326 :
  4078. begin
  4079. {$ifndef x86_64}
  4080. Message(asmw_e_64bit_not_supported);
  4081. {$endif x86_64}
  4082. end;
  4083. &333 :
  4084. begin
  4085. if not(needed_VEX or needed_EVEX) then
  4086. begin
  4087. bytes[0]:=$f3;
  4088. objdata.writebytes(bytes,1);
  4089. end;
  4090. end;
  4091. &334 :
  4092. begin
  4093. if not(needed_VEX or needed_EVEX) then
  4094. begin
  4095. bytes[0]:=$f2;
  4096. objdata.writebytes(bytes,1);
  4097. end;
  4098. end;
  4099. &335:
  4100. ;
  4101. &336: ; // indicates 32-bit scalar vector operand {no action needed}
  4102. &337: ; // indicates 64-bit scalar vector operand {no action needed}
  4103. &312,
  4104. &327,
  4105. &331,&332 :
  4106. begin
  4107. { these are dissambler hints or 32 bit prefixes which
  4108. are not needed }
  4109. end;
  4110. &362..&364: ; // VEX flags =>> nothing todo
  4111. &366, &367:
  4112. begin
  4113. opidx:=c-&364; { 0366->operand 2, 0367->operand 3 }
  4114. if (needed_VEX or needed_EVEX) and
  4115. (ops=4) and
  4116. (oper[opidx]^.typ=top_reg) and
  4117. (
  4118. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_xmm) or
  4119. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_ymm) or
  4120. ((oper[opidx]^.ot and OT_REG_EXTRA_MASK)=otf_reg_zmm)
  4121. ) then
  4122. begin
  4123. bytes[0] := ((getsupreg(oper[opidx]^.reg) and 15) shl 4);
  4124. objdata.writebytes(bytes,1);
  4125. end
  4126. else
  4127. Internalerror(2014032001);
  4128. end;
  4129. &350..&352: ; // EVEX flags =>> nothing todo
  4130. &370..&372: ; // VEX flags =>> nothing todo
  4131. &37:
  4132. begin
  4133. {$ifdef i8086}
  4134. if assigned(currsym) then
  4135. objdata_writereloc(0,2,currsym,RELOC_SEG)
  4136. else
  4137. InternalError(2015041503);
  4138. {$else i8086}
  4139. InternalError(2020100822);
  4140. {$endif i8086}
  4141. end;
  4142. else
  4143. begin
  4144. { rex should be written at this point }
  4145. {$ifdef x86_64}
  4146. if not(needed_VEX or needed_EVEX) then // TG
  4147. if (rex<>0) and not(rexwritten) then
  4148. internalerror(200603191);
  4149. {$endif x86_64}
  4150. if (c>=&100) and (c<=&227) then // 0100..0227
  4151. begin
  4152. if (c<&177) then // 0177
  4153. begin
  4154. if (oper[c and 7]^.typ=top_reg) then
  4155. rfield:=regval(oper[c and 7]^.reg)
  4156. else
  4157. rfield:=regval(oper[c and 7]^.ref^.base);
  4158. end
  4159. else
  4160. rfield:=c and 7;
  4161. opidx:=(c shr 3) and 7;
  4162. if not process_ea(oper[opidx]^,ea_data,rfield, EVEXTupleState = etsNotTuple) then
  4163. Message(asmw_e_invalid_effective_address);
  4164. pb:=@bytes[0];
  4165. pb^:=ea_data.modrm;
  4166. inc(pb);
  4167. if ea_data.sib_present then
  4168. begin
  4169. pb^:=ea_data.sib;
  4170. inc(pb);
  4171. end;
  4172. s:=pb-@bytes[0];
  4173. objdata.writebytes(bytes,s);
  4174. case ea_data.bytes of
  4175. 0 : ;
  4176. 1 :
  4177. begin
  4178. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  4179. begin
  4180. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4181. {$ifdef i386}
  4182. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4183. (tf_pic_uses_got in target_info.flags) then
  4184. currabsreloc:=RELOC_GOT32
  4185. else
  4186. {$endif i386}
  4187. {$ifdef x86_64}
  4188. if oper[opidx]^.ref^.refaddr=addr_pic then
  4189. currabsreloc:=RELOC_GOTPCREL
  4190. else
  4191. {$endif x86_64}
  4192. currabsreloc:=RELOC_ABSOLUTE;
  4193. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  4194. end
  4195. else
  4196. begin
  4197. bytes[0]:=oper[opidx]^.ref^.offset;
  4198. objdata.writebytes(bytes,1);
  4199. end;
  4200. inc(s);
  4201. end;
  4202. 2,4 :
  4203. begin
  4204. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  4205. currval:=oper[opidx]^.ref^.offset;
  4206. {$ifdef x86_64}
  4207. if oper[opidx]^.ref^.refaddr=addr_pic then
  4208. currabsreloc:=RELOC_GOTPCREL
  4209. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  4210. currabsreloc:=RELOC_TLSGD
  4211. else if oper[opidx]^.ref^.refaddr=addr_tpoff then
  4212. currabsreloc:=RELOC_TPOFF
  4213. else
  4214. if oper[opidx]^.ref^.base=NR_RIP then
  4215. begin
  4216. currabsreloc:=RELOC_RELATIVE;
  4217. { Adjust reloc value by number of bytes following the displacement,
  4218. but not if displacement is specified by literal constant }
  4219. if Assigned(currsym) then
  4220. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  4221. end
  4222. else
  4223. {$endif x86_64}
  4224. {$ifdef i386}
  4225. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  4226. (tf_pic_uses_got in target_info.flags) then
  4227. currabsreloc:=RELOC_GOT32
  4228. else if oper[opidx]^.ref^.refaddr=addr_tlsgd then
  4229. currabsreloc:=RELOC_TLSGD
  4230. else if oper[opidx]^.ref^.refaddr=addr_ntpoff then
  4231. currabsreloc:=RELOC_NTPOFF
  4232. else
  4233. {$endif i386}
  4234. {$ifdef i8086}
