aasmcpu.pas 127 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. { Bits 0..7: sizes }
  38. OT_BITS8 = $00000001;
  39. OT_BITS16 = $00000002;
  40. OT_BITS32 = $00000004;
  41. OT_BITS64 = $00000008; { x86_64 and FPU }
  42. OT_BITS128 = $10000000; { 16 byte SSE }
  43. OT_BITS256 = $20000000; { 32 byte AVX }
  44. OT_BITS80 = $00000010; { FPU only }
  45. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  46. OT_NEAR = $00000040;
  47. OT_SHORT = $00000080;
  48. { TODO: FAR/NEAR/SHORT are sizes too, they should be included into size mask,
  49. but this requires adjusting the opcode table }
  50. OT_SIZE_MASK = $3000001F; { all the size attributes }
  51. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  52. { Bits 8..11: modifiers }
  53. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  54. OT_TO = $00000200; { reverse effect in FADD, FSUB &c }
  55. OT_COLON = $00000400; { operand is followed by a colon }
  56. OT_MODIFIER_MASK = $00000F00;
  57. { Bits 12..15: type of operand }
  58. OT_REGISTER = $00001000;
  59. OT_IMMEDIATE = $00002000;
  60. OT_MEMORY = $0000C000; { always includes 'OT_REGMEM' bit as well }
  61. OT_REGMEM = $00008000; { for r/m, ie EA, operands }
  62. OT_TYPE_MASK = OT_REGISTER or OT_IMMEDIATE or OT_MEMORY or OT_REGMEM;
  63. OT_REGNORM = OT_REGISTER or OT_REGMEM; { 'normal' reg, qualifies as EA }
  64. { Bits 20..22, 24..26: register classes
  65. otf_* consts are not used alone, only to build other constants. }
  66. otf_reg_cdt = $00100000;
  67. otf_reg_gpr = $00200000;
  68. otf_reg_sreg = $00400000;
  69. otf_reg_fpu = $01000000;
  70. otf_reg_mmx = $02000000;
  71. otf_reg_xmm = $04000000;
  72. otf_reg_ymm = $08000000;
  73. { Bits 16..19: subclasses, meaning depends on classes field }
  74. otf_sub0 = $00010000;
  75. otf_sub1 = $00020000;
  76. otf_sub2 = $00040000;
  77. otf_sub3 = $00080000;
  78. OT_REG_SMASK = otf_sub0 or otf_sub1 or otf_sub2 or otf_sub3;
  79. OT_REG_TYPMASK = otf_reg_cdt or otf_reg_gpr or otf_reg_sreg or otf_reg_fpu or otf_reg_mmx or otf_reg_xmm or otf_reg_ymm;
  80. { register class 0: CRx, DRx and TRx }
  81. {$ifdef x86_64}
  82. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS64;
  83. {$else x86_64}
  84. OT_REG_CDT = OT_REGISTER or otf_reg_cdt or OT_BITS32;
  85. {$endif x86_64}
  86. OT_REG_CREG = OT_REG_CDT or otf_sub0; { CRn }
  87. OT_REG_DREG = OT_REG_CDT or otf_sub1; { DRn }
  88. OT_REG_TREG = OT_REG_CDT or otf_sub2; { TRn }
  89. OT_REG_CR4 = OT_REG_CDT or otf_sub3; { CR4 (Pentium only) }
  90. { register class 1: general-purpose registers }
  91. OT_REG_GPR = OT_REGNORM or otf_reg_gpr;
  92. OT_RM_GPR = OT_REGMEM or otf_reg_gpr;
  93. OT_REG8 = OT_REG_GPR or OT_BITS8; { 8-bit GPR }
  94. OT_REG16 = OT_REG_GPR or OT_BITS16;
  95. OT_REG32 = OT_REG_GPR or OT_BITS32;
  96. OT_REG64 = OT_REG_GPR or OT_BITS64;
  97. { GPR subclass 0: accumulator: AL, AX, EAX or RAX }
  98. OT_REG_ACCUM = OT_REG_GPR or otf_sub0;
  99. OT_REG_AL = OT_REG_ACCUM or OT_BITS8;
  100. OT_REG_AX = OT_REG_ACCUM or OT_BITS16;
  101. OT_REG_EAX = OT_REG_ACCUM or OT_BITS32;
  102. {$ifdef x86_64}
  103. OT_REG_RAX = OT_REG_ACCUM or OT_BITS64;
  104. {$endif x86_64}
  105. { GPR subclass 1: counter: CL, CX, ECX or RCX }
  106. OT_REG_COUNT = OT_REG_GPR or otf_sub1;
  107. OT_REG_CL = OT_REG_COUNT or OT_BITS8;
  108. OT_REG_CX = OT_REG_COUNT or OT_BITS16;
  109. OT_REG_ECX = OT_REG_COUNT or OT_BITS32;
  110. {$ifdef x86_64}
  111. OT_REG_RCX = OT_REG_COUNT or OT_BITS64;
  112. {$endif x86_64}
  113. { GPR subclass 2: data register: DL, DX, EDX or RDX }
  114. OT_REG_DX = OT_REG_GPR or otf_sub2 or OT_BITS16;
  115. OT_REG_EDX = OT_REG_GPR or otf_sub2 or OT_BITS32;
  116. { register class 2: Segment registers }
  117. OT_REG_SREG = OT_REGISTER or otf_reg_sreg or OT_BITS16;
  118. OT_REG_CS = OT_REG_SREG or otf_sub0; { CS }
  119. OT_REG_DESS = OT_REG_SREG or otf_sub1; { DS, ES, SS (non-CS 86 registers) }
  120. OT_REG_FSGS = OT_REG_SREG or otf_sub2; { FS, GS (386 extended registers) }
  121. { register class 3: FPU registers }
  122. OT_FPUREG = OT_REGISTER or otf_reg_fpu;
  123. OT_FPU0 = OT_FPUREG or otf_sub0; { FPU stack register zero }
  124. { register class 4: MMX (both reg and r/m) }
  125. OT_MMXREG = OT_REGNORM or otf_reg_mmx;
  126. OT_MMXRM = OT_REGMEM or otf_reg_mmx;
  127. { register class 5: XMM (both reg and r/m) }
  128. OT_XMMREG = OT_REGNORM or otf_reg_xmm;
  129. OT_XMMRM = OT_REGMEM or otf_reg_xmm;
  130. OT_XMEM32 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS32;
  131. OT_XMEM64 = OT_REGNORM or otf_reg_xmm or otf_reg_gpr or OT_BITS64;
  132. { register class 5: XMM (both reg and r/m) }
  133. OT_YMMREG = OT_REGNORM or otf_reg_ymm;
  134. OT_YMMRM = OT_REGMEM or otf_reg_ymm;
  135. OT_YMEM32 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS32;
  136. OT_YMEM64 = OT_REGNORM or otf_reg_ymm or otf_reg_gpr or OT_BITS64;
  137. { Vector-Memory operands }
  138. OT_VMEM_ANY = OT_XMEM32 or OT_XMEM64 or OT_YMEM32 or OT_YMEM64;
  139. { Memory operands }
  140. OT_MEM8 = OT_MEMORY or OT_BITS8;
  141. OT_MEM16 = OT_MEMORY or OT_BITS16;
  142. OT_MEM32 = OT_MEMORY or OT_BITS32;
  143. OT_MEM64 = OT_MEMORY or OT_BITS64;
  144. OT_MEM128 = OT_MEMORY or OT_BITS128;
  145. OT_MEM256 = OT_MEMORY or OT_BITS256;
  146. OT_MEM80 = OT_MEMORY or OT_BITS80;
  147. OT_MEM_OFFS = OT_MEMORY or otf_sub0; { special type of EA }
  148. { simple [address] offset }
  149. { Matches any type of r/m operand }
  150. OT_MEMORY_ANY = OT_MEMORY or OT_RM_GPR or OT_XMMRM or OT_MMXRM or OT_YMMRM;
  151. { Immediate operands }
  152. OT_IMM8 = OT_IMMEDIATE or OT_BITS8;
  153. OT_IMM16 = OT_IMMEDIATE or OT_BITS16;
  154. OT_IMM32 = OT_IMMEDIATE or OT_BITS32;
  155. OT_IMM64 = OT_IMMEDIATE or OT_BITS64;
  156. OT_ONENESS = otf_sub0; { special type of immediate operand }
  157. OT_UNITY = OT_IMMEDIATE or OT_ONENESS; { for shift/rotate instructions }
  158. { Size of the instruction table converted by nasmconv.pas }
  159. {$if defined(x86_64)}
  160. instabentries = {$i x8664nop.inc}
  161. {$elseif defined(i386)}
  162. instabentries = {$i i386nop.inc}
  163. {$elseif defined(i8086)}
  164. instabentries = {$i i8086nop.inc}
  165. {$endif}
  166. maxinfolen = 8;
  167. MaxInsChanges = 3; { Max things a instruction can change }
  168. type
  169. { What an instruction can change. Needed for optimizer and spilling code.
  170. Note: The order of this enumeration is should not be changed! }
  171. TInsChange = (Ch_None,
  172. {Read from a register}
  173. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  174. {write from a register}
  175. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  176. {read and write from/to a register}
  177. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  178. {modify the contents of a register with the purpose of using
  179. this changed content afterwards (add/sub/..., but e.g. not rep
  180. or movsd)}
  181. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  182. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  183. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  184. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  185. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  186. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  187. Ch_WMemEDI,
  188. Ch_All,
  189. { x86_64 registers }
  190. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  191. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  192. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  193. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  194. );
  195. TInsProp = packed record
  196. Ch : Array[1..MaxInsChanges] of TInsChange;
  197. end;
  198. TMemRefSizeInfo = (msiUnkown, msiUnsupported, msiNoSize,
  199. msiMultiple, msiMultiple8, msiMultiple16, msiMultiple32,
  200. msiMultiple64, msiMultiple128, msiMultiple256,
  201. msiMemRegSize, msiMemRegx16y32, msiMemRegx32y64, msiMemRegx64y128, msiMemRegx64y256,
  202. msiMem8, msiMem16, msiMem32, msiMem64, msiMem128, msiMem256,
  203. msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  204. msiVMemMultiple, msiVMemRegSize);
  205. TConstSizeInfo = (csiUnkown, csiMultiple, csiNoSize, csiMem8, csiMem16, csiMem32, csiMem64);
  206. TInsTabMemRefSizeInfoRec = record
  207. MemRefSize : TMemRefSizeInfo;
  208. ExistsSSEAVX: boolean;
  209. ConstSize : TConstSizeInfo;
  210. end;
  211. const
  212. MemRefMultiples: set of TMemRefSizeInfo = [msiMultiple, msiMultiple8,
  213. msiMultiple16, msiMultiple32,
  214. msiMultiple64, msiMultiple128,
  215. msiMultiple256, msiVMemMultiple];
  216. MemRefSizeInfoVMems: Set of TMemRefSizeInfo = [msiXMem32, msiXMem64, msiYMem32, msiYMem64,
  217. msiVMemMultiple, msiVMemRegSize];
  218. InsProp : array[tasmop] of TInsProp =
  219. {$if defined(x86_64)}
  220. {$i x8664pro.inc}
  221. {$elseif defined(i386)}
  222. {$i i386prop.inc}
  223. {$elseif defined(i8086)}
  224. {$i i8086prop.inc}
  225. {$endif}
  226. type
  227. TOperandOrder = (op_intel,op_att);
  228. tinsentry=packed record
  229. opcode : tasmop;
  230. ops : byte;
  231. optypes : array[0..max_operands-1] of longint;
  232. code : array[0..maxinfolen] of char;
  233. flags : int64;
  234. end;
  235. pinsentry=^tinsentry;
  236. { alignment for operator }
  237. tai_align = class(tai_align_abstract)
  238. reg : tregister;
  239. constructor create(b:byte);override;
  240. constructor create_op(b: byte; _op: byte);override;
  241. function calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;override;
  242. end;
  243. taicpu = class(tai_cpu_abstract_sym)
  244. opsize : topsize;
  245. constructor op_none(op : tasmop);
  246. constructor op_none(op : tasmop;_size : topsize);
  247. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  248. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  249. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  250. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  251. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  252. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  253. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  254. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  255. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  256. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  257. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  258. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  259. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  260. constructor op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  261. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  262. { this is for Jmp instructions }
  263. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  264. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  265. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  266. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  267. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  268. procedure changeopsize(siz:topsize);
  269. function GetString:string;
  270. { This is a workaround for the GAS non commutative fpu instruction braindamage.
  271. Early versions of the UnixWare assembler had a bug where some fpu instructions
  272. were reversed and GAS still keeps this "feature" for compatibility.
  273. for details: http://sourceware.org/binutils/docs/as/i386_002dBugs.html#i386_002dBugs
  274. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528
  275. http://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax#Caveats
  276. Since FPC is "GAS centric" due to its history it generates instructions with the same operand order so
  277. when generating output for other assemblers, the opcodes must be fixed before writing them.
  278. This function returns the fixed opcodes. Changing the opcodes permanently is no good idea
  279. because in case of smartlinking assembler is generated twice so at the second run wrong
  280. assembler is generated.
  281. }
  282. function FixNonCommutativeOpcodes: tasmop;
  283. private
  284. FOperandOrder : TOperandOrder;
  285. procedure init(_size : topsize); { this need to be called by all constructor }
  286. public
  287. { the next will reset all instructions that can change in pass 2 }
  288. procedure ResetPass1;override;
  289. procedure ResetPass2;override;
  290. function CheckIfValid:boolean;
  291. function Pass1(objdata:TObjData):longint;override;
  292. procedure Pass2(objdata:TObjData);override;
  293. procedure SetOperandOrder(order:TOperandOrder);
  294. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  295. { register spilling code }
  296. function spilling_get_operation_type(opnr: longint): topertype;override;
  297. private
  298. { next fields are filled in pass1, so pass2 is faster }
  299. insentry : PInsEntry;
  300. insoffset : longint;
  301. LastInsOffset : longint; { need to be public to be reset }
  302. inssize : shortint;
  303. {$ifdef x86_64}
  304. rex : byte;
  305. {$endif x86_64}
  306. function InsEnd:longint;
  307. procedure create_ot(objdata:TObjData);
  308. function Matches(p:PInsEntry):boolean;
  309. function calcsize(p:PInsEntry):shortint;
  310. procedure gencode(objdata:TObjData);
  311. function NeedAddrPrefix(opidx:byte):boolean;
  312. procedure Swapoperands;
  313. function FindInsentry(objdata:TObjData):boolean;
  314. end;
  315. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  316. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  317. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  318. procedure InitAsm;
  319. procedure DoneAsm;
  320. implementation
  321. uses
  322. cutils,
  323. globals,
  324. systems,
  325. procinfo,
  326. itcpugas,
  327. symsym,
  328. cpuinfo;
  329. {*****************************************************************************
  330. Instruction table
  331. *****************************************************************************}
  332. const
  333. {Instruction flags }
  334. IF_NONE = $00000000;
  335. IF_SM = $00000001; { size match first two operands }
  336. IF_SM2 = $00000002;
  337. IF_SB = $00000004; { unsized operands can't be non-byte }
  338. IF_SW = $00000008; { unsized operands can't be non-word }
  339. IF_SD = $00000010; { unsized operands can't be nondword }
  340. IF_SMASK = $0000001f;
  341. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  342. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  343. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  344. IF_ARMASK = $00000060; { mask for unsized argument spec }
  345. IF_ARSHIFT = 5; { LSB of IF_ARMASK }
  346. IF_PRIV = $00000100; { it's a privileged instruction }
  347. IF_SMM = $00000200; { it's only valid in SMM }
  348. IF_PROT = $00000400; { it's protected mode only }
  349. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  350. IF_UNDOC = $00001000; { it's an undocumented instruction }
  351. IF_FPU = $00002000; { it's an FPU instruction }
  352. IF_MMX = $00004000; { it's an MMX instruction }
  353. { it's a 3DNow! instruction }
  354. IF_3DNOW = $00008000;
  355. { it's a SSE (KNI, MMX2) instruction }
  356. IF_SSE = $00010000;
  357. { SSE2 instructions }
  358. IF_SSE2 = $00020000;
  359. { SSE3 instructions }
  360. IF_SSE3 = $00040000;
  361. { SSE64 instructions }
  362. IF_SSE64 = $00080000;
  363. { the mask for processor types }
  364. {IF_PMASK = longint($FF000000);}
  365. { the mask for disassembly "prefer" }
  366. {IF_PFMASK = longint($F001FF00);}
  367. { SVM instructions }
  368. IF_SVM = $00100000;
  369. { SSE4 instructions }
  370. IF_SSE4 = $00200000;
  371. { TODO: These flags were added to make x86ins.dat more readable.
