cgbase.pas 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. Some basic types and constants for the code generation
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# This unit exports some types which are used across the code generator }
  18. unit cgbase;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. globtype,
  23. symconst;
  24. type
  25. { Location types where value can be stored }
  26. TCGLoc=(
  27. LOC_INVALID, { added for tracking problems}
  28. LOC_VOID, { no value is available }
  29. LOC_CONSTANT, { constant value }
  30. LOC_JUMP, { boolean results only, jump to false or true label }
  31. LOC_FLAGS, { boolean results only, flags are set }
  32. LOC_CREFERENCE, { in memory constant value reference (cannot change) }
  33. LOC_REFERENCE, { in memory value }
  34. LOC_REGISTER, { in a processor register }
  35. LOC_CREGISTER, { Constant register which shouldn't be modified }
  36. LOC_FPUREGISTER, { FPU stack }
  37. LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
  38. LOC_MMXREGISTER, { MMX register }
  39. { MMX register variable }
  40. LOC_CMMXREGISTER,
  41. { multimedia register }
  42. LOC_MMREGISTER,
  43. { Constant multimedia reg which shouldn't be modified }
  44. LOC_CMMREGISTER,
  45. { contiguous subset of bits of an integer register }
  46. LOC_SUBSETREG,
  47. LOC_CSUBSETREG,
  48. { contiguous subset of bits in memory }
  49. LOC_SUBSETREF,
  50. LOC_CSUBSETREF
  51. );
  52. { since we have only 16bit offsets, we need to be able to specify the high
  53. and lower 16 bits of the address of a symbol of up to 64 bit }
  54. trefaddr = (
  55. addr_no,
  56. addr_full,
  57. {IFNDEF POWERPC64}
  58. // these are also available for ppc64 on Mac OS X
  59. addr_hi,
  60. addr_lo,
  61. {ENDIF}
  62. addr_pic
  63. {$IFDEF POWERPC64}
  64. ,
  65. addr_low, // bits 48-63
  66. addr_high, // bits 32-47
  67. addr_higher, // bits 16-31
  68. addr_highest, // bits 00-15
  69. addr_higha, // bits 16-31, adjusted
  70. addr_highera, // bits 32-47, adjusted
  71. addr_highesta // bits 48-63, adjusted
  72. {$ENDIF}
  73. );
  74. {# Generic opcodes, which must be supported by all processors
  75. }
  76. topcg =
  77. (
  78. OP_NONE,
  79. OP_MOVE, { replaced operation with direct load }
  80. OP_ADD, { simple addition }
  81. OP_AND, { simple logical and }
  82. OP_DIV, { simple unsigned division }
  83. OP_IDIV, { simple signed division }
  84. OP_IMUL, { simple signed multiply }
  85. OP_MUL, { simple unsigned multiply }
  86. OP_NEG, { simple negate }
  87. OP_NOT, { simple logical not }
  88. OP_OR, { simple logical or }
  89. OP_SAR, { arithmetic shift-right }
  90. OP_SHL, { logical shift left }
  91. OP_SHR, { logical shift right }
  92. OP_SUB, { simple subtraction }
  93. OP_XOR { simple exclusive or }
  94. );
  95. {# Generic flag values - used for jump locations }
  96. TOpCmp =
  97. (
  98. OC_NONE,
  99. OC_EQ, { equality comparison }
  100. OC_GT, { greater than (signed) }
  101. OC_LT, { less than (signed) }
  102. OC_GTE, { greater or equal than (signed) }
  103. OC_LTE, { less or equal than (signed) }
  104. OC_NE, { not equal }
  105. OC_BE, { less or equal than (unsigned) }
  106. OC_B, { less than (unsigned) }
  107. OC_AE, { greater or equal than (unsigned) }
  108. OC_A { greater than (unsigned) }
  109. );
  110. { OS_NO is also used memory references with large data that can
  111. not be loaded in a register directly }
  112. TCgSize = (OS_NO,
  113. { integer registers }
  114. OS_8,OS_16,OS_32,OS_64,OS_128,OS_S8,OS_S16,OS_S32,OS_S64,OS_S128,
  115. { single,double,extended,comp,float128 }
  116. OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,
  117. { multi-media sizes: split in byte, word, dword, ... }
  118. { entities, then the signed counterparts }