  4235. if ea_data.bytes=2 then
  4236. currabsreloc:=RELOC_ABSOLUTE
  4237. else
  4238. {$endif i8086}
  4239. currabsreloc:=RELOC_ABSOLUTE32;
  4240. if (currabsreloc in [RELOC_ABSOLUTE32{$ifdef i8086},RELOC_ABSOLUTE{$endif}]) and
  4241. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  4242. begin
  4243. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  4244. if relsym.objsection=objdata.CurrObjSec then
  4245. begin
  4246. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  4247. {$ifdef i8086}
  4248. if ea_data.bytes=4 then
  4249. currabsreloc:=RELOC_RELATIVE32
  4250. else
  4251. {$endif i8086}
  4252. currabsreloc:=RELOC_RELATIVE;
  4253. end
  4254. else
  4255. begin
  4256. currabsreloc:=RELOC_PIC_PAIR;
  4257. currval:=relsym.offset;
  4258. end;
  4259. end;
  4260. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  4261. inc(s,ea_data.bytes);
  4262. end;
  4263. end;
  4264. end
  4265. else
  4266. InternalError(777007);
  4267. end;
  4268. end;
  4269. until false;
  4270. end;
  4271. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  4272. begin
  4273. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  4274. (regtype = R_INTREGISTER) and
  4275. (ops=2) and
  4276. (oper[0]^.typ=top_reg) and
  4277. (oper[1]^.typ=top_reg) and
  4278. (oper[0]^.reg=oper[1]^.reg)
  4279. ) or
  4280. ({ checking the opcodes is a long "or" chain, so check first the registers which is more selective }
  4281. ((regtype = R_MMREGISTER) and
  4282. (ops=2) and
  4283. (oper[0]^.typ=top_reg) and
  4284. (oper[1]^.typ=top_reg) and
  4285. (oper[0]^.reg=oper[1]^.reg)) and
  4286. (
  4287. (opcode=A_MOVSS) or (opcode=A_MOVSD) or
  4288. (opcode=A_MOVQ) or (opcode=A_MOVD) or
  4289. (opcode=A_MOVAPS) or (opcode=A_MOVAPD) or
  4290. (opcode=A_MOVUPS) or (opcode=A_MOVUPD) or
  4291. (opcode=A_MOVDQA) or (opcode=A_MOVDQU) or
  4292. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or
  4293. (opcode=A_VMOVQ) or (opcode=A_VMOVD) or
  4294. (opcode=A_VMOVAPS) or (opcode=A_VMOVAPD) or
  4295. (opcode=A_VMOVUPS) or (opcode=A_VMOVUPD) or
  4296. (opcode=A_VMOVDQA) or (opcode=A_VMOVDQU)
  4297. )
  4298. );
  4299. end;
  4300. procedure build_spilling_operation_type_table;
  4301. var
  4302. opcode : tasmop;
  4303. begin
  4304. new(operation_type_table);
  4305. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  4306. for opcode:=low(tasmop) to high(tasmop) do
  4307. with InsProp[opcode] do
  4308. begin
  4309. if Ch_Rop1 in Ch then
  4310. operation_type_table^[opcode,0]:=operand_read;
  4311. if Ch_Wop1 in Ch then
  4312. operation_type_table^[opcode,0]:=operand_write;
  4313. if [Ch_RWop1,Ch_Mop1]*Ch<>[] then
  4314. operation_type_table^[opcode,0]:=operand_readwrite;
  4315. if Ch_Rop2 in Ch then
  4316. operation_type_table^[opcode,1]:=operand_read;
  4317. if Ch_Wop2 in Ch then
  4318. operation_type_table^[opcode,1]:=operand_write;
  4319. if [Ch_RWop2,Ch_Mop2]*Ch<>[] then
  4320. operation_type_table^[opcode,1]:=operand_readwrite;
  4321. if Ch_Rop3 in Ch then
  4322. operation_type_table^[opcode,2]:=operand_read;
  4323. if Ch_Wop3 in Ch then
  4324. operation_type_table^[opcode,2]:=operand_write;
  4325. if [Ch_RWop3,Ch_Mop3]*Ch<>[] then
  4326. operation_type_table^[opcode,2]:=operand_readwrite;
  4327. if Ch_Rop4 in Ch then
  4328. operation_type_table^[opcode,3]:=operand_read;
  4329. if Ch_Wop4 in Ch then
  4330. operation_type_table^[opcode,3]:=operand_write;
  4331. if [Ch_RWop4,Ch_Mop4]*Ch<>[] then
  4332. operation_type_table^[opcode,3]:=operand_readwrite;
  4333. end;
  4334. end;
  4335. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  4336. begin
  4337. { the information in the instruction table is made for the string copy
  4338. operation MOVSD so hack here (FK)
  4339. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  4340. so fix it here (FK)
  4341. }
  4342. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  4343. begin
  4344. case opnr of
  4345. 0:
  4346. result:=operand_read;
  4347. 1:
  4348. result:=operand_write;
  4349. else
  4350. internalerror(200506055);
  4351. end
  4352. end
  4353. else if (opcode=A_VMOVHPD) or (opcode=A_VMOVHPS) or (opcode=A_VMOVLHPS) or (opcode=A_VMOVLPD) or (opcode=A_VMOVLPS) then
  4354. begin
  4355. if ops=2 then
  4356. case opnr of
  4357. 0:
  4358. result:=operand_read;
  4359. 1:
  4360. result:=operand_readwrite;
  4361. else
  4362. internalerror(2024060101);
  4363. end
  4364. else if ops=3 then
  4365. case opnr of
  4366. 0,1:
  4367. result:=operand_read;
  4368. 2:
  4369. result:=operand_write;
  4370. else
  4371. internalerror(2024060102);
  4372. end
  4373. else
  4374. internalerror(2024060103);
  4375. end
  4376. { IMUL has 1, 2 and 3-operand forms }
  4377. else if opcode=A_IMUL then
  4378. begin
  4379. case ops of
  4380. 1:
  4381. if opnr=0 then
  4382. result:=operand_read