  372. Values must be reassigned to make any other use of them. }
  373. IF_SSSE3 = $00200000;
  374. IF_SSE41 = $00200000;
  375. IF_SSE42 = $00200000;
  376. IF_AVX = $00200000;
  377. IF_AVX2 = $00200000;
  378. IF_BMI1 = $00200000;
  379. IF_BMI2 = $00200000;
  380. IF_16BITONLY = $00200000;
  381. IF_FMA = $00200000;
  382. IF_FMA4 = $00200000;
  383. IF_PLEVEL = $0F000000; { mask for processor level }
  384. IF_8086 = $00000000; { 8086 instruction }
  385. IF_186 = $01000000; { 186+ instruction }
  386. IF_286 = $02000000; { 286+ instruction }
  387. IF_386 = $03000000; { 386+ instruction }
  388. IF_486 = $04000000; { 486+ instruction }
  389. IF_PENT = $05000000; { Pentium instruction }
  390. IF_P6 = $06000000; { P6 instruction }
  391. IF_KATMAI = $07000000; { Katmai instructions }
  392. IF_WILLAMETTE = $08000000; { Willamette instructions }
  393. IF_PRESCOTT = $09000000; { Prescott instructions }
  394. IF_X86_64 = $0a000000;
  395. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  396. IF_AMD = $0c000000; { AMD-specific instruction }
  397. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  398. IF_SANDYBRIDGE = $0e000000; { Sandybridge-specific instruction }
  399. IF_NEC = $0f000000; { NEC V20/V30 instruction }
  400. { added flags }
  401. IF_PRE = $40000000; { it's a prefix instruction }
  402. IF_PASS2 = $80000000; { if the instruction can change in a second pass }
  403. type
  404. TInsTabCache=array[TasmOp] of longint;
  405. PInsTabCache=^TInsTabCache;
  406. TInsTabMemRefSizeInfoCache=array[TasmOp] of TInsTabMemRefSizeInfoRec;
  407. PInsTabMemRefSizeInfoCache=^TInsTabMemRefSizeInfoCache;
  408. const
  409. {$if defined(x86_64)}
  410. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  411. {$elseif defined(i386)}
  412. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  413. {$elseif defined(i8086)}
  414. InsTab:array[0..instabentries-1] of TInsEntry={$i i8086tab.inc}
  415. {$endif}
  416. var
  417. InsTabCache : PInsTabCache;
  418. InsTabMemRefSizeInfoCache: PInsTabMemRefSizeInfoCache;
  419. const
  420. {$if defined(x86_64)}
  421. { Intel style operands ! }
  422. opsize_2_type:array[0..2,topsize] of longint=(
  423. (OT_NONE,
  424. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  425. OT_BITS16,OT_BITS32,OT_BITS64,
  426. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  427. OT_BITS64,
  428. OT_NEAR,OT_FAR,OT_SHORT,
  429. OT_NONE,
  430. OT_BITS128,
  431. OT_BITS256
  432. ),
  433. (OT_NONE,
  434. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  435. OT_BITS16,OT_BITS32,OT_BITS64,
  436. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  437. OT_BITS64,
  438. OT_NEAR,OT_FAR,OT_SHORT,
  439. OT_NONE,
  440. OT_BITS128,
  441. OT_BITS256
  442. ),
  443. (OT_NONE,
  444. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  445. OT_BITS16,OT_BITS32,OT_BITS64,
  446. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  447. OT_BITS64,
  448. OT_NEAR,OT_FAR,OT_SHORT,
  449. OT_NONE,
  450. OT_BITS128,
  451. OT_BITS256
  452. )
  453. );
  454. reg_ot_table : array[tregisterindex] of longint = (
  455. {$i r8664ot.inc}
  456. );
  457. {$elseif defined(i386)}
  458. { Intel style operands ! }
  459. opsize_2_type:array[0..2,topsize] of longint=(
  460. (OT_NONE,
  461. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  462. OT_BITS16,OT_BITS32,OT_BITS64,
  463. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  464. OT_BITS64,
  465. OT_NEAR,OT_FAR,OT_SHORT,
  466. OT_NONE,
  467. OT_BITS128,
  468. OT_BITS256
  469. ),
  470. (OT_NONE,
  471. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  472. OT_BITS16,OT_BITS32,OT_BITS64,
  473. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  474. OT_BITS64,
  475. OT_NEAR,OT_FAR,OT_SHORT,
  476. OT_NONE,
  477. OT_BITS128,
  478. OT_BITS256
  479. ),
  480. (OT_NONE,
  481. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  482. OT_BITS16,OT_BITS32,OT_BITS64,
  483. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  484. OT_BITS64,
  485. OT_NEAR,OT_FAR,OT_SHORT,
  486. OT_NONE,
  487. OT_BITS128,
  488. OT_BITS256
  489. )
  490. );
  491. reg_ot_table : array[tregisterindex] of longint = (
  492. {$i r386ot.inc}
  493. );
  494. {$elseif defined(i8086)}
  495. { Intel style operands ! }
  496. opsize_2_type:array[0..2,topsize] of longint=(
  497. (OT_NONE,
  498. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  499. OT_BITS16,OT_BITS32,OT_BITS64,
  500. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  501. OT_BITS64,
  502. OT_NEAR,OT_FAR,OT_SHORT,
  503. OT_NONE,
  504. OT_BITS128,
  505. OT_BITS256
  506. ),
  507. (OT_NONE,
  508. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  509. OT_BITS16,OT_BITS32,OT_BITS64,
  510. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  511. OT_BITS64,
  512. OT_NEAR,OT_FAR,OT_SHORT,
  513. OT_NONE,
  514. OT_BITS128,
  515. OT_BITS256
  516. ),
  517. (OT_NONE,
  518. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  519. OT_BITS16,OT_BITS32,OT_BITS64,
  520. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  521. OT_BITS64,
  522. OT_NEAR,OT_FAR,OT_SHORT,
  523. OT_NONE,
  524. OT_BITS128,
  525. OT_BITS256
  526. )
  527. );
  528. reg_ot_table : array[tregisterindex] of longint = (
  529. {$i r8086ot.inc}
  530. );
  531. {$endif}
  532. function MemRefInfo(aAsmop: TAsmOp): TInsTabMemRefSizeInfoRec;
  533. begin
  534. result := InsTabMemRefSizeInfoCache^[aAsmop];
  535. end;
  536. { Operation type for spilling code }
  537. type
  538. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  539. var
  540. operation_type_table : ^toperation_type_table;
  541. {****************************************************************************
  542. TAI_ALIGN
  543. ****************************************************************************}
  544. constructor tai_align.create(b: byte);
  545. begin
  546. inherited create(b);
  547. reg:=NR_ECX;
  548. end;
  549. constructor tai_align.create_op(b: byte; _op: byte);
  550. begin
  551. inherited create_op(b,_op);
  552. reg:=NR_NO;
  553. end;
  554. function tai_align.calculatefillbuf(var buf : tfillbuffer;executable : boolean):pchar;
  555. const
  556. { Updated according to
  557. Software Optimization Guide for AMD Family 15h Processors, Verison 3.08, January 2014
  558. and
  559. Intel 64 and IA-32 Architectures Software Developer’s Manual
  560. Volume 2B: Instruction Set Reference, N-Z, January 2015
  561. }
  562. alignarray_cmovcpus:array[0..10] of string[11]=(
  563. #$66#$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  564. #$66#$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  565. #$66#$0F#$1F#$84#$00#$00#$00#$00#$00,
  566. #$0F#$1F#$84#$00#$00#$00#$00#$00,
  567. #$0F#$1F#$80#$00#$00#$00#$00,
  568. #$66#$0F#$1F#$44#$00#$00,
  569. #$0F#$1F#$44#$00#$00,
  570. #$0F#$1F#$40#$00,
  571. #$0F#$1F#$00,
  572. #$66#$90,
  573. #$90);
  574. alignarray:array[0..5] of string[8]=(
  575. #$8D#$B4#$26#$00#$00#$00#$00,
  576. #$8D#$B6#$00#$00#$00#$00,
  577. #$8D#$74#$26#$00,
  578. #$8D#$76#$00,
  579. #$89#$F6,
  580. #$90);
  581. var
  582. bufptr : pchar;
  583. j : longint;
  584. localsize: byte;
  585. begin
  586. inherited calculatefillbuf(buf,executable);
  587. if not(use_op) and executable then
  588. begin
  589. bufptr:=pchar(@buf);
  590. { fillsize may still be used afterwards, so don't modify }
  591. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  592. localsize:=fillsize;
  593. while (localsize>0) do
  594. begin
  595. {$ifndef i8086}
  596. if CPUX86_HAS_CMOV in cpu_capabilities[current_settings.cputype] then
  597. begin
  598. for j:=low(alignarray_cmovcpus) to high(alignarray_cmovcpus) do
  599. if (localsize>=length(alignarray_cmovcpus[j])) then
  600. break;
  601. move(alignarray_cmovcpus[j][1],bufptr^,length(alignarray_cmovcpus[j]));
  602. inc(bufptr,length(alignarray_cmovcpus[j]));
  603. dec(localsize,length(alignarray_cmovcpus[j]));
  604. end
  605. else
  606. {$endif not i8086}
  607. begin
  608. for j:=low(alignarray) to high(alignarray) do
  609. if (localsize>=length(alignarray[j])) then
  610. break;
  611. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  612. inc(bufptr,length(alignarray[j]));
  613. dec(localsize,length(alignarray[j]));
  614. end
  615. end;
  616. end;
  617. calculatefillbuf:=pchar(@buf);
  618. end;
  619. {*****************************************************************************
  620. Taicpu Constructors
  621. *****************************************************************************}
  622. procedure taicpu.changeopsize(siz:topsize);
  623. begin
  624. opsize:=siz;
  625. end;
  626. procedure taicpu.init(_size : topsize);
  627. begin
  628. { default order is att }
  629. FOperandOrder:=op_att;
  630. segprefix:=NR_NO;
  631. opsize:=_size;
  632. insentry:=nil;
  633. LastInsOffset:=-1;
  634. InsOffset:=0;
  635. InsSize:=0;
  636. end;
  637. constructor taicpu.op_none(op : tasmop);
  638. begin
  639. inherited create(op);
  640. init(S_NO);
  641. end;
  642. constructor taicpu.op_none(op : tasmop;_size : topsize);
  643. begin
  644. inherited create(op);
  645. init(_size);
  646. end;
  647. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  648. begin
  649. inherited create(op);
  650. init(_size);
  651. ops:=1;
  652. loadreg(0,_op1);
  653. end;
  654. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  655. begin
  656. inherited create(op);
  657. init(_size);
  658. ops:=1;
  659. loadconst(0,_op1);
  660. end;
  661. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  662. begin
  663. inherited create(op);
  664. init(_size);
  665. ops:=1;
  666. loadref(0,_op1);
  667. end;
  668. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  669. begin
  670. inherited create(op);
  671. init(_size);
  672. ops:=2;
  673. loadreg(0,_op1);
  674. loadreg(1,_op2);
  675. end;
  676. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  677. begin
  678. inherited create(op);
  679. init(_size);
  680. ops:=2;
  681. loadreg(0,_op1);
  682. loadconst(1,_op2);
  683. end;
  684. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  685. begin
  686. inherited create(op);
  687. init(_size);
  688. ops:=2;
  689. loadreg(0,_op1);
  690. loadref(1,_op2);
  691. end;
  692. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  693. begin
  694. inherited create(op);
  695. init(_size);
  696. ops:=2;
  697. loadconst(0,_op1);
  698. loadreg(1,_op2);
  699. end;
  700. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  701. begin
  702. inherited create(op);
  703. init(_size);
  704. ops:=2;
  705. loadconst(0,_op1);
  706. loadconst(1,_op2);
  707. end;
  708. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  709. begin
  710. inherited create(op);
  711. init(_size);
  712. ops:=2;
  713. loadconst(0,_op1);
  714. loadref(1,_op2);
  715. end;
  716. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  717. begin
  718. inherited create(op);
  719. init(_size);
  720. ops:=2;
  721. loadref(0,_op1);
  722. loadreg(1,_op2);
  723. end;
  724. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  725. begin
  726. inherited create(op);
  727. init(_size);
  728. ops:=3;
  729. loadreg(0,_op1);
  730. loadreg(1,_op2);
  731. loadreg(2,_op3);
  732. end;
  733. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  734. begin
  735. inherited create(op);
  736. init(_size);
  737. ops:=3;
  738. loadconst(0,_op1);
  739. loadreg(1,_op2);
  740. loadreg(2,_op3);
  741. end;
  742. constructor taicpu.op_ref_reg_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2,_op3 : tregister);
  743. begin
  744. inherited create(op);
  745. init(_size);
  746. ops:=3;
  747. loadref(0,_op1);
  748. loadreg(1,_op2);
  749. loadreg(2,_op3);
  750. end;
  751. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  752. begin
  753. inherited create(op);
  754. init(_size);
  755. ops:=3;
  756. loadconst(0,_op1);
  757. loadref(1,_op2);
  758. loadreg(2,_op3);
  759. end;
  760. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  761. begin
  762. inherited create(op);
  763. init(_size);
  764. ops:=3;
  765. loadconst(0,_op1);
  766. loadreg(1,_op2);
  767. loadref(2,_op3);
  768. end;