  119. OS_M8,OS_M16,OS_M32,OS_M64,OS_M128,
  120. OS_MS8,OS_MS16,OS_MS32,OS_MS64,OS_MS128);
  121. { Register types }
  122. TRegisterType = (
  123. R_INVALIDREGISTER, { = 0 }
  124. R_INTREGISTER, { = 1 }
  125. R_FPUREGISTER, { = 2 }
  126. { used by Intel only }
  127. R_MMXREGISTER, { = 3 }
  128. R_MMREGISTER, { = 4 }
  129. R_SPECIALREGISTER, { = 5 }
  130. R_ADDRESSREGISTER { = 6 }
  131. );
  132. { Sub registers }
  133. TSubRegister = (
  134. R_SUBNONE, { = 0; no sub register possible }
  135. R_SUBL, { = 1; 8 bits, Like AL }
  136. R_SUBH, { = 2; 8 bits, Like AH }
  137. R_SUBW, { = 3; 16 bits, Like AX }
  138. R_SUBD, { = 4; 32 bits, Like EAX }
  139. R_SUBQ, { = 5; 64 bits, Like RAX }
  140. { For Sparc floats that use F0:F1 to store doubles }
  141. R_SUBFS, { = 6; Float that allocates 1 FPU register }
  142. R_SUBFD, { = 7; Float that allocates 2 FPU registers }
  143. R_SUBFQ, { = 8; Float that allocates 4 FPU registers }
  144. R_SUBMMS, { = 9; single scalar in multi media register }
  145. R_SUBMMD, { = 10; double scalar in multi media register }
  146. R_SUBMMWHOLE { = 11; complete MM register, size depends on CPU }
  147. );
  148. TSuperRegister = type word;
  149. {
  150. The new register coding:
  151. SuperRegister (bits 0..15)
  152. Subregister (bits 16..23)
  153. Register type (bits 24..31)
  154. TRegister is defined as an enum to make it incompatible
  155. with TSuperRegister to avoid mixing them
  156. }
  157. TRegister = (
  158. TRegisterLowEnum := Low(longint),
  159. TRegisterHighEnum := High(longint)
  160. );
  161. TRegisterRec=packed record
  162. {$ifdef FPC_BIG_ENDIAN}
  163. regtype : Tregistertype;
  164. subreg : Tsubregister;
  165. supreg : Tsuperregister;
  166. {$else FPC_BIG_ENDIAN}
  167. supreg : Tsuperregister;
  168. subreg : Tsubregister;
  169. regtype : Tregistertype;
  170. {$endif FPC_BIG_ENDIAN}
  171. end;
  172. { A type to store register locations for 64 Bit values. }
  173. {$ifdef cpu64bit}
  174. tregister64 = tregister;
  175. {$else cpu64bit}
  176. tregister64 = record
  177. reglo,reghi : tregister;
  178. end;
  179. {$endif cpu64bit}
  180. Tregistermmxset = record
  181. reg0,reg1,reg2,reg3:Tregister
  182. end;
  183. { Set type definition for registers }
  184. tcpuregisterset = set of byte;
  185. tsuperregisterset = array[byte] of set of byte;
  186. pmmshuffle = ^tmmshuffle;
  187. { this record describes shuffle operations for mm operations; if a pointer a shuffle record
  188. passed to an mm operation is nil, it means that the whole location is moved }
  189. tmmshuffle = record
  190. { describes how many shuffles are actually described, if len=0 then
  191. moving the scalar with index 0 to the scalar with index 0 is meant }
  192. len : byte;
  193. { lower nibble of each entry of this array describes index of the source data index while
  194. the upper nibble describes the destination index }
  195. shuffles : array[1..1] of byte;
  196. end;
  197. Tsuperregisterarray=array[0..$ffff] of Tsuperregister;
  198. Psuperregisterarray=^Tsuperregisterarray;
  199. Tsuperregisterworklist=object
  200. buflength,
  201. buflengthinc,
  202. length:word;
  203. buf:Psuperregisterarray;
  204. constructor init;
  205. constructor copyfrom(const x:Tsuperregisterworklist);
  206. destructor done;
  207. procedure clear;
  208. procedure add(s:tsuperregister);
  209. function addnodup(s:tsuperregister): boolean;
  210. function get:tsuperregister;
  211. function readidx(i:word):tsuperregister;
  212. procedure deleteidx(i:word);
  213. function delete(s:tsuperregister):boolean;
  214. end;
  215. psuperregisterworklist=^tsuperregisterworklist;
  216. const
  217. { alias for easier understanding }
  218. R_SSEREGISTER = R_MMREGISTER;