  4383. else
  4384. internalerror(2014011802);
  4385. 2:
  4386. begin
  4387. case opnr of
  4388. 0:
  4389. result:=operand_read;
  4390. 1:
  4391. result:=operand_readwrite;
  4392. else
  4393. internalerror(2014011803);
  4394. end;
  4395. end;
  4396. 3:
  4397. begin
  4398. case opnr of
  4399. 0,1:
  4400. result:=operand_read;
  4401. 2:
  4402. result:=operand_write;
  4403. else
  4404. internalerror(2014011804);
  4405. end;
  4406. end;
  4407. else
  4408. internalerror(2014011805);
  4409. end;
  4410. end
  4411. else
  4412. result:=operation_type_table^[opcode,opnr];
  4413. end;
  4414. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  4415. var
  4416. tmpref: treference;
  4417. begin
  4418. tmpref:=ref;
  4419. {$ifdef i8086}
  4420. if tmpref.segment=NR_SS then
  4421. tmpref.segment:=NR_NO;
  4422. {$endif i8086}
  4423. case getregtype(r) of
  4424. R_INTREGISTER :
  4425. begin
  4426. if getsubreg(r)=R_SUBH then
  4427. inc(tmpref.offset);
  4428. { we don't need special code here for 32 bit loads on x86_64, since
  4429. those will automatically zero-extend the upper 32 bits. }
  4430. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  4431. end;
  4432. R_MMREGISTER :
  4433. if current_settings.fputype in fpu_avx_instructionsets then
  4434. case getsubreg(r) of
  4435. R_SUBMMD:
  4436. result:=taicpu.op_ref_reg(A_VMOVSD,S_NO,tmpref,r);
  4437. R_SUBMMS:
  4438. result:=taicpu.op_ref_reg(A_VMOVSS,S_NO,tmpref,r);
  4439. R_SUBQ,
  4440. R_SUBMMWHOLE:
  4441. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  4442. R_SUBMMY:
  4443. if ref.alignment>=32 then
  4444. result:=taicpu.op_ref_reg(A_VMOVDQA,S_NO,tmpref,r)
  4445. else
  4446. result:=taicpu.op_ref_reg(A_VMOVDQU,S_NO,tmpref,r);
  4447. R_SUBMMZ:
  4448. if ref.alignment>=64 then
  4449. result:=taicpu.op_ref_reg(A_VMOVDQA64,S_NO,tmpref,r)
  4450. else
  4451. result:=taicpu.op_ref_reg(A_VMOVDQU64,S_NO,tmpref,r);
  4452. R_SUBMMX:
  4453. result:=taicpu.op_ref_reg(A_VMOVDQU,S_NO,tmpref,r);
  4454. else
  4455. internalerror(200506043);
  4456. end
  4457. else
  4458. case getsubreg(r) of
  4459. R_SUBMMD:
  4460. result:=taicpu.op_ref_reg(A_MOVSD,S_NO,tmpref,r);
  4461. R_SUBMMS:
  4462. result:=taicpu.op_ref_reg(A_MOVSS,S_NO,tmpref,r);
  4463. R_SUBQ,
  4464. R_SUBMMWHOLE:
  4465. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  4466. R_SUBMMX:
  4467. result:=taicpu.op_ref_reg(A_MOVDQA,S_NO,tmpref,r);
  4468. else
  4469. internalerror(2005060405);
  4470. end;
  4471. else
  4472. internalerror(2004010411);
  4473. end;
  4474. end;
  4475. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  4476. var
  4477. size: topsize;
  4478. tmpref: treference;
  4479. begin
  4480. tmpref:=ref;
  4481. {$ifdef i8086}
  4482. if tmpref.segment=NR_SS then
  4483. tmpref.segment:=NR_NO;
  4484. {$endif i8086}
  4485. case getregtype(r) of
  4486. R_INTREGISTER :
  4487. begin
  4488. if getsubreg(r)=R_SUBH then
  4489. inc(tmpref.offset);
  4490. size:=reg2opsize(r);
  4491. {$ifdef x86_64}
  4492. { even if it's a 32 bit reg, we still have to spill 64 bits
  4493. because we often perform 64 bit operations on them }
  4494. if (size=S_L) then
  4495. begin
  4496. size:=S_Q;
  4497. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  4498. end;
  4499. {$endif x86_64}
  4500. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  4501. end;
  4502. R_MMREGISTER :
  4503. if current_settings.fputype in fpu_avx_instructionsets then
  4504. case getsubreg(r) of
  4505. R_SUBMMD:
  4506. result:=taicpu.op_reg_ref(A_VMOVSD,S_NO,r,tmpref);
  4507. R_SUBMMS:
  4508. result:=taicpu.op_reg_ref(A_VMOVSS,S_NO,r,tmpref);
  4509. R_SUBMMY:
  4510. if ref.alignment>=32 then
  4511. result:=taicpu.op_reg_ref(A_VMOVDQA,S_NO,r,tmpref)
  4512. else
  4513. result:=taicpu.op_reg_ref(A_VMOVDQU,S_NO,r,tmpref);
  4514. R_SUBMMZ:
  4515. if ref.alignment>=64 then
  4516. result:=taicpu.op_reg_ref(A_VMOVDQA64,S_NO,r,tmpref)
  4517. else
  4518. result:=taicpu.op_reg_ref(A_VMOVDQU64,S_NO,r,tmpref);
  4519. R_SUBQ,
  4520. R_SUBMMWHOLE:
  4521. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  4522. else
  4523. internalerror(200506042);
  4524. end
  4525. else
  4526. case getsubreg(r) of
  4527. R_SUBMMD:
  4528. result:=taicpu.op_reg_ref(A_MOVSD,S_NO,r,tmpref);
  4529. R_SUBMMS:
  4530. result:=taicpu.op_reg_ref(A_MOVSS,S_NO,r,tmpref);
  4531. R_SUBQ,
  4532. R_SUBMMWHOLE:
  4533. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  4534. R_SUBMMX:
  4535. result:=taicpu.op_reg_ref(A_MOVDQA,S_NO,r,tmpref);
  4536. else
  4537. internalerror(2005060404);
  4538. end;
  4539. else
  4540. internalerror(2004010412);
  4541. end;
  4542. end;
  4543. {$ifdef i8086}
  4544. procedure taicpu.loadsegsymbol(opidx:longint;s:tasmsymbol);
  4545. var
  4546. r: treference;
  4547. begin
  4548. reference_reset_symbol(r,s,0,1,[]);