  769. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  770. begin
  771. inherited create(op);
  772. init(_size);
  773. condition:=cond;
  774. ops:=1;
  775. loadsymbol(0,_op1,0);
  776. end;
  777. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  778. begin
  779. inherited create(op);
  780. init(_size);
  781. ops:=1;
  782. loadsymbol(0,_op1,0);
  783. end;
  784. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  785. begin
  786. inherited create(op);
  787. init(_size);
  788. ops:=1;
  789. loadsymbol(0,_op1,_op1ofs);
  790. end;
  791. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  792. begin
  793. inherited create(op);
  794. init(_size);
  795. ops:=2;
  796. loadsymbol(0,_op1,_op1ofs);
  797. loadreg(1,_op2);
  798. end;
  799. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  800. begin
  801. inherited create(op);
  802. init(_size);
  803. ops:=2;
  804. loadsymbol(0,_op1,_op1ofs);
  805. loadref(1,_op2);
  806. end;
  807. function taicpu.GetString:string;
  808. var
  809. i : longint;
  810. s : string;
  811. addsize : boolean;
  812. begin
  813. s:='['+std_op2str[opcode];
  814. for i:=0 to ops-1 do
  815. begin
  816. with oper[i]^ do
  817. begin
  818. if i=0 then
  819. s:=s+' '
  820. else
  821. s:=s+',';
  822. { type }
  823. addsize:=false;
  824. if (ot and OT_XMMREG)=OT_XMMREG then
  825. s:=s+'xmmreg'
  826. else
  827. if (ot and OT_YMMREG)=OT_YMMREG then
  828. s:=s+'ymmreg'
  829. else
  830. if (ot and OT_MMXREG)=OT_MMXREG then
  831. s:=s+'mmxreg'
  832. else
  833. if (ot and OT_FPUREG)=OT_FPUREG then
  834. s:=s+'fpureg'
  835. else
  836. if (ot and OT_REGISTER)=OT_REGISTER then
  837. begin
  838. s:=s+'reg';
  839. addsize:=true;
  840. end
  841. else
  842. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  843. begin
  844. s:=s+'imm';
  845. addsize:=true;
  846. end
  847. else
  848. if (ot and OT_MEMORY)=OT_MEMORY then
  849. begin
  850. s:=s+'mem';
  851. addsize:=true;
  852. end
  853. else
  854. s:=s+'???';
  855. { size }
  856. if addsize then
  857. begin
  858. if (ot and OT_BITS8)<>0 then
  859. s:=s+'8'
  860. else
  861. if (ot and OT_BITS16)<>0 then
  862. s:=s+'16'
  863. else
  864. if (ot and OT_BITS32)<>0 then
  865. s:=s+'32'
  866. else
  867. if (ot and OT_BITS64)<>0 then
  868. s:=s+'64'
  869. else
  870. if (ot and OT_BITS128)<>0 then
  871. s:=s+'128'
  872. else
  873. if (ot and OT_BITS256)<>0 then
  874. s:=s+'256'
  875. else
  876. s:=s+'??';
  877. { signed }
  878. if (ot and OT_SIGNED)<>0 then
  879. s:=s+'s';
  880. end;
  881. end;
  882. end;
  883. GetString:=s+']';
  884. end;
  885. procedure taicpu.Swapoperands;
  886. var
  887. p : POper;
  888. begin
  889. { Fix the operands which are in AT&T style and we need them in Intel style }
  890. case ops of
  891. 0,1:
  892. ;
  893. 2 : begin
  894. { 0,1 -> 1,0 }
  895. p:=oper[0];
  896. oper[0]:=oper[1];
  897. oper[1]:=p;
  898. end;
  899. 3 : begin
  900. { 0,1,2 -> 2,1,0 }
  901. p:=oper[0];
  902. oper[0]:=oper[2];
  903. oper[2]:=p;
  904. end;
  905. 4 : begin
  906. { 0,1,2,3 -> 3,2,1,0 }
  907. p:=oper[0];
  908. oper[0]:=oper[3];
  909. oper[3]:=p;
  910. p:=oper[1];
  911. oper[1]:=oper[2];
  912. oper[2]:=p;
  913. end;
  914. else
  915. internalerror(201108141);
  916. end;
  917. end;
  918. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  919. begin
  920. if FOperandOrder<>order then
  921. begin
  922. Swapoperands;
  923. FOperandOrder:=order;
  924. end;
  925. end;
  926. function taicpu.FixNonCommutativeOpcodes: tasmop;
  927. begin
  928. result:=opcode;
  929. { we need ATT order }
  930. SetOperandOrder(op_att);
  931. if (
  932. (ops=2) and
  933. (oper[0]^.typ=top_reg) and
  934. (oper[1]^.typ=top_reg) and
  935. { if the first is ST and the second is also a register
  936. it is necessarily ST1 .. ST7 }
  937. ((oper[0]^.reg=NR_ST) or
  938. (oper[0]^.reg=NR_ST0))
  939. ) or
  940. { ((ops=1) and
  941. (oper[0]^.typ=top_reg) and
  942. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  943. (ops=0) then
  944. begin
  945. if opcode=A_FSUBR then
  946. result:=A_FSUB
  947. else if opcode=A_FSUB then
  948. result:=A_FSUBR
  949. else if opcode=A_FDIVR then
  950. result:=A_FDIV
  951. else if opcode=A_FDIV then
  952. result:=A_FDIVR
  953. else if opcode=A_FSUBRP then
  954. result:=A_FSUBP
  955. else if opcode=A_FSUBP then
  956. result:=A_FSUBRP
  957. else if opcode=A_FDIVRP then
  958. result:=A_FDIVP
  959. else if opcode=A_FDIVP then
  960. result:=A_FDIVRP;
  961. end;
  962. if (
  963. (ops=1) and
  964. (oper[0]^.typ=top_reg) and
  965. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  966. (oper[0]^.reg<>NR_ST)
  967. ) then
  968. begin
  969. if opcode=A_FSUBRP then
  970. result:=A_FSUBP
  971. else if opcode=A_FSUBP then
  972. result:=A_FSUBRP
  973. else if opcode=A_FDIVRP then
  974. result:=A_FDIVP
  975. else if opcode=A_FDIVP then
  976. result:=A_FDIVRP;
  977. end;
  978. end;
  979. {*****************************************************************************
  980. Assembler
  981. *****************************************************************************}
  982. type
  983. ea = packed record
  984. sib_present : boolean;
  985. bytes : byte;
  986. size : byte;
  987. modrm : byte;
  988. sib : byte;
  989. {$ifdef x86_64}
  990. rex : byte;
  991. {$endif x86_64}
  992. end;
  993. procedure taicpu.create_ot(objdata:TObjData);
  994. {
  995. this function will also fix some other fields which only needs to be once
  996. }
  997. var
  998. i,l,relsize : longint;
  999. currsym : TObjSymbol;
  1000. begin
  1001. if ops=0 then
  1002. exit;
  1003. { update oper[].ot field }
  1004. for i:=0 to ops-1 do
  1005. with oper[i]^ do
  1006. begin
  1007. case typ of
  1008. top_reg :
  1009. begin
  1010. ot:=reg_ot_table[findreg_by_number(reg)];
  1011. end;
  1012. top_ref :
  1013. begin
  1014. if (ref^.refaddr=addr_no)
  1015. {$ifdef i386}
  1016. or (
  1017. (ref^.refaddr in [addr_pic]) and
  1018. { allow any base for assembler blocks }
  1019. ((assigned(current_procinfo) and
  1020. (pi_has_assembler_block in current_procinfo.flags) and
  1021. (ref^.base<>NR_NO)) or (ref^.base=NR_EBX))
  1022. )
  1023. {$endif i386}
  1024. {$ifdef x86_64}
  1025. or (
  1026. (ref^.refaddr in [addr_pic,addr_pic_no_got]) and
  1027. (ref^.base<>NR_NO)
  1028. )
  1029. {$endif x86_64}
  1030. then
  1031. begin
  1032. { create ot field }
  1033. if (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR = OT_REG_GPR) and
  1034. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1035. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1036. ) then
  1037. // AVX2 - vector-memory-referenz (e.g. vgatherdpd xmm0, [rax xmm1], xmm2)
  1038. ot := (reg_ot_table[findreg_by_number(ref^.base)] and OT_REG_GPR) or
  1039. (reg_ot_table[findreg_by_number(ref^.index)])
  1040. else if (ref^.base = NR_NO) and
  1041. ((reg_ot_table[findreg_by_number(ref^.index)] = OT_XMMREG) or
  1042. (reg_ot_table[findreg_by_number(ref^.index)] = OT_YMMREG)
  1043. ) then
  1044. // AVX2 - vector-memory-referenz without base-register (e.g. vgatherdpd xmm0, [xmm1], xmm2)
  1045. ot := (OT_REG_GPR) or
  1046. (reg_ot_table[findreg_by_number(ref^.index)])
  1047. else if (ot and OT_SIZE_MASK)=0 then
  1048. ot:=OT_MEMORY_ANY or opsize_2_type[i,opsize]
  1049. else
  1050. ot:=OT_MEMORY_ANY or (ot and OT_SIZE_MASK);
  1051. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  1052. ot:=ot or OT_MEM_OFFS;
  1053. { fix scalefactor }
  1054. if (ref^.index=NR_NO) then
  1055. ref^.scalefactor:=0
  1056. else
  1057. if (ref^.scalefactor=0) then
  1058. ref^.scalefactor:=1;
  1059. end
  1060. else
  1061. begin
  1062. { Jumps use a relative offset which can be 8bit,
  1063. for other opcodes we always need to generate the full
  1064. 32bit address }
  1065. if assigned(objdata) and
  1066. is_jmp then
  1067. begin
  1068. currsym:=objdata.symbolref(ref^.symbol);
  1069. l:=ref^.offset;
  1070. {$push}
  1071. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  1072. if assigned(currsym) then
  1073. inc(l,currsym.address);
  1074. {$pop}
  1075. { when it is a forward jump we need to compensate the
  1076. offset of the instruction since the previous time,
  1077. because the symbol address is then still using the
  1078. 'old-style' addressing.
  1079. For backwards jumps this is not required because the
  1080. address of the symbol is already adjusted to the
  1081. new offset }
  1082. if (l>InsOffset) and (LastInsOffset<>-1) then
  1083. inc(l,InsOffset-LastInsOffset);
  1084. { instruction size will then always become 2 (PFV) }
  1085. relsize:=(InsOffset+2)-l;
  1086. if (relsize>=-128) and (relsize<=127) and
  1087. (
  1088. not assigned(currsym) or
  1089. (currsym.objsection=objdata.currobjsec)
  1090. ) then
  1091. ot:=OT_IMM8 or OT_SHORT
  1092. else
  1093. ot:=OT_IMM32 or OT_NEAR;
  1094. end
  1095. else
  1096. ot:=OT_IMM32 or OT_NEAR;
  1097. end;
  1098. end;
  1099. top_local :
  1100. begin
  1101. if (ot and OT_SIZE_MASK)=0 then
  1102. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  1103. else
  1104. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  1105. end;
  1106. top_const :
  1107. begin
  1108. // if opcode is a SSE or AVX-instruction then we need a
  1109. // special handling (opsize can different from const-size)
  1110. // (e.g. "pextrw reg/m16, xmmreg, imm8" =>> opsize (16 bit), const-size (8 bit)
  1111. if (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) and
  1112. (not(InsTabMemRefSizeInfoCache^[opcode].ConstSize in [csiMultiple, csiUnkown])) then
  1113. begin
  1114. case InsTabMemRefSizeInfoCache^[opcode].ConstSize of
  1115. csiNoSize: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE;
  1116. csiMem8: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS8;
  1117. csiMem16: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS16;
  1118. csiMem32: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS32;
  1119. csiMem64: ot := ot and (not(OT_SIZE_MASK)) or OT_IMMEDIATE or OT_BITS64;
  1120. end;
  1121. end
  1122. else
  1123. begin
  1124. { allow 2nd, 3rd or 4th operand being a constant and expect no size for shuf* etc. }
  1125. { further, allow AAD and AAM with imm. operand }
  1126. if (opsize=S_NO) and not((i in [1,2,3])
  1127. {$ifndef x86_64}
  1128. or ((i=0) and (opcode in [A_AAD,A_AAM]))
  1129. {$endif x86_64}
  1130. ) then
  1131. message(asmr_e_invalid_opcode_and_operand);
  1132. if (opsize<>S_W) and (aint(val)>=-128) and (val<=127) then
  1133. ot:=OT_IMM8 or OT_SIGNED
  1134. else
  1135. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  1136. if (val=1) and (i=1) then
  1137. ot := ot or OT_ONENESS;
  1138. end;
  1139. end;
  1140. top_none :
  1141. begin
  1142. { generated when there was an error in the
  1143. assembler reader. It never happends when generating
  1144. assembler }
  1145. end;
  1146. else
  1147. internalerror(200402266);
  1148. end;
  1149. end;
  1150. end;
  1151. function taicpu.InsEnd:longint;
  1152. begin
  1153. InsEnd:=InsOffset+InsSize;
  1154. end;
  1155. function taicpu.Matches(p:PInsEntry):boolean;
  1156. { * IF_SM stands for Size Match: any operand whose size is not
  1157. * explicitly specified by the template is `really' intended to be
  1158. * the same size as the first size-specified operand.
  1159. * Non-specification is tolerated in the input instruction, but
  1160. * _wrong_ specification is not.
  1161. *
  1162. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  1163. * three-operand instructions such as SHLD: it implies that the
  1164. * first two operands must match in size, but that the third is
  1165. * required to be _unspecified_.
  1166. *
  1167. * IF_SB invokes Size Byte: operands with unspecified size in the
  1168. * template are really bytes, and so no non-byte specification in
  1169. * the input instruction will be tolerated. IF_SW similarly invokes
  1170. * Size Word, and IF_SD invokes Size Doubleword.
  1171. *
  1172. * (The default state if neither IF_SM nor IF_SM2 is specified is
  1173. * that any operand with unspecified size in the template is
  1174. * required to have unspecified size in the instruction too...)