  219. { Invalid register number }
  220. RS_INVALID = high(tsuperregister);
  221. { Maximum number of cpu registers per register type,
  222. this must fit in tcpuregisterset }
  223. maxcpuregister = 32;
  224. tcgsize2size : Array[tcgsize] of integer =
  225. { integer values }
  226. (0,1,2,4,8,16,1,2,4,8,16,
  227. { floating point values }
  228. 4,8,10,8,16,
  229. { multimedia values }
  230. 1,2,4,8,16,1,2,4,8,16);
  231. tfloat2tcgsize: array[tfloattype] of tcgsize =
  232. (OS_F32,OS_F64,OS_F80,OS_C64,OS_C64,OS_F128);
  233. tcgsize2tfloat: array[OS_F32..OS_C64] of tfloattype =
  234. (s32real,s64real,s80real,s64comp);
  235. tvarregable2tcgloc : array[tvarregable] of tcgloc = (LOC_VOID,
  236. LOC_CREGISTER,LOC_CFPUREGISTER,LOC_CMMREGISTER,LOC_CREGISTER);
  237. { Table to convert tcgsize variables to the correspondending
  238. unsigned types }
  239. tcgsize2unsigned : array[tcgsize] of tcgsize = (OS_NO,
  240. OS_8,OS_16,OS_32,OS_64,OS_128,OS_8,OS_16,OS_32,OS_64,OS_128,
  241. OS_F32,OS_F64,OS_F80,OS_C64,OS_F128,
  242. OS_M8,OS_M16,OS_M32,OS_M64,OS_M128,OS_M8,OS_M16,OS_M32,
  243. OS_M64,OS_M128);
  244. tcgloc2str : array[TCGLoc] of string[12] = (
  245. 'LOC_INVALID',
  246. 'LOC_VOID',
  247. 'LOC_CONST',
  248. 'LOC_JUMP',
  249. 'LOC_FLAGS',
  250. 'LOC_CREF',
  251. 'LOC_REF',
  252. 'LOC_REG',
  253. 'LOC_CREG',
  254. 'LOC_FPUREG',
  255. 'LOC_CFPUREG',
  256. 'LOC_MMXREG',
  257. 'LOC_CMMXREG',
  258. 'LOC_MMREG',
  259. 'LOC_CMMREG',
  260. 'LOC_SSETREG',
  261. 'LOC_CSSETREG',
  262. 'LOC_SSETREF',
  263. 'LOC_CSSETREF');
  264. var
  265. mms_movescalar : pmmshuffle;
  266. procedure supregset_reset(var regs:tsuperregisterset;setall:boolean;
  267. maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  268. procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  269. procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  270. function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
  271. function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
  272. function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
  273. function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
  274. function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
  275. procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
  276. procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  277. function generic_regname(r:tregister):string;
  278. {# From a constant numeric value, return the abstract code generator
  279. size.
  280. }
  281. function int_cgsize(const a: aint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
  282. function int_float_cgsize(const a: aint): tcgsize;
  283. { return the inverse condition of opcmp }
  284. function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  285. { return the opcmp needed when swapping the operands }
  286. function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  287. { return whether op is commutative }
  288. function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
  289. { returns true, if shuffle describes a real shuffle operation and not only a move }
  290. function realshuffle(shuffle : pmmshuffle) : boolean;
  291. { returns true, if the shuffle describes only a move of the scalar at index 0 }
  292. function shufflescalar(shuffle : pmmshuffle) : boolean;
  293. { removes shuffling from shuffle, this means that the destenation index of each shuffle is copied to
  294. the source }
  295. procedure removeshuffles(var shuffle : tmmshuffle);
  296. implementation
  297. uses
  298. verbose;
  299. {******************************************************************************
  300. tsuperregisterworklist
  301. ******************************************************************************}