  4549. r.refaddr:=addr_seg;
  4550. loadref(opidx,r);
  4551. end;
  4552. {$endif i8086}
  4553. {*****************************************************************************
  4554. Instruction table
  4555. *****************************************************************************}
  4556. procedure BuildInsTabCache;
  4557. var
  4558. i : longint;
  4559. begin
  4560. new(instabcache);
  4561. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  4562. i:=0;
  4563. while (i<InsTabEntries) do
  4564. begin
  4565. if InsTabCache^[InsTab[i].OPcode]=-1 then
  4566. InsTabCache^[InsTab[i].OPcode]:=i;
  4567. inc(i);
  4568. end;
  4569. end;
  4570. procedure BuildInsTabMemRefSizeInfoCache;
  4571. var
  4572. AsmOp: TasmOp;
  4573. i,j: longint;
  4574. iCntOpcodeValError: longint;
  4575. insentry : PInsEntry;
  4576. MRefInfo: TMemRefSizeInfo;
  4577. SConstInfo: TConstSizeInfo;
  4578. actRegSize: int64;
  4579. actMemSize: int64;
  4580. actConstSize: int64;
  4581. actRegCount: integer;
  4582. actMemCount: integer;
  4583. actConstCount: integer;
  4584. actRegTypes : int64;
  4585. actRegMemTypes: int64;
  4586. NewRegSize: int64;
  4587. actVMemCount : integer;
  4588. actVMemTypes : int64;
  4589. RegMMXSizeMask: int64;
  4590. RegXMMSizeMask: int64;
  4591. RegYMMSizeMask: int64;
  4592. RegZMMSizeMask: int64;
  4593. RegMMXConstSizeMask: int64;
  4594. RegXMMConstSizeMask: int64;
  4595. RegYMMConstSizeMask: int64;
  4596. RegZMMConstSizeMask: int64;
  4597. RegBCSTSizeMask: int64;
  4598. RegBCSTXMMSizeMask: int64;
  4599. RegBCSTYMMSizeMask: int64;
  4600. RegBCSTZMMSizeMask: int64;
  4601. ExistsMemRef : boolean;
  4602. bitcount : integer;
  4603. ExistsCode336 : boolean;
  4604. ExistsCode337 : boolean;
  4605. ExistsSSEAVXReg : boolean;
  4606. hs1,hs2 : String;
  4607. begin
  4608. new(InsTabMemRefSizeInfoCache);
  4609. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  4610. iCntOpcodeValError := 0;
  4611. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  4612. begin
  4613. i := InsTabCache^[AsmOp];
  4614. if i >= 0 then
  4615. begin
  4616. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
  4617. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbUnknown;
  4618. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 0;
  4619. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
  4620. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  4621. InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := [];
  4622. insentry:=@instab[i];
  4623. RegMMXSizeMask := 0;
  4624. RegXMMSizeMask := 0;
  4625. RegYMMSizeMask := 0;
  4626. RegZMMSizeMask := 0;
  4627. RegMMXConstSizeMask := 0;
  4628. RegXMMConstSizeMask := 0;
  4629. RegYMMConstSizeMask := 0;
  4630. RegZMMConstSizeMask := 0;
  4631. RegBCSTSizeMask:= 0;
  4632. RegBCSTXMMSizeMask := 0;
  4633. RegBCSTYMMSizeMask := 0;
  4634. RegBCSTZMMSizeMask := 0;
  4635. ExistsMemRef := false;
  4636. while (insentry<=@instab[high(instab)]) and
  4637. (insentry^.opcode=AsmOp) do
  4638. begin
  4639. MRefInfo := msiUnknown;
  4640. actRegSize := 0;
  4641. actRegCount := 0;
  4642. actRegTypes := 0;
  4643. NewRegSize := 0;
  4644. actMemSize := 0;
  4645. actMemCount := 0;
  4646. actRegMemTypes := 0;
  4647. actVMemCount := 0;
  4648. actVMemTypes := 0;
  4649. actConstSize := 0;
  4650. actConstCount := 0;
  4651. ExistsCode336 := false; // indicate fixed operand size 32 bit
  4652. ExistsCode337 := false; // indicate fixed operand size 64 bit
  4653. ExistsSSEAVXReg := false;
  4654. // parse insentry^.code for &336 and &337
  4655. // &336 (octal) = 222 (decimal) == fixed operand size 32 bit
  4656. // &337 (octal) = 223 (decimal) == fixed operand size 64 bit
  4657. for i := low(insentry^.code) to high(insentry^.code) do
  4658. begin
  4659. case insentry^.code[i] of
  4660. #222: ExistsCode336 := true;
  4661. #223: ExistsCode337 := true;
  4662. #0,#1,#2,#3: break;
  4663. end;
  4664. end;
  4665. for i := 0 to insentry^.ops -1 do
  4666. begin
  4667. if (insentry^.optypes[i] and OT_REGISTER) = OT_REGISTER then
  4668. case insentry^.optypes[i] and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
  4669. OT_XMMREG,
  4670. OT_YMMREG,
  4671. OT_ZMMREG: ExistsSSEAVXReg := true;
  4672. else;
  4673. end;
  4674. end;
  4675. for j := 0 to insentry^.ops -1 do
  4676. begin
  4677. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  4678. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  4679. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  4680. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) OR
  4681. ((insentry^.optypes[j] and OT_ZMEM32) = OT_ZMEM32) OR
  4682. ((insentry^.optypes[j] and OT_ZMEM64) = OT_ZMEM64) then
  4683. begin
  4684. inc(actVMemCount);
  4685. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64 OR OT_ZMEM32 OR OT_ZMEM64) of