  1175. }
  1176. var
  1177. insot,
  1178. currot,
  1179. i,j,asize,oprs : longint;
  1180. insflags:cardinal;
  1181. siz : array[0..max_operands-1] of longint;
  1182. begin
  1183. result:=false;
  1184. { Check the opcode and operands }
  1185. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  1186. exit;
  1187. for i:=0 to p^.ops-1 do
  1188. begin
  1189. insot:=p^.optypes[i];
  1190. currot:=oper[i]^.ot;
  1191. { Check the operand flags }
  1192. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1193. exit;
  1194. { Check if the passed operand size matches with one of
  1195. the supported operand sizes }
  1196. if ((insot and OT_SIZE_MASK)<>0) and
  1197. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1198. exit;
  1199. end;
  1200. { Check operand sizes }
  1201. insflags:=p^.flags;
  1202. if insflags and IF_SMASK<>0 then
  1203. begin
  1204. { as default an untyped size can get all the sizes, this is different
  1205. from nasm, but else we need to do a lot checking which opcodes want
  1206. size or not with the automatic size generation }
  1207. asize:=-1;
  1208. if (insflags and IF_SB)<>0 then
  1209. asize:=OT_BITS8
  1210. else if (insflags and IF_SW)<>0 then
  1211. asize:=OT_BITS16
  1212. else if (insflags and IF_SD)<>0 then
  1213. asize:=OT_BITS32;
  1214. if (insflags and IF_ARMASK)<>0 then
  1215. begin
  1216. siz[0]:=-1;
  1217. siz[1]:=-1;
  1218. siz[2]:=-1;
  1219. siz[((insflags and IF_ARMASK) shr IF_ARSHIFT)-1]:=asize;
  1220. end
  1221. else
  1222. begin
  1223. siz[0]:=asize;
  1224. siz[1]:=asize;
  1225. siz[2]:=asize;
  1226. end;
  1227. if (insflags and (IF_SM or IF_SM2))<>0 then
  1228. begin
  1229. if (insflags and IF_SM2)<>0 then
  1230. oprs:=2
  1231. else
  1232. oprs:=p^.ops;
  1233. for i:=0 to oprs-1 do
  1234. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  1235. begin
  1236. for j:=0 to oprs-1 do
  1237. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  1238. break;
  1239. end;
  1240. end
  1241. else
  1242. oprs:=2;
  1243. { Check operand sizes }
  1244. for i:=0 to p^.ops-1 do
  1245. begin
  1246. insot:=p^.optypes[i];
  1247. currot:=oper[i]^.ot;
  1248. if ((insot and OT_SIZE_MASK)=0) and
  1249. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  1250. { Immediates can always include smaller size }
  1251. ((currot and OT_IMMEDIATE)=0) and
  1252. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1253. exit;
  1254. end;
  1255. end;
  1256. if (InsTabMemRefSizeInfoCache^[opcode].MemRefSize in MemRefMultiples) and
  1257. (InsTabMemRefSizeInfoCache^[opcode].ExistsSSEAVX) then
  1258. begin
  1259. for i:=0 to p^.ops-1 do
  1260. begin
  1261. insot:=p^.optypes[i];
  1262. if ((insot and OT_XMMRM) = OT_XMMRM) OR
  1263. ((insot and OT_YMMRM) = OT_YMMRM) then
  1264. begin
  1265. if (insot and OT_SIZE_MASK) = 0 then
  1266. begin
  1267. case insot and (OT_XMMRM or OT_YMMRM) of
  1268. OT_XMMRM: insot := insot or OT_BITS128;
  1269. OT_YMMRM: insot := insot or OT_BITS256;
  1270. end;
  1271. end;
  1272. end;
  1273. currot:=oper[i]^.ot;
  1274. { Check the operand flags }
  1275. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  1276. exit;
  1277. { Check if the passed operand size matches with one of
  1278. the supported operand sizes }
  1279. if ((insot and OT_SIZE_MASK)<>0) and
  1280. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  1281. exit;
  1282. end;
  1283. end;
  1284. result:=true;
  1285. end;
  1286. procedure taicpu.ResetPass1;
  1287. begin
  1288. { we need to reset everything here, because the choosen insentry
  1289. can be invalid for a new situation where the previously optimized
  1290. insentry is not correct }
  1291. InsEntry:=nil;
  1292. InsSize:=0;
  1293. LastInsOffset:=-1;
  1294. end;
  1295. procedure taicpu.ResetPass2;
  1296. begin
  1297. { we are here in a second pass, check if the instruction can be optimized }
  1298. if assigned(InsEntry) and
  1299. ((InsEntry^.flags and IF_PASS2)<>0) then
  1300. begin
  1301. InsEntry:=nil;
  1302. InsSize:=0;
  1303. end;
  1304. LastInsOffset:=-1;
  1305. end;
  1306. function taicpu.CheckIfValid:boolean;
  1307. begin
  1308. result:=FindInsEntry(nil);
  1309. end;
  1310. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1311. var
  1312. i : longint;
  1313. begin
  1314. result:=false;
  1315. { Things which may only be done once, not when a second pass is done to
  1316. optimize }
  1317. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1318. begin
  1319. current_filepos:=fileinfo;
  1320. { We need intel style operands }
  1321. SetOperandOrder(op_intel);
  1322. { create the .ot fields }
  1323. create_ot(objdata);
  1324. { set the file postion }
  1325. end
  1326. else
  1327. begin
  1328. { we've already an insentry so it's valid }
  1329. result:=true;
  1330. exit;
  1331. end;
  1332. { Lookup opcode in the table }
  1333. InsSize:=-1;
  1334. i:=instabcache^[opcode];
  1335. if i=-1 then
  1336. begin
  1337. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1338. exit;
  1339. end;
  1340. insentry:=@instab[i];
  1341. while (insentry^.opcode=opcode) do
  1342. begin
  1343. if matches(insentry) then
  1344. begin
  1345. result:=true;
  1346. exit;
  1347. end;
  1348. inc(insentry);
  1349. end;
  1350. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1351. { No instruction found, set insentry to nil and inssize to -1 }
  1352. insentry:=nil;
  1353. inssize:=-1;
  1354. end;
  1355. function taicpu.Pass1(objdata:TObjData):longint;
  1356. begin
  1357. Pass1:=0;
  1358. { Save the old offset and set the new offset }
  1359. InsOffset:=ObjData.CurrObjSec.Size;
  1360. { Error? }
  1361. if (Insentry=nil) and (InsSize=-1) then
  1362. exit;
  1363. { set the file postion }
  1364. current_filepos:=fileinfo;
  1365. { Get InsEntry }
  1366. if FindInsEntry(ObjData) then
  1367. begin
  1368. { Calculate instruction size }
  1369. InsSize:=calcsize(insentry);
  1370. if segprefix<>NR_NO then
  1371. inc(InsSize);
  1372. { Fix opsize if size if forced }
  1373. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1374. begin
  1375. if (insentry^.flags and IF_ARMASK)=0 then
  1376. begin
  1377. if (insentry^.flags and IF_SB)<>0 then
  1378. begin
  1379. if opsize=S_NO then
  1380. opsize:=S_B;
  1381. end
  1382. else if (insentry^.flags and IF_SW)<>0 then
  1383. begin
  1384. if opsize=S_NO then
  1385. opsize:=S_W;
  1386. end
  1387. else if (insentry^.flags and IF_SD)<>0 then
  1388. begin
  1389. if opsize=S_NO then
  1390. opsize:=S_L;
  1391. end;
  1392. end;
  1393. end;
  1394. LastInsOffset:=InsOffset;
  1395. Pass1:=InsSize;
  1396. exit;
  1397. end;
  1398. LastInsOffset:=-1;
  1399. end;
  1400. const
  1401. segprefixes: array[NR_ES..NR_GS] of Byte=(
  1402. // es cs ss ds fs gs
  1403. $26, $2E, $36, $3E, $64, $65
  1404. );
  1405. procedure taicpu.Pass2(objdata:TObjData);
  1406. begin
  1407. { error in pass1 ? }
  1408. if insentry=nil then
  1409. exit;
  1410. current_filepos:=fileinfo;
  1411. { Segment override }
  1412. if (segprefix>=NR_ES) and (segprefix<=NR_GS) then
  1413. begin
  1414. objdata.writebytes(segprefixes[segprefix],1);
  1415. { fix the offset for GenNode }
  1416. inc(InsOffset);
  1417. end
  1418. else if segprefix<>NR_NO then
  1419. InternalError(201001071);
  1420. { Generate the instruction }
  1421. GenCode(objdata);
  1422. end;
  1423. function taicpu.needaddrprefix(opidx:byte):boolean;
  1424. begin
  1425. result:=(oper[opidx]^.typ=top_ref) and
  1426. (oper[opidx]^.ref^.refaddr=addr_no) and
  1427. {$ifdef x86_64}
  1428. (oper[opidx]^.ref^.base<>NR_RIP) and
  1429. {$endif x86_64}
  1430. (
  1431. (
  1432. (oper[opidx]^.ref^.index<>NR_NO) and
  1433. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1434. ) or
  1435. (
  1436. (oper[opidx]^.ref^.base<>NR_NO) and
  1437. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1438. )
  1439. );
  1440. end;
  1441. procedure badreg(r:Tregister);
  1442. begin
  1443. Message1(asmw_e_invalid_register,generic_regname(r));
  1444. end;
  1445. function regval(r:Tregister):byte;
  1446. const
  1447. intsupreg2opcode: array[0..7] of byte=
  1448. // ax cx dx bx si di bp sp -- in x86reg.dat
  1449. // ax cx dx bx sp bp si di -- needed order
  1450. (0, 1, 2, 3, 6, 7, 5, 4);
  1451. maxsupreg: array[tregistertype] of tsuperregister=
  1452. {$ifdef x86_64}
  1453. (0, 16, 9, 8, 16, 32, 0);
  1454. {$else x86_64}
  1455. (0, 8, 9, 8, 8, 32, 0);
  1456. {$endif x86_64}
  1457. var
  1458. rs: tsuperregister;
  1459. rt: tregistertype;
  1460. begin
  1461. rs:=getsupreg(r);
  1462. rt:=getregtype(r);
  1463. if (rs>=maxsupreg[rt]) then
  1464. badreg(r);
  1465. result:=rs and 7;
  1466. if (rt=R_INTREGISTER) then
  1467. begin
  1468. if (rs<8) then
  1469. result:=intsupreg2opcode[rs];
  1470. if getsubreg(r)=R_SUBH then
  1471. inc(result,4);
  1472. end;
  1473. end;
  1474. {$ifdef x86_64}
  1475. function rexbits(r: tregister): byte;
  1476. begin
  1477. result:=0;
  1478. case getregtype(r) of
  1479. R_INTREGISTER:
  1480. if (getsupreg(r)>=RS_R8) then
  1481. { Either B,X or R bits can be set, depending on register role in instruction.
  1482. Set all three bits here, caller will discard unnecessary ones. }
  1483. result:=result or $47
  1484. else if (getsubreg(r)=R_SUBL) and
  1485. (getsupreg(r) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1486. result:=result or $40
  1487. else if (getsubreg(r)=R_SUBH) then
  1488. { Not an actual REX bit, used to detect incompatible usage of
  1489. AH/BH/CH/DH }
  1490. result:=result or $80;
  1491. R_MMREGISTER:
  1492. if getsupreg(r)>=RS_XMM8 then
  1493. result:=result or $47;
  1494. end;
  1495. end;
  1496. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1497. var
  1498. sym : tasmsymbol;
  1499. md,s,rv : byte;
  1500. base,index,scalefactor,
  1501. o : longint;
  1502. ir,br : Tregister;
  1503. isub,bsub : tsubregister;
  1504. begin
  1505. process_ea:=false;
  1506. fillchar(output,sizeof(output),0);
  1507. {Register ?}
  1508. if (input.typ=top_reg) then
  1509. begin
  1510. rv:=regval(input.reg);
  1511. output.modrm:=$c0 or (rfield shl 3) or rv;
  1512. output.size:=1;
  1513. output.rex:=output.rex or (rexbits(input.reg) and $F1);
  1514. process_ea:=true;
  1515. exit;
  1516. end;
  1517. {No register, so memory reference.}
  1518. if input.typ<>top_ref then
  1519. internalerror(200409263);
  1520. ir:=input.ref^.index;
  1521. br:=input.ref^.base;
  1522. isub:=getsubreg(ir);
  1523. bsub:=getsubreg(br);
  1524. s:=input.ref^.scalefactor;
  1525. o:=input.ref^.offset;
  1526. sym:=input.ref^.symbol;
  1527. //if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1528. // ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1529. if ((ir<>NR_NO) and (getregtype(ir)=R_MMREGISTER) and (br<>NR_NO) and (getregtype(br)<>R_INTREGISTER)) or // vector memory (AVX2)
  1530. ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER) and (getregtype(ir)<>R_MMREGISTER)) or
  1531. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1532. internalerror(200301081);
  1533. { it's direct address }
  1534. if (br=NR_NO) and (ir=NR_NO) then
  1535. begin
  1536. output.sib_present:=true;
  1537. output.bytes:=4;
  1538. output.modrm:=4 or (rfield shl 3);
  1539. output.sib:=$25;
  1540. end
  1541. else if (br=NR_RIP) and (ir=NR_NO) then
  1542. begin
  1543. { rip based }
  1544. output.sib_present:=false;
  1545. output.bytes:=4;
  1546. output.modrm:=5 or (rfield shl 3);
  1547. end
  1548. else
  1549. { it's an indirection }
  1550. begin
  1551. { 16 bit? }
  1552. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1553. (br<>NR_NO) and (bsub=R_SUBADDR)
  1554. ) then
  1555. begin
  1556. // vector memory (AVX2) =>> ignore
  1557. end
  1558. else if ((ir<>NR_NO) and (isub<>R_SUBADDR) and (isub<>R_SUBD)) or
  1559. ((br<>NR_NO) and (bsub<>R_SUBADDR) and (bsub<>R_SUBD)) then
  1560. begin
  1561. message(asmw_e_16bit_32bit_not_supported);
  1562. end;
  1563. { wrong, for various reasons }
  1564. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1565. exit;
  1566. output.rex:=output.rex or (rexbits(br) and $F1) or (rexbits(ir) and $F2);
  1567. process_ea:=true;
  1568. { base }
  1569. case br of
  1570. NR_R8D,
  1571. NR_EAX,
  1572. NR_R8,
  1573. NR_RAX : base:=0;
  1574. NR_R9D,
  1575. NR_ECX,
  1576. NR_R9,
  1577. NR_RCX : base:=1;
  1578. NR_R10D,
  1579. NR_EDX,
  1580. NR_R10,
  1581. NR_RDX : base:=2;
  1582. NR_R11D,
  1583. NR_EBX,
  1584. NR_R11,
  1585. NR_RBX : base:=3;
  1586. NR_R12D,
  1587. NR_ESP,
  1588. NR_R12,
  1589. NR_RSP : base:=4;
  1590. NR_R13D,
  1591. NR_EBP,
  1592. NR_R13,
  1593. NR_NO,
  1594. NR_RBP : base:=5;
  1595. NR_R14D,
  1596. NR_ESI,
  1597. NR_R14,
  1598. NR_RSI : base:=6;
  1599. NR_R15D,
  1600. NR_EDI,
  1601. NR_R15,
  1602. NR_RDI : base:=7;
  1603. else
  1604. exit;
  1605. end;
  1606. { index }
  1607. case ir of
  1608. NR_R8D,
  1609. NR_EAX,
  1610. NR_R8,
  1611. NR_RAX,
  1612. NR_XMM0,
  1613. NR_XMM8,
  1614. NR_YMM0,
  1615. NR_YMM8 : index:=0;
  1616. NR_R9D,
  1617. NR_ECX,
  1618. NR_R9,
  1619. NR_RCX,
  1620. NR_XMM1,
  1621. NR_XMM9,
  1622. NR_YMM1,
  1623. NR_YMM9 : index:=1;
  1624. NR_R10D,
  1625. NR_EDX,
  1626. NR_R10,
  1627. NR_RDX,
  1628. NR_XMM2,
  1629. NR_XMM10,
  1630. NR_YMM2,
  1631. NR_YMM10 : index:=2;
  1632. NR_R11D,
  1633. NR_EBX,
  1634. NR_R11,
  1635. NR_RBX,
  1636. NR_XMM3,
  1637. NR_XMM11,
  1638. NR_YMM3,
  1639. NR_YMM11 : index:=3;
  1640. NR_R12D,
  1641. NR_ESP,
  1642. NR_R12,
  1643. NR_NO,
  1644. NR_XMM4,
  1645. NR_XMM12,
  1646. NR_YMM4,
  1647. NR_YMM12 : index:=4;
  1648. NR_R13D,
  1649. NR_EBP,
  1650. NR_R13,
  1651. NR_RBP,
  1652. NR_XMM5,
  1653. NR_XMM13,
  1654. NR_YMM5,
  1655. NR_YMM13: index:=5;
  1656. NR_R14D,
  1657. NR_ESI,
  1658. NR_R14,
  1659. NR_RSI,
  1660. NR_XMM6,
  1661. NR_XMM14,
  1662. NR_YMM6,
  1663. NR_YMM14: index:=6;
  1664. NR_R15D,
  1665. NR_EDI,
  1666. NR_R15,
  1667. NR_RDI,
  1668. NR_XMM7,
  1669. NR_XMM15,
  1670. NR_YMM7,
  1671. NR_YMM15: index:=7;
  1672. else
  1673. exit;
  1674. end;
  1675. case s of
  1676. 0,