  302. constructor tsuperregisterworklist.init;
  303. begin
  304. length:=0;
  305. buflength:=0;
  306. buflengthinc:=16;
  307. buf:=nil;
  308. end;
  309. constructor Tsuperregisterworklist.copyfrom(const x:Tsuperregisterworklist);
  310. begin
  311. self:=x;
  312. if x.buf<>nil then
  313. begin
  314. getmem(buf,buflength*sizeof(Tsuperregister));
  315. move(x.buf^,buf^,length*sizeof(Tsuperregister));
  316. end;
  317. end;
  318. destructor tsuperregisterworklist.done;
  319. begin
  320. if assigned(buf) then
  321. freemem(buf);
  322. end;
  323. procedure tsuperregisterworklist.add(s:tsuperregister);
  324. begin
  325. inc(length);
  326. { Need to increase buffer length? }
  327. if length>=buflength then
  328. begin
  329. inc(buflength,buflengthinc);
  330. buflengthinc:=buflengthinc*2;
  331. if buflengthinc>256 then
  332. buflengthinc:=256;
  333. reallocmem(buf,buflength*sizeof(Tsuperregister));
  334. end;
  335. buf^[length-1]:=s;
  336. end;
  337. function tsuperregisterworklist.addnodup(s:tsuperregister): boolean;
  338. begin
  339. addnodup := false;
  340. if indexword(buf^,length,s) = -1 then
  341. begin
  342. add(s);
  343. addnodup := true;
  344. end;
  345. end;
  346. procedure tsuperregisterworklist.clear;
  347. begin
  348. length:=0;
  349. end;
  350. procedure tsuperregisterworklist.deleteidx(i:word);
  351. begin
  352. if i>=length then
  353. internalerror(200310144);
  354. buf^[i]:=buf^[length-1];
  355. dec(length);
  356. end;
  357. function tsuperregisterworklist.readidx(i:word):tsuperregister;
  358. begin
  359. if (i >= length) then
  360. internalerror(2005010601);
  361. result := buf^[i];
  362. end;
  363. function tsuperregisterworklist.get:tsuperregister;
  364. begin
  365. if length=0 then
  366. internalerror(200310142);
  367. get:=buf^[0];
  368. buf^[0]:=buf^[length-1];
  369. dec(length);
  370. end;
  371. function tsuperregisterworklist.delete(s:tsuperregister):boolean;
  372. var
  373. i:longint;
  374. begin
  375. delete:=false;
  376. { indexword in 1.0.x and 1.9.4 is broken }
  377. i:=indexword(buf^,length,s);
  378. if i<>-1 then
  379. begin
  380. deleteidx(i);
  381. delete := true;
  382. end;
  383. end;
  384. procedure supregset_reset(var regs:tsuperregisterset;setall:boolean;
  385. maxreg:Tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  386. begin
  387. fillchar(regs,(maxreg+7) shr 3,-byte(setall));
  388. end;
  389. procedure supregset_include(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  390. begin
  391. include(regs[s shr 8],(s and $ff));
  392. end;
  393. procedure supregset_exclude(var regs:tsuperregisterset;s:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  394. begin
  395. exclude(regs[s shr 8],(s and $ff));
  396. end;
  397. function supregset_in(const regs:tsuperregisterset;s:tsuperregister):boolean;{$ifdef USEINLINE}inline;{$endif}
  398. begin
  399. result:=(s and $ff) in regs[s shr 8];
  400. end;
  401. function newreg(rt:tregistertype;sr:tsuperregister;sb:tsubregister):tregister;{$ifdef USEINLINE}inline;{$endif}
  402. begin
  403. tregisterrec(result).regtype:=rt;
  404. tregisterrec(result).supreg:=sr;
  405. tregisterrec(result).subreg:=sb;
  406. end;
  407. function getsubreg(r:tregister):tsubregister;{$ifdef USEINLINE}inline;{$endif}
  408. begin
  409. result:=tregisterrec(r).subreg;
  410. end;
  411. function getsupreg(r:tregister):tsuperregister;{$ifdef USEINLINE}inline;{$endif}
  412. begin
  413. result:=tregisterrec(r).supreg;
  414. end;
  415. function getregtype(r:tregister):tregistertype;{$ifdef USEINLINE}inline;{$endif}
  416. begin
  417. result:=tregisterrec(r).regtype;
  418. end;
  419. procedure setsubreg(var r:tregister;sr:tsubregister);{$ifdef USEINLINE}inline;{$endif}