  4686. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  4687. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  4688. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  4689. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  4690. OT_ZMEM32: actVMemTypes := actVMemTypes or OT_ZMEM32;
  4691. OT_ZMEM64: actVMemTypes := actVMemTypes or OT_ZMEM64;
  4692. else InternalError(777206);
  4693. end;
  4694. end
  4695. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  4696. begin
  4697. inc(actRegCount);
  4698. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  4699. if NewRegSize = 0 then
  4700. begin
  4701. case insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK) of
  4702. OT_MMXREG: begin
  4703. NewRegSize := OT_BITS64;
  4704. end;
  4705. OT_XMMREG: begin
  4706. NewRegSize := OT_BITS128;
  4707. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4708. end;
  4709. OT_YMMREG: begin
  4710. NewRegSize := OT_BITS256;
  4711. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4712. end;
  4713. OT_ZMMREG: begin
  4714. NewRegSize := OT_BITS512;
  4715. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4716. end;
  4717. OT_KREG: begin
  4718. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  4719. end;
  4720. else NewRegSize := not(0);
  4721. end;
  4722. end;
  4723. actRegSize := actRegSize or NewRegSize;
  4724. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_KREG or OT_REG_EXTRA_MASK));
  4725. end
  4726. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  4727. begin
  4728. inc(actMemCount);
  4729. if ExistsSSEAVXReg and ExistsCode336 then
  4730. actMemSize := actMemSize or OT_BITS32
  4731. else if ExistsSSEAVXReg and ExistsCode337 then
  4732. actMemSize := actMemSize or OT_BITS64
  4733. else
  4734. actMemSize:=actMemSize or (insentry^.optypes[j] and (OT_SIZE_MASK OR OT_VECTORBCST));
  4735. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  4736. begin
  4737. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  4738. end;
  4739. end
  4740. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  4741. begin
  4742. inc(actConstCount);
  4743. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  4744. end
  4745. end;
  4746. if actConstCount > 0 then
  4747. begin
  4748. case actConstSize of
  4749. 0: SConstInfo := csiNoSize;
  4750. OT_BITS8: SConstInfo := csiMem8;
  4751. OT_BITS16: SConstInfo := csiMem16;
  4752. OT_BITS32: SConstInfo := csiMem32;
  4753. OT_BITS64: SConstInfo := csiMem64;
  4754. else SConstInfo := csiMultiple;
  4755. end;
  4756. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnknown then
  4757. begin
  4758. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  4759. end
  4760. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  4761. begin
  4762. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  4763. end;
  4764. end;
  4765. if actVMemCount > 0 then
  4766. begin
  4767. if actVMemCount = 1 then
  4768. begin
  4769. if actVMemTypes > 0 then
  4770. begin
  4771. case actVMemTypes of
  4772. OT_XMEM32: MRefInfo := msiXMem32;
  4773. OT_XMEM64: MRefInfo := msiXMem64;
  4774. OT_YMEM32: MRefInfo := msiYMem32;
  4775. OT_YMEM64: MRefInfo := msiYMem64;
  4776. OT_ZMEM32: MRefInfo := msiZMem32;
  4777. OT_ZMEM64: MRefInfo := msiZMem64;
  4778. else InternalError(777208);
  4779. end;
  4780. case actRegTypes of
  4781. OT_XMMREG: case MRefInfo of
  4782. msiXMem32,
  4783. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  4784. msiYMem32,
  4785. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  4786. msiZMem32,
  4787. msiZMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS512;
  4788. else InternalError(777210);
  4789. end;
  4790. OT_YMMREG: case MRefInfo of
  4791. msiXMem32,
  4792. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  4793. msiYMem32,
  4794. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  4795. msiZMem32,
  4796. msiZMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS512;
  4797. else InternalError(2020100823);
  4798. end;
  4799. OT_ZMMREG: case MRefInfo of
  4800. msiXMem32,
  4801. msiXMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS128;
  4802. msiYMem32,
  4803. msiYMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS256;
  4804. msiZMem32,
  4805. msiZMem64: RegZMMSizeMask := RegZMMSizeMask or OT_BITS512;
  4806. else InternalError(2020100824);
  4807. end;
  4808. //else InternalError(777209);
  4809. end;
  4810. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
  4811. begin
  4812. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4813. end
  4814. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4815. begin
  4816. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64, msiZMem32, msiZMem64] then
  4817. begin
  4818. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  4819. end
  4820. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> msiVMemMultiple then InternalError(777212);