  1677. 1 : scalefactor:=0;
  1678. 2 : scalefactor:=1;
  1679. 4 : scalefactor:=2;
  1680. 8 : scalefactor:=3;
  1681. else
  1682. exit;
  1683. end;
  1684. { If rbp or r13 is used we must always include an offset }
  1685. if (br=NR_NO) or
  1686. ((br<>NR_RBP) and (br<>NR_R13) and (br<>NR_EBP) and (br<>NR_R13D) and (o=0) and (sym=nil)) then
  1687. md:=0
  1688. else
  1689. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1690. md:=1
  1691. else
  1692. md:=2;
  1693. if (br=NR_NO) or (md=2) then
  1694. output.bytes:=4
  1695. else
  1696. output.bytes:=md;
  1697. { SIB needed ? }
  1698. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) and (br<>NR_ESP) and (br<>NR_R12D) then
  1699. begin
  1700. output.sib_present:=false;
  1701. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1702. end
  1703. else
  1704. begin
  1705. output.sib_present:=true;
  1706. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1707. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1708. end;
  1709. end;
  1710. output.size:=1+ord(output.sib_present)+output.bytes;
  1711. process_ea:=true;
  1712. end;
  1713. {$else x86_64}
  1714. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1715. var
  1716. sym : tasmsymbol;
  1717. md,s,rv : byte;
  1718. base,index,scalefactor,
  1719. o : longint;
  1720. ir,br : Tregister;
  1721. isub,bsub : tsubregister;
  1722. begin
  1723. process_ea:=false;
  1724. fillchar(output,sizeof(output),0);
  1725. {Register ?}
  1726. if (input.typ=top_reg) then
  1727. begin
  1728. rv:=regval(input.reg);
  1729. output.modrm:=$c0 or (rfield shl 3) or rv;
  1730. output.size:=1;
  1731. process_ea:=true;
  1732. exit;
  1733. end;
  1734. {No register, so memory reference.}
  1735. if (input.typ<>top_ref) then
  1736. internalerror(200409262);
  1737. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)=R_MMREGISTER) and (input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) or // vector memory (AVX2)
  1738. ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER) and (getregtype(input.ref^.index)<>R_MMREGISTER)) or
  1739. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1740. internalerror(200301081);
  1741. ir:=input.ref^.index;
  1742. br:=input.ref^.base;
  1743. isub:=getsubreg(ir);
  1744. bsub:=getsubreg(br);
  1745. s:=input.ref^.scalefactor;
  1746. o:=input.ref^.offset;
  1747. sym:=input.ref^.symbol;
  1748. { it's direct address }
  1749. if (br=NR_NO) and (ir=NR_NO) then
  1750. begin
  1751. { it's a pure offset }
  1752. output.sib_present:=false;
  1753. output.bytes:=4;
  1754. output.modrm:=5 or (rfield shl 3);
  1755. end
  1756. else
  1757. { it's an indirection }
  1758. begin
  1759. { 16 bit address? }
  1760. if ((ir<>NR_NO) and (isub in [R_SUBMMX,R_SUBMMY]) and
  1761. (br<>NR_NO) and (bsub=R_SUBADDR)
  1762. ) then
  1763. begin
  1764. // vector memory (AVX2) =>> ignore
  1765. end
  1766. else if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1767. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1768. message(asmw_e_16bit_not_supported);
  1769. {$ifdef OPTEA}
  1770. { make single reg base }
  1771. if (br=NR_NO) and (s=1) then
  1772. begin
  1773. br:=ir;
  1774. ir:=NR_NO;
  1775. end;
  1776. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1777. if (br=NR_NO) and
  1778. (((s=2) and (ir<>NR_ESP)) or
  1779. (s=3) or (s=5) or (s=9)) then
  1780. begin
  1781. br:=ir;
  1782. dec(s);
  1783. end;
  1784. { swap ESP into base if scalefactor is 1 }
  1785. if (s=1) and (ir=NR_ESP) then
  1786. begin
  1787. ir:=br;
  1788. br:=NR_ESP;
  1789. end;
  1790. {$endif OPTEA}
  1791. { wrong, for various reasons }
  1792. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1793. exit;
  1794. { base }
  1795. case br of
  1796. NR_EAX : base:=0;
  1797. NR_ECX : base:=1;
  1798. NR_EDX : base:=2;
  1799. NR_EBX : base:=3;
  1800. NR_ESP : base:=4;
  1801. NR_NO,
  1802. NR_EBP : base:=5;
  1803. NR_ESI : base:=6;
  1804. NR_EDI : base:=7;
  1805. else
  1806. exit;
  1807. end;
  1808. { index }
  1809. case ir of
  1810. NR_EAX,
  1811. NR_XMM0,
  1812. NR_YMM0: index:=0;
  1813. NR_ECX,
  1814. NR_XMM1,
  1815. NR_YMM1: index:=1;
  1816. NR_EDX,
  1817. NR_XMM2,
  1818. NR_YMM2: index:=2;
  1819. NR_EBX,
  1820. NR_XMM3,
  1821. NR_YMM3: index:=3;
  1822. NR_NO,
  1823. NR_XMM4,
  1824. NR_YMM4: index:=4;
  1825. NR_EBP,
  1826. NR_XMM5,
  1827. NR_YMM5: index:=5;
  1828. NR_ESI,
  1829. NR_XMM6,
  1830. NR_YMM6: index:=6;
  1831. NR_EDI,
  1832. NR_XMM7,
  1833. NR_YMM7: index:=7;
  1834. else
  1835. exit;
  1836. end;
  1837. case s of
  1838. 0,
  1839. 1 : scalefactor:=0;
  1840. 2 : scalefactor:=1;
  1841. 4 : scalefactor:=2;
  1842. 8 : scalefactor:=3;
  1843. else
  1844. exit;
  1845. end;
  1846. if (br=NR_NO) or
  1847. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1848. md:=0
  1849. else
  1850. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1851. md:=1
  1852. else
  1853. md:=2;
  1854. if (br=NR_NO) or (md=2) then
  1855. output.bytes:=4
  1856. else
  1857. output.bytes:=md;
  1858. { SIB needed ? }
  1859. if (ir=NR_NO) and (br<>NR_ESP) then
  1860. begin
  1861. output.sib_present:=false;
  1862. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or base;
  1863. end
  1864. else
  1865. begin
  1866. output.sib_present:=true;
  1867. output.modrm:=(longint(md) shl 6) or (rfield shl 3) or 4;
  1868. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1869. end;
  1870. end;
  1871. if output.sib_present then
  1872. output.size:=2+output.bytes
  1873. else
  1874. output.size:=1+output.bytes;
  1875. process_ea:=true;
  1876. end;
  1877. {$endif x86_64}
  1878. function taicpu.calcsize(p:PInsEntry):shortint;
  1879. var
  1880. codes : pchar;
  1881. c : byte;
  1882. len : shortint;
  1883. ea_data : ea;
  1884. exists_vex: boolean;
  1885. exists_vex_extension: boolean;
  1886. exists_prefix_66: boolean;
  1887. exists_prefix_F2: boolean;
  1888. exists_prefix_F3: boolean;
  1889. {$ifdef x86_64}
  1890. omit_rexw : boolean;
  1891. {$endif x86_64}
  1892. begin
  1893. len:=0;
  1894. codes:=@p^.code[0];
  1895. exists_vex := false;
  1896. exists_vex_extension := false;
  1897. exists_prefix_66 := false;
  1898. exists_prefix_F2 := false;
  1899. exists_prefix_F3 := false;
  1900. {$ifdef x86_64}
  1901. rex:=0;
  1902. omit_rexw:=false;
  1903. {$endif x86_64}
  1904. repeat
  1905. c:=ord(codes^);
  1906. inc(codes);
  1907. case c of
  1908. 0 :
  1909. break;
  1910. 1,2,3 :
  1911. begin
  1912. inc(codes,c);
  1913. inc(len,c);
  1914. end;
  1915. 8,9,10 :
  1916. begin
  1917. {$ifdef x86_64}
  1918. rex:=rex or (rexbits(oper[c-8]^.reg) and $F1);
  1919. {$endif x86_64}
  1920. inc(codes);
  1921. inc(len);
  1922. end;
  1923. 11 :
  1924. begin
  1925. inc(codes);
  1926. inc(len);
  1927. end;
  1928. 4,5,6,7 :
  1929. begin
  1930. if opsize=S_W then
  1931. inc(len,2)
  1932. else
  1933. inc(len);
  1934. end;
  1935. 12,13,14,
  1936. 16,17,18,
  1937. 20,21,22,23,
  1938. 40,41,42 :
  1939. inc(len);
  1940. 24,25,26,
  1941. 31,
  1942. 48,49,50 :
  1943. inc(len,2);
  1944. 28,29,30:
  1945. begin
  1946. if opsize=S_Q then
  1947. inc(len,8)
  1948. else
  1949. inc(len,4);
  1950. end;
  1951. 36,37,38:
  1952. inc(len,sizeof(pint));
  1953. 44,45,46:
  1954. inc(len,8);
  1955. 32,33,34,
  1956. 52,53,54,
  1957. 56,57,58,
  1958. 172,173,174 :
  1959. inc(len,4);
  1960. 60,61,62,63: ; // ignore vex-coded operand-idx
  1961. 208,209,210 :
  1962. begin
  1963. case (oper[c-208]^.ot and OT_SIZE_MASK) of
  1964. OT_BITS16:
  1965. inc(len);
  1966. {$ifdef x86_64}
  1967. OT_BITS64:
  1968. begin
  1969. rex:=rex or $48;
  1970. end;
  1971. {$endif x86_64}
  1972. end;
  1973. end;
  1974. 200 :
  1975. {$ifndef x86_64}
  1976. inc(len);
  1977. {$else x86_64}
  1978. { every insentry with code 0310 must be marked with NOX86_64 }
  1979. InternalError(2011051301);
  1980. {$endif x86_64}
  1981. 201 :
  1982. {$ifdef x86_64}
  1983. inc(len)
  1984. {$endif x86_64}
  1985. ;
  1986. 212 :
  1987. inc(len);
  1988. 214 :
  1989. begin
  1990. {$ifdef x86_64}
  1991. rex:=rex or $48;
  1992. {$endif x86_64}
  1993. end;
  1994. 202,
  1995. 211,
  1996. 213,
  1997. 215,
  1998. 217,218: ;
  1999. 219:
  2000. begin
  2001. inc(len);
  2002. exists_prefix_F2 := true;
  2003. end;
  2004. 220:
  2005. begin
  2006. inc(len);
  2007. exists_prefix_F3 := true;
  2008. end;
  2009. 241:
  2010. begin
  2011. inc(len);
  2012. exists_prefix_66 := true;
  2013. end;
  2014. 221:
  2015. {$ifdef x86_64}
  2016. omit_rexw:=true
  2017. {$endif x86_64}
  2018. ;
  2019. 64..151 :
  2020. begin
  2021. {$ifdef x86_64}
  2022. if (c<127) then
  2023. begin
  2024. if (oper[c and 7]^.typ=top_reg) then
  2025. begin
  2026. rex:=rex or (rexbits(oper[c and 7]^.reg) and $F4);
  2027. end;
  2028. end;
  2029. {$endif x86_64}
  2030. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  2031. Message(asmw_e_invalid_effective_address)
  2032. else
  2033. inc(len,ea_data.size);
  2034. {$ifdef x86_64}
  2035. rex:=rex or ea_data.rex;
  2036. {$endif x86_64}
  2037. end;
  2038. 242: // VEX prefix for AVX (length = 2 or 3 bytes, dependens on REX.XBW or opcode-prefix ($0F38 or $0F3A))
  2039. // =>> DEFAULT = 2 Bytes
  2040. begin
  2041. if not(exists_vex) then
  2042. begin
  2043. inc(len, 2);
  2044. exists_vex := true;
  2045. end;
  2046. end;
  2047. 243: // REX.W = 1
  2048. // =>> VEX prefix length = 3
  2049. begin
  2050. if not(exists_vex_extension) then
  2051. begin
  2052. inc(len);
  2053. exists_vex_extension := true;
  2054. end;
  2055. end;
  2056. 244: ; // VEX length bit
  2057. 246, // operand 2 (ymmreg) encoded immediate byte (bit 4-7)
  2058. 247: inc(len); // operand 3 (ymmreg) encoded immediate byte (bit 4-7)
  2059. 248: // VEX-Extension prefix $0F
  2060. // ignore for calculating length
  2061. ;
  2062. 249, // VEX-Extension prefix $0F38
  2063. 250: // VEX-Extension prefix $0F3A
  2064. begin
  2065. if not(exists_vex_extension) then
  2066. begin
  2067. inc(len);
  2068. exists_vex_extension := true;
  2069. end;
  2070. end;
  2071. 192,193,194:
  2072. begin
  2073. {$ifdef x86_64}
  2074. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2075. inc(len);
  2076. {$endif x86_64}
  2077. end;
  2078. else
  2079. InternalError(200603141);
  2080. end;
  2081. until false;
  2082. {$ifdef x86_64}
  2083. if ((rex and $80)<>0) and ((rex and $4F)<>0) then
  2084. Message(asmw_e_bad_reg_with_rex);
  2085. rex:=rex and $4F; { reset extra bits in upper nibble }
  2086. if omit_rexw then
  2087. begin
  2088. if rex=$48 then { remove rex entirely? }
  2089. rex:=0
  2090. else
  2091. rex:=rex and $F7;
  2092. end;
  2093. if not(exists_vex) then
  2094. begin
  2095. if rex<>0 then
  2096. Inc(len);
  2097. end;
  2098. {$endif}
  2099. if exists_vex then
  2100. begin
  2101. if exists_prefix_66 then dec(len);
  2102. if exists_prefix_F2 then dec(len);
  2103. if exists_prefix_F3 then dec(len);
  2104. {$ifdef x86_64}
  2105. if not(exists_vex_extension) then
  2106. if rex and $0B <> 0 then inc(len); // REX.WXB <> 0 =>> needed VEX-Extension
  2107. {$endif x86_64}
  2108. end;
  2109. calcsize:=len;
  2110. end;
  2111. procedure taicpu.GenCode(objdata:TObjData);
  2112. {
  2113. * the actual codes (C syntax, i.e. octal):
  2114. * \0 - terminates the code. (Unless it's a literal of course.)
  2115. * \1, \2, \3 - that many literal bytes follow in the code stream
  2116. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  2117. * (POP is never used for CS) depending on operand 0
  2118. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  2119. * on operand 0
  2120. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  2121. * to the register value of operand 0, 1 or 2
  2122. * \13 - a literal byte follows in the code stream, to be added
  2123. * to the condition code value of the instruction.
  2124. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  2125. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  2126. * \24, \25, \26, \27 - an unsigned byte immediate operand, from operand 0, 1, 2 or 3
  2127. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  2128. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  2129. * assembly mode or the address-size override on the operand
  2130. * \37 - a word constant, from the _segment_ part of operand 0
  2131. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  2132. * \44, \45, \46 - select between \3[012], \4[012] or \5[456] depending
  2133. on the address size of instruction
  2134. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  2135. * \54, \55, \56 - a qword immediate, from operand 0, 1 or 2
  2136. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  2137. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  2138. * assembly mode or the address-size override on the operand
  2139. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  2140. * \74, \75, \76 - a vex-coded vector operand, from operand 0, 1 or 2
  2141. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  2142. * field the register value of operand b.
  2143. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  2144. * field equal to digit b.
  2145. * \254,\255,\256 - a signed 32-bit immediate to be extended to 64 bits
  2146. * \300,\301,\302 - might be an 0x67, depending on the address size of
  2147. * the memory reference in operand x.
  2148. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  2149. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  2150. * \312 - (disassembler only) invalid with non-default address size.
  2151. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  2152. * size of operand x.
  2153. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  2154. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  2155. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  2156. * \327 - indicates that this instruction is only valid when the
  2157. * operand size is the default (instruction to disassembler,
  2158. * generates no code in the assembler)
  2159. * \331 - instruction not valid with REP prefix. Hint for
  2160. * disassembler only; for SSE instructions.