  420. begin
  421. tregisterrec(r).subreg:=sr;
  422. end;
  423. procedure setsupreg(var r:tregister;sr:tsuperregister);{$ifdef USEINLINE}inline;{$endif}
  424. begin
  425. tregisterrec(r).supreg:=sr;
  426. end;
  427. function generic_regname(r:tregister):string;
  428. var
  429. nr : string[12];
  430. begin
  431. str(getsupreg(r),nr);
  432. case getregtype(r) of
  433. R_INTREGISTER:
  434. result:='ireg'+nr;
  435. R_FPUREGISTER:
  436. result:='freg'+nr;
  437. R_MMREGISTER:
  438. result:='mreg'+nr;
  439. R_MMXREGISTER:
  440. result:='xreg'+nr;
  441. R_ADDRESSREGISTER:
  442. result:='areg'+nr;
  443. R_SPECIALREGISTER:
  444. result:='sreg'+nr;
  445. else
  446. begin
  447. result:='INVALID';
  448. exit;
  449. end;
  450. end;
  451. case getsubreg(r) of
  452. R_SUBNONE:
  453. ;
  454. R_SUBL:
  455. result:=result+'l';
  456. R_SUBH:
  457. result:=result+'h';
  458. R_SUBW:
  459. result:=result+'w';
  460. R_SUBD:
  461. result:=result+'d';
  462. R_SUBQ:
  463. result:=result+'q';
  464. R_SUBFS:
  465. result:=result+'fs';
  466. R_SUBFD:
  467. result:=result+'fd';
  468. R_SUBMMD:
  469. result:=result+'md';
  470. R_SUBMMS:
  471. result:=result+'ms';
  472. R_SUBMMWHOLE:
  473. result:=result+'ma';
  474. else
  475. internalerror(200308252);
  476. end;
  477. end;
  478. function int_cgsize(const a: aint): tcgsize;{$ifdef USEINLINE}inline;{$endif}
  479. const
  480. size2cgsize : array[0..8] of tcgsize = (
  481. OS_NO,OS_8,OS_16,OS_NO,OS_32,OS_NO,OS_NO,OS_NO,OS_64
  482. );
  483. begin
  484. if a>8 then
  485. result:=OS_NO
  486. else
  487. result:=size2cgsize[a];
  488. end;
  489. function int_float_cgsize(const a: aint): tcgsize;
  490. begin
  491. case a of
  492. 4 :
  493. result:=OS_F32;
  494. 8 :
  495. result:=OS_F64;
  496. 10 :
  497. result:=OS_F80;
  498. 16 :
  499. result:=OS_F128;
  500. else
  501. internalerror(200603211);
  502. end;
  503. end;
  504. function inverse_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  505. const
  506. list: array[TOpCmp] of TOpCmp =
  507. (OC_NONE,OC_NE,OC_LTE,OC_GTE,OC_LT,OC_GT,OC_EQ,OC_A,OC_AE,
  508. OC_B,OC_BE);
  509. begin
  510. inverse_opcmp := list[opcmp];
  511. end;
  512. function swap_opcmp(opcmp: topcmp): topcmp;{$ifdef USEINLINE}inline;{$endif}
  513. const
  514. list: array[TOpCmp] of TOpCmp =
  515. (OC_NONE,OC_EQ,OC_LT,OC_GT,OC_LTE,OC_GTE,OC_NE,OC_AE,OC_A,
  516. OC_BE,OC_B);
  517. begin
  518. swap_opcmp := list[opcmp];
  519. end;
  520. function commutativeop(op: topcg): boolean;{$ifdef USEINLINE}inline;{$endif}
  521. const
  522. list: array[topcg] of boolean =
  523. (true,false,true,true,false,false,true,true,false,false,
  524. true,false,false,false,false,true);
  525. begin
  526. commutativeop := list[op];
  527. end;
  528. function realshuffle(shuffle : pmmshuffle) : boolean;
  529. var
  530. i : longint;
  531. begin
  532. realshuffle:=true;
  533. if (shuffle=nil) or (shuffle^.len=0) then
  534. realshuffle:=false
  535. else
  536. begin
  537. for i:=1 to shuffle^.len do
  538. begin
  539. if (shuffle^.shuffles[i] and $f)<>((shuffle^.shuffles[i] and $f0) shr 4) then
  540. exit;
  541. end;
  542. realshuffle:=false;
  543. end;
  544. end;
  545. function shufflescalar(shuffle : pmmshuffle) : boolean;
  546. begin
  547. result:=shuffle^.len=0;
  548. end;
  549. procedure removeshuffles(var shuffle : tmmshuffle);
  550. var
  551. i : longint;
  552. begin
  553. if shuffle.len=0 then
  554. exit;
  555. for i:=1 to shuffle.len do
  556. shuffle.shuffles[i]:=(shuffle.shuffles[i] and $f) or ((shuffle.shuffles[i] and $f0) shr 4);
  557. end;
  558. initialization
  559. new(mms_movescalar);
  560. mms_movescalar^.len:=0;
  561. finalization
  562. dispose(mms_movescalar);
  563. end.