  4821. end;
  4822. end;
  4823. end
  4824. else InternalError(777207);
  4825. end
  4826. else
  4827. begin
  4828. if (actMemCount=2) and ((AsmOp=A_MOVS) or (AsmOp=A_CMPS)) then actMemCount:=1;
  4829. ExistsMemRef := ExistsMemRef or (actMemCount > 0);
  4830. case actMemCount of
  4831. 0: ; // nothing todo
  4832. 1: begin
  4833. MRefInfo := msiUnknown;
  4834. if not(ExistsCode336 or ExistsCode337) then
  4835. case actRegMemTypes and (OT_MMXRM or OT_XMMRM or OT_YMMRM or OT_ZMMRM or OT_REG_EXTRA_MASK) of
  4836. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  4837. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  4838. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  4839. OT_ZMMRM: actMemSize := actMemSize or OT_BITS512;
  4840. end;
  4841. case actMemSize of
  4842. 0: MRefInfo := msiNoSize;
  4843. OT_BITS8: MRefInfo := msiMem8;
  4844. OT_BITS16: MRefInfo := msiMem16;
  4845. OT_BITS32: MRefInfo := msiMem32;
  4846. OT_BITSB32: MRefInfo := msiBMem32;
  4847. OT_BITS64: MRefInfo := msiMem64;
  4848. OT_BITSB64: MRefInfo := msiBMem64;
  4849. OT_BITS128: MRefInfo := msiMem128;
  4850. OT_BITS256: MRefInfo := msiMem256;
  4851. OT_BITS512: MRefInfo := msiMem512;
  4852. OT_BITS80,
  4853. OT_FAR,
  4854. OT_NEAR,
  4855. OT_SHORT: ; // ignore
  4856. else
  4857. begin
  4858. bitcount := popcnt(qword(actMemSize));
  4859. if bitcount > 1 then MRefInfo := msiMultiple
  4860. else InternalError(777203);
  4861. end;
  4862. end;
  4863. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown then
  4864. begin
  4865. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  4866. end
  4867. else
  4868. begin
  4869. // ignore broadcast-memory
  4870. if not(MRefInfo in [msiBMem32, msiBMem64]) then
  4871. begin
  4872. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  4873. begin
  4874. with InsTabMemRefSizeInfoCache^[AsmOp] do
  4875. begin
  4876. if ((MemRefSize in [msiMem8, msiMULTIPLEMinSize8]) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultipleMinSize8
  4877. else if ((MemRefSize in [ msiMem16, msiMULTIPLEMinSize16]) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultipleMinSize16
  4878. else if ((MemRefSize in [ msiMem32, msiMULTIPLEMinSize32]) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultipleMinSize32
  4879. else if ((MemRefSize in [ msiMem64, msiMULTIPLEMinSize64]) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultipleMinSize64
  4880. else if ((MemRefSize in [msiMem128, msiMULTIPLEMinSize128]) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultipleMinSize128
  4881. else if ((MemRefSize in [msiMem256, msiMULTIPLEMinSize256]) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultipleMinSize256
  4882. else if ((MemRefSize in [msiMem512, msiMULTIPLEMinSize512]) OR (MRefInfo = msiMem512)) then MemRefSize := msiMultipleMinSize512
  4883. else MemRefSize := msiMultiple;
  4884. end;
  4885. end;
  4886. end;
  4887. end;
  4888. //if not(MRefInfo in [msiBMem32, msiBMem64]) and (actRegCount > 0) then
  4889. if actRegCount > 0 then
  4890. begin
  4891. if MRefInfo in [msiBMem32, msiBMem64] then
  4892. begin
  4893. if IF_BCST2 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to2];
  4894. if IF_BCST4 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to4];
  4895. if IF_BCST8 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to8];
  4896. if IF_BCST16 in insentry^.flags then InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes := InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes + [bt1to16];
  4897. //InsTabMemRefSizeInfoCache^[AsmOp].BCSTTypes
  4898. // BROADCAST - OPERAND
  4899. RegBCSTSizeMask := RegBCSTSizeMask or actMemSize;
  4900. case actRegTypes and (OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4901. OT_XMMREG: RegBCSTXMMSizeMask := RegBCSTXMMSizeMask or actMemSize;
  4902. OT_YMMREG: RegBCSTYMMSizeMask := RegBCSTYMMSizeMask or actMemSize;
  4903. OT_ZMMREG: RegBCSTZMMSizeMask := RegBCSTZMMSizeMask or actMemSize;
  4904. else begin
  4905. RegBCSTXMMSizeMask := not(0);
  4906. RegBCSTYMMSizeMask := not(0);
  4907. RegBCSTZMMSizeMask := not(0);
  4908. end;
  4909. end;
  4910. end
  4911. else
  4912. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG or OT_ZMMREG or OT_REG_EXTRA_MASK) of
  4913. OT_MMXREG: if actConstCount > 0 then RegMMXConstSizeMask := RegMMXConstSizeMask or actMemSize
  4914. else RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  4915. OT_XMMREG: if actConstCount > 0 then RegXMMConstSizeMask := RegXMMConstSizeMask or actMemSize
  4916. else RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  4917. OT_YMMREG: if actConstCount > 0 then RegYMMConstSizeMask := RegYMMConstSizeMask or actMemSize
  4918. else RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  4919. OT_ZMMREG: if actConstCount > 0 then RegZMMConstSizeMask := RegZMMConstSizeMask or actMemSize