  2161. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  2162. * \333 - 0xF3 prefix for SSE instructions
  2163. * \334 - 0xF2 prefix for SSE instructions
  2164. * \335 - Indicates 64-bit operand size with REX.W not necessary
  2165. * \361 - 0x66 prefix for SSE instructions
  2166. * \362 - VEX prefix for AVX instructions
  2167. * \363 - VEX W1
  2168. * \364 - VEX Vector length 256
  2169. * \366 - operand 2 (ymmreg) encoded in bit 4-7 of the immediate byte
  2170. * \367 - operand 3 (ymmreg) encoded in bit 4-7 of the immediate byte
  2171. * \370 - VEX 0F-FLAG
  2172. * \371 - VEX 0F38-FLAG
  2173. * \372 - VEX 0F3A-FLAG
  2174. }
  2175. var
  2176. currval : aint;
  2177. currsym : tobjsymbol;
  2178. currrelreloc,
  2179. currabsreloc,
  2180. currabsreloc32 : TObjRelocationType;
  2181. {$ifdef x86_64}
  2182. rexwritten : boolean;
  2183. {$endif x86_64}
  2184. procedure getvalsym(opidx:longint);
  2185. begin
  2186. case oper[opidx]^.typ of
  2187. top_ref :
  2188. begin
  2189. currval:=oper[opidx]^.ref^.offset;
  2190. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  2191. {$ifdef i386}
  2192. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2193. (tf_pic_uses_got in target_info.flags) then
  2194. begin
  2195. currrelreloc:=RELOC_PLT32;
  2196. currabsreloc:=RELOC_GOT32;
  2197. currabsreloc32:=RELOC_GOT32;
  2198. end
  2199. else
  2200. {$endif i386}
  2201. {$ifdef x86_64}
  2202. if oper[opidx]^.ref^.refaddr=addr_pic then
  2203. begin
  2204. currrelreloc:=RELOC_PLT32;
  2205. currabsreloc:=RELOC_GOTPCREL;
  2206. currabsreloc32:=RELOC_GOTPCREL;
  2207. end
  2208. else if oper[opidx]^.ref^.refaddr=addr_pic_no_got then
  2209. begin
  2210. currrelreloc:=RELOC_RELATIVE;
  2211. currabsreloc:=RELOC_RELATIVE;
  2212. currabsreloc32:=RELOC_RELATIVE;
  2213. end
  2214. else
  2215. {$endif x86_64}
  2216. begin
  2217. currrelreloc:=RELOC_RELATIVE;
  2218. currabsreloc:=RELOC_ABSOLUTE;
  2219. currabsreloc32:=RELOC_ABSOLUTE32;
  2220. end;
  2221. end;
  2222. top_const :
  2223. begin
  2224. currval:=aint(oper[opidx]^.val);
  2225. currsym:=nil;
  2226. currabsreloc:=RELOC_ABSOLUTE;
  2227. currabsreloc32:=RELOC_ABSOLUTE32;
  2228. end;
  2229. else
  2230. Message(asmw_e_immediate_or_reference_expected);
  2231. end;
  2232. end;
  2233. {$ifdef x86_64}
  2234. procedure maybewriterex;
  2235. begin
  2236. if (rex<>0) and not(rexwritten) then
  2237. begin
  2238. rexwritten:=true;
  2239. objdata.writebytes(rex,1);
  2240. end;
  2241. end;
  2242. {$endif x86_64}
  2243. procedure objdata_writereloc(Data:aint;len:aword;p:TObjSymbol;Reloctype:TObjRelocationType);
  2244. begin
  2245. {$ifdef i386}
  2246. { Special case of '_GLOBAL_OFFSET_TABLE_'
  2247. which needs a special relocation type R_386_GOTPC }
  2248. if assigned (p) and
  2249. (p.name='_GLOBAL_OFFSET_TABLE_') and
  2250. (tf_pic_uses_got in target_info.flags) then
  2251. begin
  2252. { nothing else than a 4 byte relocation should occur
  2253. for GOT }
  2254. if len<>4 then
  2255. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  2256. Reloctype:=RELOC_GOTPC;
  2257. { We need to add the offset of the relocation
  2258. of _GLOBAL_OFFSET_TABLE symbol within
  2259. the current instruction }
  2260. inc(data,objdata.currobjsec.size-insoffset);
  2261. end;
  2262. {$endif i386}
  2263. objdata.writereloc(data,len,p,Reloctype);
  2264. end;
  2265. const
  2266. CondVal:array[TAsmCond] of byte=($0,
  2267. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  2268. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  2269. $0, $A, $A, $B, $8, $4);
  2270. var
  2271. c : byte;
  2272. pb : pbyte;
  2273. codes : pchar;
  2274. bytes : array[0..3] of byte;
  2275. rfield,
  2276. data,s,opidx : longint;
  2277. ea_data : ea;
  2278. relsym : TObjSymbol;
  2279. needed_VEX_Extension: boolean;
  2280. needed_VEX: boolean;
  2281. opmode: integer;
  2282. VEXvvvv: byte;
  2283. VEXmmmmm: byte;
  2284. begin
  2285. { safety check }
  2286. if objdata.currobjsec.size<>longword(insoffset) then
  2287. internalerror(200130121);
  2288. { those variables are initialized inside local procedures, the dfa cannot handle this yet }
  2289. currsym:=nil;
  2290. currabsreloc:=RELOC_NONE;
  2291. currabsreloc32:=RELOC_NONE;
  2292. currrelreloc:=RELOC_NONE;
  2293. currval:=0;
  2294. { load data to write }
  2295. codes:=insentry^.code;
  2296. {$ifdef x86_64}
  2297. rexwritten:=false;
  2298. {$endif x86_64}
  2299. { Force word push/pop for registers }
  2300. if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
  2301. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  2302. begin
  2303. bytes[0]:=$66;
  2304. objdata.writebytes(bytes,1);
  2305. end;
  2306. // needed VEX Prefix (for AVX etc.)
  2307. needed_VEX := false;
  2308. needed_VEX_Extension := false;
  2309. opmode := -1;
  2310. VEXvvvv := 0;
  2311. VEXmmmmm := 0;
  2312. repeat
  2313. c:=ord(codes^);
  2314. inc(codes);
  2315. case c of
  2316. 0: break;
  2317. 1,
  2318. 2,
  2319. 3: inc(codes,c);
  2320. 60: opmode := 0;
  2321. 61: opmode := 1;
  2322. 62: opmode := 2;
  2323. 219: VEXvvvv := VEXvvvv OR $02; // set SIMD-prefix $F3
  2324. 220: VEXvvvv := VEXvvvv OR $03; // set SIMD-prefix $F2
  2325. 241: VEXvvvv := VEXvvvv OR $01; // set SIMD-prefix $66
  2326. 242: needed_VEX := true;
  2327. 243: begin
  2328. needed_VEX_Extension := true;
  2329. VEXvvvv := VEXvvvv OR (1 shl 7); // set REX.W
  2330. end;
  2331. 244: VEXvvvv := VEXvvvv OR $04; // vectorlength = 256 bits AND no scalar
  2332. 248: VEXmmmmm := VEXmmmmm OR $01; // set leading opcode byte $0F
  2333. 249: begin
  2334. needed_VEX_Extension := true;
  2335. VEXmmmmm := VEXmmmmm OR $02; // set leading opcode byte $0F38
  2336. end;
  2337. 250: begin
  2338. needed_VEX_Extension := true;
  2339. VEXmmmmm := VEXmmmmm OR $03; // set leading opcode byte $0F3A
  2340. end;
  2341. end;
  2342. until false;
  2343. if needed_VEX then
  2344. begin
  2345. if (opmode > ops) or
  2346. (opmode < -1) then
  2347. begin
  2348. Internalerror(777100);
  2349. end
  2350. else if opmode = -1 then
  2351. begin
  2352. VEXvvvv := VEXvvvv or ($0F shl 3); // set VEXvvvv bits (bits 6-3) to 1
  2353. end
  2354. else if oper[opmode]^.typ = top_reg then
  2355. begin
  2356. VEXvvvv := VEXvvvv or ((not(regval(oper[opmode]^.reg)) and $07) shl 3);
  2357. {$ifdef x86_64}
  2358. if rexbits(oper[opmode]^.reg) = 0 then VEXvvvv := VEXvvvv or (1 shl 6);
  2359. {$else}
  2360. VEXvvvv := VEXvvvv or (1 shl 6);
  2361. {$endif x86_64}
  2362. end
  2363. else Internalerror(777101);
  2364. if not(needed_VEX_Extension) then
  2365. begin
  2366. {$ifdef x86_64}
  2367. if rex and $0B <> 0 then needed_VEX_Extension := true;
  2368. {$endif x86_64}
  2369. end;
  2370. if needed_VEX_Extension then
  2371. begin
  2372. // VEX-Prefix-Length = 3 Bytes
  2373. bytes[0]:=$C4;
  2374. objdata.writebytes(bytes,1);
  2375. {$ifdef x86_64}
  2376. VEXmmmmm := VEXmmmmm or ((not(rex) and $07) shl 5); // set REX.rxb
  2377. {$else}
  2378. VEXmmmmm := VEXmmmmm or (7 shl 5); //
  2379. {$endif x86_64}
  2380. bytes[0] := VEXmmmmm;
  2381. objdata.writebytes(bytes,1);
  2382. {$ifdef x86_64}
  2383. VEXvvvv := VEXvvvv OR ((rex and $08) shl 7); // set REX.w
  2384. {$endif x86_64}
  2385. bytes[0] := VEXvvvv;
  2386. objdata.writebytes(bytes,1);
  2387. end
  2388. else
  2389. begin
  2390. // VEX-Prefix-Length = 2 Bytes
  2391. bytes[0]:=$C5;
  2392. objdata.writebytes(bytes,1);
  2393. {$ifdef x86_64}
  2394. if rex and $04 = 0 then
  2395. {$endif x86_64}
  2396. begin
  2397. VEXvvvv := VEXvvvv or (1 shl 7);
  2398. end;
  2399. bytes[0] := VEXvvvv;
  2400. objdata.writebytes(bytes,1);
  2401. end;
  2402. end
  2403. else
  2404. begin
  2405. needed_VEX_Extension := false;
  2406. opmode := -1;
  2407. end;
  2408. { load data to write }
  2409. codes:=insentry^.code;
  2410. repeat
  2411. c:=ord(codes^);
  2412. inc(codes);
  2413. case c of
  2414. 0 :
  2415. break;
  2416. 1,2,3 :
  2417. begin
  2418. {$ifdef x86_64}
  2419. if not(needed_VEX) then // TG
  2420. maybewriterex;
  2421. {$endif x86_64}
  2422. objdata.writebytes(codes^,c);
  2423. inc(codes,c);
  2424. end;
  2425. 4,6 :
  2426. begin
  2427. case oper[0]^.reg of
  2428. NR_CS:
  2429. bytes[0]:=$e;
  2430. NR_NO,
  2431. NR_DS:
  2432. bytes[0]:=$1e;
  2433. NR_ES:
  2434. bytes[0]:=$6;
  2435. NR_SS:
  2436. bytes[0]:=$16;
  2437. else
  2438. internalerror(777004);
  2439. end;
  2440. if c=4 then
  2441. inc(bytes[0]);
  2442. objdata.writebytes(bytes,1);
  2443. end;
  2444. 5,7 :
  2445. begin
  2446. case oper[0]^.reg of
  2447. NR_FS:
  2448. bytes[0]:=$a0;
  2449. NR_GS:
  2450. bytes[0]:=$a8;
  2451. else
  2452. internalerror(777005);
  2453. end;
  2454. if c=5 then
  2455. inc(bytes[0]);
  2456. objdata.writebytes(bytes,1);
  2457. end;
  2458. 8,9,10 :
  2459. begin
  2460. {$ifdef x86_64}
  2461. if not(needed_VEX) then // TG
  2462. maybewriterex;
  2463. {$endif x86_64}
  2464. bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
  2465. inc(codes);
  2466. objdata.writebytes(bytes,1);
  2467. end;
  2468. 11 :
  2469. begin
  2470. bytes[0]:=ord(codes^)+condval[condition];
  2471. inc(codes);
  2472. objdata.writebytes(bytes,1);
  2473. end;
  2474. 12,13,14 :
  2475. begin
  2476. getvalsym(c-12);
  2477. if (currval<-128) or (currval>127) then
  2478. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  2479. if assigned(currsym) then
  2480. objdata_writereloc(currval,1,currsym,currabsreloc)
  2481. else
  2482. objdata.writebytes(currval,1);
  2483. end;
  2484. 16,17,18 :
  2485. begin
  2486. getvalsym(c-16);
  2487. if (currval<-256) or (currval>255) then
  2488. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  2489. if assigned(currsym) then
  2490. objdata_writereloc(currval,1,currsym,currabsreloc)
  2491. else
  2492. objdata.writebytes(currval,1);
  2493. end;
  2494. 20,21,22,23 :
  2495. begin
  2496. getvalsym(c-20);
  2497. if (currval<0) or (currval>255) then
  2498. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  2499. if assigned(currsym) then
  2500. objdata_writereloc(currval,1,currsym,currabsreloc)
  2501. else
  2502. objdata.writebytes(currval,1);
  2503. end;
  2504. 24,25,26 : // 030..032
  2505. begin
  2506. getvalsym(c-24);
  2507. {$ifndef i8086}
  2508. { currval is an aint so this cannot happen on i8086 and causes only a warning }
  2509. if (currval<-65536) or (currval>65535) then
  2510. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  2511. {$endif i8086}
  2512. if assigned(currsym) then
  2513. objdata_writereloc(currval,2,currsym,currabsreloc)
  2514. else
  2515. objdata.writebytes(currval,2);
  2516. end;
  2517. 28,29,30 : // 034..036
  2518. { !!! These are intended (and used in opcode table) to select depending
  2519. on address size, *not* operand size. Works by coincidence only. }
  2520. begin
  2521. getvalsym(c-28);
  2522. if opsize=S_Q then
  2523. begin
  2524. if assigned(currsym) then
  2525. objdata_writereloc(currval,8,currsym,currabsreloc)
  2526. else
  2527. objdata.writebytes(currval,8);
  2528. end
  2529. else
  2530. begin
  2531. if assigned(currsym) then
  2532. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2533. else
  2534. objdata.writebytes(currval,4);
  2535. end
  2536. end;
  2537. 32,33,34 : // 040..042
  2538. begin
  2539. getvalsym(c-32);
  2540. if assigned(currsym) then
  2541. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2542. else
  2543. objdata.writebytes(currval,4);
  2544. end;
  2545. 36,37,38 : // 044..046 - select between word/dword/qword depending on
  2546. begin // address size (we support only default address sizes).