  4920. else RegZMMSizeMask := RegZMMSizeMask or actMemSize;
  4921. else begin
  4922. RegMMXSizeMask := not(0);
  4923. RegXMMSizeMask := not(0);
  4924. RegYMMSizeMask := not(0);
  4925. RegZMMSizeMask := not(0);
  4926. RegMMXConstSizeMask := not(0);
  4927. RegXMMConstSizeMask := not(0);
  4928. RegYMMConstSizeMask := not(0);
  4929. RegZMMConstSizeMask := not(0);
  4930. end;
  4931. end;
  4932. end
  4933. else
  4934. end
  4935. else InternalError(777202);
  4936. end;
  4937. end;
  4938. inc(insentry);
  4939. end;
  4940. if InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX then
  4941. begin
  4942. case RegBCSTSizeMask of
  4943. 0: ; // ignore;
  4944. OT_BITSB32: begin
  4945. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST32;
  4946. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 4;
  4947. end;
  4948. OT_BITSB64: begin
  4949. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbBCST64;
  4950. InsTabMemRefSizeInfoCache^[AsmOp].BCSTXMMMultiplicator := 2;
  4951. end;
  4952. else begin
  4953. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSizeBCST := msbMultiple;
  4954. end;
  4955. end;
  4956. end;
  4957. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  4958. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  4959. begin
  4960. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  4961. begin
  4962. if ((RegXMMSizeMask = OT_BITS128) or (RegXMMSizeMask = 0)) and
  4963. ((RegYMMSizeMask = OT_BITS256) or (RegYMMSizeMask = 0)) and
  4964. ((RegZMMSizeMask = OT_BITS512) or (RegZMMSizeMask = 0)) and
  4965. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) <> 0) then
  4966. begin
  4967. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  4968. end;
  4969. end
  4970. else if (RegMMXSizeMask or RegMMXConstSizeMask) <> 0 then
  4971. begin
  4972. if ((RegMMXSizeMask or RegMMXConstSizeMask) = OT_BITS64) and
  4973. ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) and
  4974. ((RegYMMSizeMask or RegYMMConstSizeMask) = 0) and
  4975. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  4976. begin
  4977. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4978. end;
  4979. end
  4980. else if (((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS128) or ((RegXMMSizeMask or RegXMMConstSizeMask) = 0)) and
  4981. (((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) or ((RegYMMSizeMask or RegYMMConstSizeMask) = 0)) and
  4982. (((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) or ((RegZMMSizeMask or RegZMMConstSizeMask) = 0)) and
  4983. (((RegXMMSizeMask or RegXMMConstSizeMask or
  4984. RegYMMSizeMask or RegYMMConstSizeMask or
  4985. RegZMMSizeMask or RegZMMConstSizeMask)) <> 0) then
  4986. begin
  4987. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  4988. end
  4989. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4990. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4991. (RegZMMSizeMask or RegZMMConstSizeMask = 0) then
  4992. begin
  4993. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  4994. end
  4995. else if (RegXMMSizeMask or RegXMMConstSizeMask = OT_BITS16) and
  4996. (RegYMMSizeMask or RegYMMConstSizeMask = OT_BITS32) and
  4997. (RegZMMSizeMask or RegZMMConstSizeMask = OT_BITS64) then
  4998. begin
  4999. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32z64;
  5000. end
  5001. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS32) and
  5002. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS64) then
  5003. begin
  5004. if ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  5005. begin
  5006. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  5007. end
  5008. else if ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS128) then
  5009. begin
  5010. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64z128;
  5011. end;
  5012. end
  5013. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5014. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  5015. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  5016. begin
  5017. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  5018. end
  5019. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5020. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS128) and
  5021. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS256) then
  5022. begin
  5023. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128z256;
  5024. end
  5025. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5026. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  5027. ((RegZMMSizeMask or RegZMMConstSizeMask) = 0) then
  5028. begin
  5029. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  5030. end
  5031. else if ((RegXMMSizeMask or RegXMMConstSizeMask) = OT_BITS64) and
  5032. ((RegYMMSizeMask or RegYMMConstSizeMask) = OT_BITS256) and
  5033. ((RegZMMSizeMask or RegZMMConstSizeMask) = OT_BITS512) then
  5034. begin
  5035. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256z512;
  5036. end
  5037. else if ((RegXMMConstSizeMask = 0) or (RegXMMConstSizeMask = OT_BITS128)) and
  5038. ((RegYMMConstSizeMask = 0) or (RegYMMConstSizeMask = OT_BITS256)) and
  5039. ((RegZMMConstSizeMask = 0) or (RegZMMConstSizeMask = OT_BITS512)) and
  5040. ((RegXMMConstSizeMask or RegYMMConstSizeMask or RegZMMConstSizeMask) <> 0) and
  5041. (
  5042. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS128) or
  5043. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS256) or
  5044. ((RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask) = OT_BITS512)
  5045. ) then
  5046. begin
  5047. case RegXMMSizeMask or RegYMMSizeMask or RegZMMSizeMask of
  5048. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst128;
  5049. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst256;
  5050. OT_BITS512: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegConst512;
  5051. else InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMultiple;
  5052. end;
  5053. end
  5054. else
  5055. begin
  5056. if not(
  5057. (AsmOp = A_CVTSI2SS) or
  5058. (AsmOp = A_CVTSI2SD) or
  5059. (AsmOp = A_CVTPD2DQ) or
  5060. (AsmOp = A_VCVTPD2DQ) or
  5061. (AsmOp = A_VCVTPD2PS) or
  5062. (AsmOp = A_VCVTSI2SD) or
  5063. (AsmOp = A_VCVTSI2SS) or
  5064. (AsmOp = A_VCVTTPD2DQ) or
  5065. (AsmOp = A_VCVTPD2UDQ) or
  5066. (AsmOp = A_VCVTQQ2PS) or
  5067. (AsmOp = A_VCVTTPD2UDQ) or
  5068. (AsmOp = A_VCVTUQQ2PS) or
  5069. (AsmOp = A_VCVTUSI2SD) or
  5070. (AsmOp = A_VCVTUSI2SS) or
  5071. // TODO check
  5072. (AsmOp = A_VCMPSS)
  5073. ) then
  5074. InternalError(777205);
  5075. end;
  5076. end
  5077. else if (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) and
  5078. (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnknown) and
  5079. (not(ExistsMemRef)) then
  5080. begin
  5081. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiNoMemRef;
  5082. end;
  5083. InsTabMemRefSizeInfoCache^[AsmOp].RegXMMSizeMask:=RegXMMSizeMask;
  5084. InsTabMemRefSizeInfoCache^[AsmOp].RegYMMSizeMask:=RegYMMSizeMask;
  5085. InsTabMemRefSizeInfoCache^[AsmOp].RegZMMSizeMask:=RegZMMSizeMask;
  5086. if (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) and
  5087. (gas_needsuffix[AsmOp] <> AttSufNONE) and
  5088. (not(InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples)) then
  5089. begin
  5090. // combination (attsuffix <> "AttSufNONE") and (MemRefSize is not in MemRefMultiples) is not supported =>> check opcode-definition in x86ins.dat
  5091. if (AsmOp <> A_CVTSI2SD) and
  5092. (AsmOp <> A_CVTSI2SS) then
  5093. begin
  5094. inc(iCntOpcodeValError);
  5095. Str(gas_needsuffix[AsmOp],hs1);
  5096. Str(InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize,hs2);
  5097. Message3(asmr_e_not_supported_combination_attsuffix_memrefsize_type,
  5098. std_op2str[AsmOp],hs1,hs2);
  5099. end;
  5100. end;
  5101. end;
  5102. end;
  5103. if iCntOpcodeValError > 0 then
  5104. InternalError(2021011201);
  5105. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  5106. begin
  5107. // only supported intructiones with SSE- or AVX-operands
  5108. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  5109. begin
  5110. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnknown;
  5111. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnknown;
  5112. end;
  5113. end;
  5114. end;
  5115. function NoMemorySizeRequired(opcode : TAsmOp) : Boolean;
  5116. var
  5117. i : LongInt;
  5118. insentry : PInsEntry;
  5119. begin
  5120. result:=false;
  5121. i:=instabcache^[opcode];
  5122. if i=-1 then
  5123. begin
  5124. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  5125. exit;
  5126. end;
  5127. insentry:=@instab[i];
  5128. while (insentry^.opcode=opcode) do
  5129. begin
  5130. if (insentry^.ops=1) and (insentry^.optypes[0]=OT_MEMORY) then
  5131. begin
  5132. result:=true;
  5133. exit;
  5134. end;
  5135. inc(insentry);
  5136. end;
  5137. end;
  5138. procedure InitAsm;
  5139. begin
  5140. build_spilling_operation_type_table;
  5141. if not assigned(instabcache) then
  5142. BuildInsTabCache;
  5143. if not assigned(InsTabMemRefSizeInfoCache) then
  5144. BuildInsTabMemRefSizeInfoCache;
  5145. end;
  5146. procedure DoneAsm;
  5147. begin
  5148. if assigned(operation_type_table) then
  5149. begin
  5150. dispose(operation_type_table);
  5151. operation_type_table:=nil;
  5152. end;
  5153. if assigned(instabcache) then
  5154. begin
  5155. dispose(instabcache);
  5156. instabcache:=nil;
  5157. end;
  5158. if assigned(InsTabMemRefSizeInfoCache) then
  5159. begin
  5160. dispose(InsTabMemRefSizeInfoCache);
  5161. InsTabMemRefSizeInfoCache:=nil;
  5162. end;
  5163. end;
  5164. begin
  5165. cai_align:=tai_align;
  5166. cai_cpu:=taicpu;
  5167. end.