  2547. getvalsym(c-36);
  2548. {$ifdef x86_64}
  2549. if assigned(currsym) then
  2550. objdata_writereloc(currval,8,currsym,currabsreloc)
  2551. else
  2552. objdata.writebytes(currval,8);
  2553. {$else x86_64}
  2554. if assigned(currsym) then
  2555. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2556. else
  2557. objdata.writebytes(currval,4);
  2558. {$endif x86_64}
  2559. end;
  2560. 40,41,42 : // 050..052 - byte relative operand
  2561. begin
  2562. getvalsym(c-40);
  2563. data:=currval-insend;
  2564. {$push}
  2565. {$r-,q-} { disable also overflow as address returns a qword for x86_64 }
  2566. if assigned(currsym) then
  2567. inc(data,currsym.address);
  2568. {$pop}
  2569. if (data>127) or (data<-128) then
  2570. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  2571. objdata.writebytes(data,1);
  2572. end;
  2573. 44,45,46: // 054..056 - qword immediate operand
  2574. begin
  2575. getvalsym(c-44);
  2576. if assigned(currsym) then
  2577. objdata_writereloc(currval,8,currsym,currabsreloc)
  2578. else
  2579. objdata.writebytes(currval,8);
  2580. end;
  2581. 52,53,54 : // 064..066 - select between 16/32 address mode, but we support only 32
  2582. begin
  2583. getvalsym(c-52);
  2584. if assigned(currsym) then
  2585. objdata_writereloc(currval,4,currsym,currrelreloc)
  2586. else
  2587. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2588. end;
  2589. 56,57,58 : // 070..072 - long relative operand
  2590. begin
  2591. getvalsym(c-56);
  2592. if assigned(currsym) then
  2593. objdata_writereloc(currval,4,currsym,currrelreloc)
  2594. else
  2595. objdata_writereloc(currval-insend,4,nil,currabsreloc32)
  2596. end;
  2597. 60,61,62 : ; // 074..076 - vex-coded vector operand
  2598. // ignore
  2599. 172,173,174 : // 0254..0256 - dword implicitly sign-extended to 64-bit (x86_64 only)
  2600. begin
  2601. getvalsym(c-172);
  2602. {$ifdef x86_64}
  2603. { for i386 as aint type is longint the
  2604. following test is useless }
  2605. if (currval<low(longint)) or (currval>high(longint)) then
  2606. Message2(asmw_e_value_exceeds_bounds,'signed dword',tostr(currval));
  2607. {$endif x86_64}
  2608. if assigned(currsym) then
  2609. objdata_writereloc(currval,4,currsym,currabsreloc32)
  2610. else
  2611. objdata.writebytes(currval,4);
  2612. end;
  2613. 192,193,194:
  2614. begin
  2615. {$ifdef x86_64}
  2616. if (oper[c and 3]^.ot and OT_SIZE_MASK)=OT_BITS32 then
  2617. begin
  2618. bytes[0]:=$67;
  2619. objdata.writebytes(bytes,1);
  2620. end;
  2621. {$endif x86_64}
  2622. end;
  2623. 200 : { fixed 16-bit addr }
  2624. {$ifndef x86_64}
  2625. begin
  2626. bytes[0]:=$67;
  2627. objdata.writebytes(bytes,1);
  2628. end;
  2629. {$else x86_64}
  2630. { every insentry having code 0310 must be marked with NOX86_64 }
  2631. InternalError(2011051302);
  2632. {$endif}
  2633. 201 : { fixed 32-bit addr }
  2634. {$ifdef x86_64}
  2635. begin
  2636. bytes[0]:=$67;
  2637. objdata.writebytes(bytes,1);
  2638. end
  2639. {$endif x86_64}
  2640. ;
  2641. 208,209,210 :
  2642. begin
  2643. case oper[c-208]^.ot and OT_SIZE_MASK of
  2644. OT_BITS16 :
  2645. begin
  2646. bytes[0]:=$66;
  2647. objdata.writebytes(bytes,1);
  2648. end;
  2649. {$ifndef x86_64}
  2650. OT_BITS64 :
  2651. Message(asmw_e_64bit_not_supported);
  2652. {$endif x86_64}
  2653. end;
  2654. end;
  2655. 211,
  2656. 213 : {no action needed};
  2657. 212,
  2658. 241:
  2659. begin
  2660. if not(needed_VEX) then
  2661. begin
  2662. bytes[0]:=$66;
  2663. objdata.writebytes(bytes,1);
  2664. end;
  2665. end;
  2666. 214 :
  2667. begin
  2668. {$ifndef x86_64}
  2669. Message(asmw_e_64bit_not_supported);
  2670. {$endif x86_64}
  2671. end;
  2672. 219 :
  2673. begin
  2674. if not(needed_VEX) then
  2675. begin
  2676. bytes[0]:=$f3;
  2677. objdata.writebytes(bytes,1);
  2678. end;
  2679. end;
  2680. 220 :
  2681. begin
  2682. if not(needed_VEX) then
  2683. begin
  2684. bytes[0]:=$f2;
  2685. objdata.writebytes(bytes,1);
  2686. end;
  2687. end;
  2688. 221:
  2689. ;
  2690. 202,
  2691. 215,
  2692. 217,218 :
  2693. begin
  2694. { these are dissambler hints or 32 bit prefixes which
  2695. are not needed }
  2696. end;
  2697. 242..244: ; // VEX flags =>> nothing todo
  2698. 246: begin
  2699. if needed_VEX then
  2700. begin
  2701. if ops = 4 then
  2702. begin
  2703. if (oper[2]^.typ=top_reg) then
  2704. begin
  2705. if (oper[2]^.ot and otf_reg_xmm <> 0) or
  2706. (oper[2]^.ot and otf_reg_ymm <> 0) then
  2707. begin
  2708. bytes[0] := ((getsupreg(oper[2]^.reg) and 15) shl 4);
  2709. objdata.writebytes(bytes,1);
  2710. end
  2711. else Internalerror(2014032001);
  2712. end
  2713. else Internalerror(2014032002);
  2714. end
  2715. else Internalerror(2014032003);
  2716. end
  2717. else Internalerror(2014032004);
  2718. end;
  2719. 247: begin
  2720. if needed_VEX then
  2721. begin
  2722. if ops = 4 then
  2723. begin
  2724. if (oper[3]^.typ=top_reg) then
  2725. begin
  2726. if (oper[3]^.ot and otf_reg_xmm <> 0) or
  2727. (oper[3]^.ot and otf_reg_ymm <> 0) then
  2728. begin
  2729. bytes[0] := ((getsupreg(oper[3]^.reg) and 15) shl 4);
  2730. objdata.writebytes(bytes,1);
  2731. end
  2732. else Internalerror(2014032005);
  2733. end
  2734. else Internalerror(2014032006);
  2735. end
  2736. else Internalerror(2014032007);
  2737. end
  2738. else Internalerror(2014032008);
  2739. end;
  2740. 248..250: ; // VEX flags =>> nothing todo
  2741. 31,
  2742. 48,49,50 :
  2743. begin
  2744. InternalError(777006);
  2745. end
  2746. else
  2747. begin
  2748. { rex should be written at this point }
  2749. {$ifdef x86_64}
  2750. if not(needed_VEX) then // TG
  2751. if (rex<>0) and not(rexwritten) then
  2752. internalerror(200603191);
  2753. {$endif x86_64}
  2754. if (c>=64) and (c<=151) then // 0100..0227
  2755. begin
  2756. if (c<127) then // 0177
  2757. begin
  2758. if (oper[c and 7]^.typ=top_reg) then
  2759. rfield:=regval(oper[c and 7]^.reg)
  2760. else
  2761. rfield:=regval(oper[c and 7]^.ref^.base);
  2762. end
  2763. else
  2764. rfield:=c and 7;
  2765. opidx:=(c shr 3) and 7;
  2766. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2767. Message(asmw_e_invalid_effective_address);
  2768. pb:=@bytes[0];
  2769. pb^:=ea_data.modrm;
  2770. inc(pb);
  2771. if ea_data.sib_present then
  2772. begin
  2773. pb^:=ea_data.sib;
  2774. inc(pb);
  2775. end;
  2776. s:=pb-@bytes[0];
  2777. objdata.writebytes(bytes,s);
  2778. case ea_data.bytes of
  2779. 0 : ;
  2780. 1 :
  2781. begin
  2782. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  2783. begin
  2784. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2785. {$ifdef i386}
  2786. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2787. (tf_pic_uses_got in target_info.flags) then
  2788. currabsreloc:=RELOC_GOT32
  2789. else
  2790. {$endif i386}
  2791. {$ifdef x86_64}
  2792. if oper[opidx]^.ref^.refaddr=addr_pic then
  2793. currabsreloc:=RELOC_GOTPCREL
  2794. else
  2795. {$endif x86_64}
  2796. currabsreloc:=RELOC_ABSOLUTE;
  2797. objdata_writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  2798. end
  2799. else
  2800. begin
  2801. bytes[0]:=oper[opidx]^.ref^.offset;
  2802. objdata.writebytes(bytes,1);
  2803. end;
  2804. inc(s);
  2805. end;
  2806. 2,4 :
  2807. begin
  2808. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2809. currval:=oper[opidx]^.ref^.offset;
  2810. {$ifdef x86_64}
  2811. if oper[opidx]^.ref^.refaddr=addr_pic then
  2812. currabsreloc:=RELOC_GOTPCREL
  2813. else
  2814. if oper[opidx]^.ref^.base=NR_RIP then
  2815. begin
  2816. currabsreloc:=RELOC_RELATIVE;
  2817. { Adjust reloc value by number of bytes following the displacement,
  2818. but not if displacement is specified by literal constant }
  2819. if Assigned(currsym) then
  2820. Dec(currval,InsEnd-objdata.CurrObjSec.Size-ea_data.bytes);
  2821. end
  2822. else
  2823. {$endif x86_64}
  2824. {$ifdef i386}
  2825. if (oper[opidx]^.ref^.refaddr=addr_pic) and
  2826. (tf_pic_uses_got in target_info.flags) then
  2827. currabsreloc:=RELOC_GOT32
  2828. else
  2829. {$endif i386}
  2830. currabsreloc:=RELOC_ABSOLUTE32;
  2831. if (currabsreloc=RELOC_ABSOLUTE32) and
  2832. (Assigned(oper[opidx]^.ref^.relsymbol)) then
  2833. begin
  2834. relsym:=objdata.symbolref(oper[opidx]^.ref^.relsymbol);
  2835. if relsym.objsection=objdata.CurrObjSec then
  2836. begin
  2837. currval:=objdata.CurrObjSec.size+ea_data.bytes-relsym.offset+currval;
  2838. currabsreloc:=RELOC_RELATIVE;
  2839. end
  2840. else
  2841. begin
  2842. currabsreloc:=RELOC_PIC_PAIR;
  2843. currval:=relsym.offset;
  2844. end;
  2845. end;
  2846. objdata_writereloc(currval,ea_data.bytes,currsym,currabsreloc);
  2847. inc(s,ea_data.bytes);
  2848. end;
  2849. end;
  2850. end
  2851. else
  2852. InternalError(777007);
  2853. end;
  2854. end;
  2855. until false;
  2856. end;
  2857. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  2858. begin
  2859. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  2860. (regtype = R_INTREGISTER) and
  2861. (ops=2) and
  2862. (oper[0]^.typ=top_reg) and
  2863. (oper[1]^.typ=top_reg) and
  2864. (oper[0]^.reg=oper[1]^.reg)
  2865. ) or
  2866. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  2867. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD) or
  2868. (opcode=A_VMOVSS) or (opcode=A_VMOVSD) or (opcode=A_VMOVQ) or
  2869. (opcode=A_VMOVAPS) or (OPCODE=A_VMOVAPD)) and
  2870. (regtype = R_MMREGISTER) and
  2871. (ops=2) and
  2872. (oper[0]^.typ=top_reg) and
  2873. (oper[1]^.typ=top_reg) and
  2874. (oper[0]^.reg=oper[1]^.reg)
  2875. );
  2876. end;
  2877. procedure build_spilling_operation_type_table;
  2878. var
  2879. opcode : tasmop;
  2880. i : integer;
  2881. begin
  2882. new(operation_type_table);
  2883. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  2884. for opcode:=low(tasmop) to high(tasmop) do
  2885. begin
  2886. for i:=1 to MaxInsChanges do
  2887. begin
  2888. case InsProp[opcode].Ch[i] of
  2889. Ch_Rop1 :
  2890. operation_type_table^[opcode,0]:=operand_read;
  2891. Ch_Wop1 :
  2892. operation_type_table^[opcode,0]:=operand_write;
  2893. Ch_RWop1,
  2894. Ch_Mop1 :
  2895. operation_type_table^[opcode,0]:=operand_readwrite;
  2896. Ch_Rop2 :
  2897. operation_type_table^[opcode,1]:=operand_read;
  2898. Ch_Wop2 :
  2899. operation_type_table^[opcode,1]:=operand_write;
  2900. Ch_RWop2,
  2901. Ch_Mop2 :
  2902. operation_type_table^[opcode,1]:=operand_readwrite;
  2903. Ch_Rop3 :
  2904. operation_type_table^[opcode,2]:=operand_read;
  2905. Ch_Wop3 :
  2906. operation_type_table^[opcode,2]:=operand_write;
  2907. Ch_RWop3,
  2908. Ch_Mop3 :
  2909. operation_type_table^[opcode,2]:=operand_readwrite;
  2910. end;
  2911. end;
  2912. end;
  2913. end;
  2914. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  2915. begin
  2916. { the information in the instruction table is made for the string copy
  2917. operation MOVSD so hack here (FK)
  2918. VMOVSS and VMOVSD has two and three operand flavours, this cannot modelled by x86ins.dat
  2919. so fix it here (FK)
  2920. }
  2921. if ((opcode=A_MOVSD) or (opcode=A_VMOVSS) or (opcode=A_VMOVSD)) and (ops=2) then
  2922. begin
  2923. case opnr of
  2924. 0:
  2925. result:=operand_read;
  2926. 1:
  2927. result:=operand_write;
  2928. else
  2929. internalerror(200506055);
  2930. end
  2931. end
  2932. { IMUL has 1, 2 and 3-operand forms }
  2933. else if opcode=A_IMUL then
  2934. begin
  2935. case ops of
  2936. 1:
  2937. if opnr=0 then
  2938. result:=operand_read
  2939. else
  2940. internalerror(2014011802);
  2941. 2:
  2942. begin
  2943. case opnr of
  2944. 0:
  2945. result:=operand_read;
  2946. 1:
  2947. result:=operand_readwrite;
  2948. else
  2949. internalerror(2014011803);
  2950. end;
  2951. end;
  2952. 3:
  2953. begin
  2954. case opnr of
  2955. 0,1:
  2956. result:=operand_read;
  2957. 2:
  2958. result:=operand_write;
  2959. else
  2960. internalerror(2014011804);
  2961. end;
  2962. end;
  2963. else
  2964. internalerror(2014011805);
  2965. end;
  2966. end
  2967. else
  2968. result:=operation_type_table^[opcode,opnr];
  2969. end;
  2970. function spilling_create_load(const ref:treference;r:tregister):Taicpu;
  2971. var
  2972. tmpref: treference;
  2973. begin
  2974. tmpref:=ref;
  2975. {$ifdef i8086}
  2976. if tmpref.segment=NR_SS then
  2977. tmpref.segment:=NR_NO;
  2978. {$endif i8086}
  2979. case getregtype(r) of
  2980. R_INTREGISTER :
  2981. begin
  2982. if getsubreg(r)=R_SUBH then
  2983. inc(tmpref.offset);
  2984. { we don't need special code here for 32 bit loads on x86_64, since
  2985. those will automatically zero-extend the upper 32 bits. }
  2986. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),tmpref,r);
  2987. end;
  2988. R_MMREGISTER :
  2989. if current_settings.fputype in fpu_avx_instructionsets then
  2990. case getsubreg(r) of
  2991. R_SUBMMD:
  2992. result:=taicpu.op_ref_reg(A_VMOVSD,reg2opsize(r),tmpref,r);
  2993. R_SUBMMS:
  2994. result:=taicpu.op_ref_reg(A_VMOVSS,reg2opsize(r),tmpref,r);
  2995. R_SUBQ,
  2996. R_SUBMMWHOLE:
  2997. result:=taicpu.op_ref_reg(A_VMOVQ,S_NO,tmpref,r);
  2998. else
  2999. internalerror(200506043);
  3000. end
  3001. else
  3002. case getsubreg(r) of
  3003. R_SUBMMD:
  3004. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),tmpref,r);
  3005. R_SUBMMS:
  3006. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),tmpref,r);
  3007. R_SUBQ,
  3008. R_SUBMMWHOLE:
  3009. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,tmpref,r);
  3010. else
  3011. internalerror(200506043);
  3012. end;
  3013. else
  3014. internalerror(200401041);
  3015. end;
  3016. end;
  3017. function spilling_create_store(r:tregister; const ref:treference):Taicpu;
  3018. var
  3019. size: topsize;
  3020. tmpref: treference;
  3021. begin
  3022. tmpref:=ref;
  3023. {$ifdef i8086}
  3024. if tmpref.segment=NR_SS then
  3025. tmpref.segment:=NR_NO;
  3026. {$endif i8086}
  3027. case getregtype(r) of
  3028. R_INTREGISTER :
  3029. begin
  3030. if getsubreg(r)=R_SUBH then
  3031. inc(tmpref.offset);
  3032. size:=reg2opsize(r);
  3033. {$ifdef x86_64}
  3034. { even if it's a 32 bit reg, we still have to spill 64 bits
  3035. because we often perform 64 bit operations on them }
  3036. if (size=S_L) then
  3037. begin
  3038. size:=S_Q;
  3039. r:=newreg(getregtype(r),getsupreg(r),R_SUBWHOLE);
  3040. end;
  3041. {$endif x86_64}
  3042. result:=taicpu.op_reg_ref(A_MOV,size,r,tmpref);
  3043. end;
  3044. R_MMREGISTER :
  3045. if current_settings.fputype in fpu_avx_instructionsets then
  3046. case getsubreg(r) of
  3047. R_SUBMMD:
  3048. result:=taicpu.op_reg_ref(A_VMOVSD,reg2opsize(r),r,tmpref);
  3049. R_SUBMMS:
  3050. result:=taicpu.op_reg_ref(A_VMOVSS,reg2opsize(r),r,tmpref);
  3051. R_SUBQ,
  3052. R_SUBMMWHOLE:
  3053. result:=taicpu.op_reg_ref(A_VMOVQ,S_NO,r,tmpref);
  3054. else
  3055. internalerror(200506042);
  3056. end
  3057. else
  3058. case getsubreg(r) of
  3059. R_SUBMMD:
  3060. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,tmpref);
  3061. R_SUBMMS:
  3062. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,tmpref);
  3063. R_SUBQ,
  3064. R_SUBMMWHOLE:
  3065. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,tmpref);
  3066. else
  3067. internalerror(200506042);
  3068. end;
  3069. else
  3070. internalerror(200401041);
  3071. end;
  3072. end;
  3073. {*****************************************************************************
  3074. Instruction table
  3075. *****************************************************************************}
  3076. procedure BuildInsTabCache;
  3077. var
  3078. i : longint;
  3079. begin
  3080. new(instabcache);
  3081. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  3082. i:=0;
  3083. while (i<InsTabEntries) do
  3084. begin
  3085. if InsTabCache^[InsTab[i].OPcode]=-1 then
  3086. InsTabCache^[InsTab[i].OPcode]:=i;
  3087. inc(i);
  3088. end;
  3089. end;
  3090. procedure BuildInsTabMemRefSizeInfoCache;
  3091. var
  3092. AsmOp: TasmOp;
  3093. i,j: longint;
  3094. insentry : PInsEntry;
  3095. MRefInfo: TMemRefSizeInfo;
  3096. SConstInfo: TConstSizeInfo;
  3097. actRegSize: int64;
  3098. actMemSize: int64;
  3099. actConstSize: int64;
  3100. actRegCount: integer;
  3101. actMemCount: integer;
  3102. actConstCount: integer;
  3103. actRegTypes : int64;
  3104. actRegMemTypes: int64;
  3105. NewRegSize: int64;
  3106. actVMemCount : integer;
  3107. actVMemTypes : int64;
  3108. RegMMXSizeMask: int64;
  3109. RegXMMSizeMask: int64;
  3110. RegYMMSizeMask: int64;
  3111. bitcount: integer;
  3112. function bitcnt(aValue: int64): integer;
  3113. var
  3114. i: integer;
  3115. begin
  3116. result := 0;
  3117. for i := 0 to 63 do
  3118. begin
  3119. if (aValue mod 2) = 1 then
  3120. begin
  3121. inc(result);
  3122. end;
  3123. aValue := aValue shr 1;
  3124. end;
  3125. end;
  3126. begin
  3127. new(InsTabMemRefSizeInfoCache);
  3128. FillChar(InsTabMemRefSizeInfoCache^,sizeof(TInsTabMemRefSizeInfoCache),0);
  3129. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3130. begin
  3131. i := InsTabCache^[AsmOp];
  3132. if i >= 0 then
  3133. begin
  3134. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3135. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3136. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := false;
  3137. insentry:=@instab[i];
  3138. RegMMXSizeMask := 0;
  3139. RegXMMSizeMask := 0;
  3140. RegYMMSizeMask := 0;
  3141. while (insentry^.opcode=AsmOp) do
  3142. begin
  3143. MRefInfo := msiUnkown;
  3144. actRegSize := 0;
  3145. actRegCount := 0;
  3146. actRegTypes := 0;
  3147. NewRegSize := 0;
  3148. actMemSize := 0;
  3149. actMemCount := 0;
  3150. actRegMemTypes := 0;
  3151. actVMemCount := 0;
  3152. actVMemTypes := 0;
  3153. actConstSize := 0;
  3154. actConstCount := 0;
  3155. for j := 0 to insentry^.ops -1 do
  3156. begin
  3157. if ((insentry^.optypes[j] and OT_XMEM32) = OT_XMEM32) OR
  3158. ((insentry^.optypes[j] and OT_XMEM64) = OT_XMEM64) OR
  3159. ((insentry^.optypes[j] and OT_YMEM32) = OT_YMEM32) OR
  3160. ((insentry^.optypes[j] and OT_YMEM64) = OT_YMEM64) then
  3161. begin
  3162. inc(actVMemCount);
  3163. case insentry^.optypes[j] and (OT_XMEM32 OR OT_XMEM64 OR OT_YMEM32 OR OT_YMEM64) of
  3164. OT_XMEM32: actVMemTypes := actVMemTypes or OT_XMEM32;
  3165. OT_XMEM64: actVMemTypes := actVMemTypes or OT_XMEM64;
  3166. OT_YMEM32: actVMemTypes := actVMemTypes or OT_YMEM32;
  3167. OT_YMEM64: actVMemTypes := actVMemTypes or OT_YMEM64;
  3168. else InternalError(777206);
  3169. end;
  3170. end
  3171. else if (insentry^.optypes[j] and OT_REGISTER) = OT_REGISTER then
  3172. begin
  3173. inc(actRegCount);
  3174. NewRegSize := (insentry^.optypes[j] and OT_SIZE_MASK);
  3175. if NewRegSize = 0 then
  3176. begin
  3177. case insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG) of
  3178. OT_MMXREG: begin
  3179. NewRegSize := OT_BITS64;
  3180. end;
  3181. OT_XMMREG: begin
  3182. NewRegSize := OT_BITS128;
  3183. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3184. end;
  3185. OT_YMMREG: begin
  3186. NewRegSize := OT_BITS256;
  3187. InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX := true;
  3188. end;
  3189. else NewRegSize := not(0);
  3190. end;
  3191. end;
  3192. actRegSize := actRegSize or NewRegSize;
  3193. actRegTypes := actRegTypes or (insentry^.optypes[j] and (OT_MMXREG OR OT_XMMREG OR OT_YMMREG));
  3194. end
  3195. else if ((insentry^.optypes[j] and OT_MEMORY) <> 0) then
  3196. begin
  3197. inc(actMemCount);
  3198. actMemSize:=actMemSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3199. if (insentry^.optypes[j] and OT_REGMEM) = OT_REGMEM then
  3200. begin
  3201. actRegMemTypes := actRegMemTypes or insentry^.optypes[j];
  3202. end;
  3203. end
  3204. else if ((insentry^.optypes[j] and OT_IMMEDIATE) = OT_IMMEDIATE) then
  3205. begin
  3206. inc(actConstCount);
  3207. actConstSize := actConstSize or (insentry^.optypes[j] and OT_SIZE_MASK);
  3208. end
  3209. end;
  3210. if actConstCount > 0 then
  3211. begin
  3212. case actConstSize of
  3213. 0: SConstInfo := csiNoSize;
  3214. OT_BITS8: SConstInfo := csiMem8;
  3215. OT_BITS16: SConstInfo := csiMem16;
  3216. OT_BITS32: SConstInfo := csiMem32;
  3217. OT_BITS64: SConstInfo := csiMem64;
  3218. else SConstInfo := csiMultiple;
  3219. end;
  3220. if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize = csiUnkown then
  3221. begin
  3222. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := SConstInfo;
  3223. end
  3224. else if InsTabMemRefSizeInfoCache^[AsmOp].ConstSize <> SConstInfo then
  3225. begin
  3226. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiMultiple;
  3227. end;
  3228. end;
  3229. if actVMemCount > 0 then
  3230. begin
  3231. if actVMemCount = 1 then
  3232. begin
  3233. if actVMemTypes > 0 then
  3234. begin
  3235. case actVMemTypes of
  3236. OT_XMEM32: MRefInfo := msiXMem32;
  3237. OT_XMEM64: MRefInfo := msiXMem64;
  3238. OT_YMEM32: MRefInfo := msiYMem32;
  3239. OT_YMEM64: MRefInfo := msiYMem64;
  3240. else InternalError(777208);
  3241. end;
  3242. case actRegTypes of
  3243. OT_XMMREG: case MRefInfo of
  3244. msiXMem32,
  3245. msiXMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS128;
  3246. msiYMem32,
  3247. msiYMem64: RegXMMSizeMask := RegXMMSizeMask or OT_BITS256;
  3248. else InternalError(777210);
  3249. end;
  3250. OT_YMMREG: case MRefInfo of
  3251. msiXMem32,
  3252. msiXMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS128;
  3253. msiYMem32,
  3254. msiYMem64: RegYMMSizeMask := RegYMMSizeMask or OT_BITS256;
  3255. else InternalError(777211);
  3256. end;
  3257. //else InternalError(777209);
  3258. end;
  3259. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3260. begin
  3261. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3262. end
  3263. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3264. begin
  3265. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in [msiXMem32, msiXMem64, msiYMem32, msiYMem64] then
  3266. begin
  3267. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemMultiple;
  3268. end
  3269. else InternalError(777212);
  3270. end;
  3271. end;
  3272. end
  3273. else InternalError(777207);
  3274. end
  3275. else
  3276. case actMemCount of
  3277. 0: ; // nothing todo
  3278. 1: begin
  3279. MRefInfo := msiUnkown;
  3280. case actRegMemTypes and (OT_MMXRM OR OT_XMMRM OR OT_YMMRM) of
  3281. OT_MMXRM: actMemSize := actMemSize or OT_BITS64;
  3282. OT_XMMRM: actMemSize := actMemSize or OT_BITS128;
  3283. OT_YMMRM: actMemSize := actMemSize or OT_BITS256;
  3284. end;
  3285. case actMemSize of
  3286. 0: MRefInfo := msiNoSize;
  3287. OT_BITS8: MRefInfo := msiMem8;
  3288. OT_BITS16: MRefInfo := msiMem16;
  3289. OT_BITS32: MRefInfo := msiMem32;
  3290. OT_BITS64: MRefInfo := msiMem64;
  3291. OT_BITS128: MRefInfo := msiMem128;
  3292. OT_BITS256: MRefInfo := msiMem256;
  3293. OT_BITS80,
  3294. OT_FAR,
  3295. OT_NEAR,
  3296. OT_SHORT: ; // ignore
  3297. else
  3298. begin
  3299. bitcount := bitcnt(actMemSize);
  3300. if bitcount > 1 then MRefInfo := msiMultiple
  3301. else InternalError(777203);
  3302. end;
  3303. end;
  3304. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiUnkown then
  3305. begin
  3306. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := MRefInfo;
  3307. end
  3308. else if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize <> MRefInfo then
  3309. begin
  3310. with InsTabMemRefSizeInfoCache^[AsmOp] do
  3311. begin
  3312. if ((MemRefSize = msiMem8) OR (MRefInfo = msiMem8)) then MemRefSize := msiMultiple8
  3313. else if ((MemRefSize = msiMem16) OR (MRefInfo = msiMem16)) then MemRefSize := msiMultiple16
  3314. else if ((MemRefSize = msiMem32) OR (MRefInfo = msiMem32)) then MemRefSize := msiMultiple32
  3315. else if ((MemRefSize = msiMem64) OR (MRefInfo = msiMem64)) then MemRefSize := msiMultiple64
  3316. else if ((MemRefSize = msiMem128) OR (MRefInfo = msiMem128)) then MemRefSize := msiMultiple128
  3317. else if ((MemRefSize = msiMem256) OR (MRefInfo = msiMem256)) then MemRefSize := msiMultiple256
  3318. else MemRefSize := msiMultiple;
  3319. end;
  3320. end;
  3321. if actRegCount > 0 then
  3322. begin
  3323. case actRegTypes and (OT_MMXREG or OT_XMMREG or OT_YMMREG) of
  3324. OT_MMXREG: RegMMXSizeMask := RegMMXSizeMask or actMemSize;
  3325. OT_XMMREG: RegXMMSizeMask := RegXMMSizeMask or actMemSize;
  3326. OT_YMMREG: RegYMMSizeMask := RegYMMSizeMask or actMemSize;
  3327. else begin
  3328. RegMMXSizeMask := not(0);
  3329. RegXMMSizeMask := not(0);
  3330. RegYMMSizeMask := not(0);
  3331. end;
  3332. end;
  3333. end;
  3334. end;
  3335. else InternalError(777202);
  3336. end;
  3337. inc(insentry);
  3338. end;
  3339. if (InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize in MemRefMultiples) and
  3340. (InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX)then
  3341. begin
  3342. case RegXMMSizeMask of
  3343. OT_BITS16: case RegYMMSizeMask of
  3344. OT_BITS32: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx16y32;
  3345. end;
  3346. OT_BITS32: case RegYMMSizeMask of
  3347. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx32y64;
  3348. end;
  3349. OT_BITS64: case RegYMMSizeMask of
  3350. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3351. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y256;
  3352. end;
  3353. OT_BITS128: begin
  3354. if InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize = msiVMemMultiple then
  3355. begin
  3356. // vector-memory-operand AVX2 (e.g. VGATHER..)
  3357. case RegYMMSizeMask of
  3358. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiVMemRegSize;
  3359. end;
  3360. end
  3361. else if RegMMXSizeMask = 0 then
  3362. begin
  3363. case RegYMMSizeMask of
  3364. OT_BITS128: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegx64y128;
  3365. OT_BITS256: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3366. end;
  3367. end
  3368. else if RegYMMSizeMask = 0 then
  3369. begin
  3370. case RegMMXSizeMask of
  3371. OT_BITS64: InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiMemRegSize;
  3372. end;
  3373. end
  3374. else InternalError(777205);
  3375. end;
  3376. end;
  3377. end;
  3378. end;
  3379. end;
  3380. for AsmOp := low(TAsmOp) to high(TAsmOp) do
  3381. begin
  3382. // only supported intructiones with SSE- or AVX-operands
  3383. if not(InsTabMemRefSizeInfoCache^[AsmOp].ExistsSSEAVX) then
  3384. begin
  3385. InsTabMemRefSizeInfoCache^[AsmOp].MemRefSize := msiUnkown;
  3386. InsTabMemRefSizeInfoCache^[AsmOp].ConstSize := csiUnkown;
  3387. end;
  3388. end;
  3389. end;
  3390. procedure InitAsm;
  3391. begin
  3392. build_spilling_operation_type_table;
  3393. if not assigned(instabcache) then
  3394. BuildInsTabCache;
  3395. if not assigned(InsTabMemRefSizeInfoCache) then
  3396. BuildInsTabMemRefSizeInfoCache;
  3397. end;
  3398. procedure DoneAsm;
  3399. begin
  3400. if assigned(operation_type_table) then
  3401. begin
  3402. dispose(operation_type_table);
  3403. operation_type_table:=nil;
  3404. end;
  3405. if assigned(instabcache) then
  3406. begin
  3407. dispose(instabcache);
  3408. instabcache:=nil;
  3409. end;
  3410. if assigned(InsTabMemRefSizeInfoCache) then
  3411. begin
  3412. dispose(InsTabMemRefSizeInfoCache);
  3413. InsTabMemRefSizeInfoCache:=nil;
  3414. end;
  3415. end;
  3416. begin
  3417. cai_align:=tai_align;
  3418. cai_cpu:=taicpu;
  3419. end.