cpubase.pas 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# Base unit for processor information. This unit contains
  18. enumerations of registers, opcodes, sizes, and other
  19. such things which are processor specific.
  20. }
  21. unit cpubase;
  22. {$i fpcdefs.inc}
  23. interface
  24. uses
  25. cutils,cclasses,
  26. globtype,globals,
  27. cpuinfo,
  28. aasmbase,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. TAsmOp= {$i armop.inc}
  36. { This should define the array of instructions as string }
  37. op2strtable=array[tasmop] of string[11];
  38. const
  39. { First value of opcode enumeration }
  40. firstop = low(tasmop);
  41. { Last value of opcode enumeration }
  42. lastop = high(tasmop);
  43. {*****************************************************************************
  44. Registers
  45. *****************************************************************************}
  46. type
  47. { Number of registers used for indexing in tables }
  48. tregisterindex=0..{$i rarmnor.inc}-1;
  49. const
  50. { Available Superregisters }
  51. {$i rarmsup.inc}
  52. RS_PC = RS_R15;
  53. { No Subregisters }
  54. R_SUBWHOLE = R_SUBNONE;
  55. { Available Registers }
  56. {$i rarmcon.inc}
  57. { aliases }
  58. NR_PC = NR_R15;
  59. { Integer Super registers first and last }
  60. first_int_supreg = RS_R0;
  61. first_int_imreg = $10;
  62. { Float Super register first and last }
  63. first_fpu_supreg = RS_F0;
  64. first_fpu_imreg = $08;
  65. { MM Super register first and last }
  66. first_mm_supreg = RS_S0;
  67. first_mm_imreg = $20;
  68. { TODO: Calculate bsstart}
  69. regnumber_count_bsstart = 64;
  70. regnumber_table : array[tregisterindex] of tregister = (
  71. {$i rarmnum.inc}
  72. );
  73. regstabs_table : array[tregisterindex] of shortint = (
  74. {$i rarmsta.inc}
  75. );
  76. regdwarf_table : array[tregisterindex] of shortint = (
  77. {$i rarmdwa.inc}
  78. );
  79. { registers which may be destroyed by calls }
  80. VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R15];
  81. VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
  82. type
  83. totherregisterset = set of tregisterindex;
  84. {*****************************************************************************
  85. Instruction post fixes
  86. *****************************************************************************}
  87. type
  88. { ARM instructions load/store and arithmetic instructions
  89. can have several instruction post fixes which are collected
  90. in this enumeration
  91. }
  92. TOpPostfix = (PF_None,
  93. { update condition flags
  94. or floating point single }
  95. PF_S,
  96. { floating point size }
  97. PF_D,PF_E,PF_P,PF_EP,
  98. { load/store }
  99. PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
  100. { multiple load/store address modes }
  101. PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA
  102. );
  103. TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
  104. const
  105. cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
  106. PF_None,
  107. PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
  108. PF_S,PF_D,PF_E,PF_None,PF_None);
  109. oppostfix2str : array[TOpPostfix] of string[2] = ('',
  110. 's',
  111. 'd','e','p','ep',
  112. 'b','sb','bt','h','sh','t',
  113. 'ia','ib','da','db','fd','fa','ed','ea');
  114. roundingmode2str : array[TRoundingMode] of string[1] = ('',
  115. 'p','m','z');
  116. {*****************************************************************************
  117. Conditions
  118. *****************************************************************************}
  119. type
  120. TAsmCond=(C_None,
  121. C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  122. C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
  123. );
  124. const
  125. cond2str : array[TAsmCond] of string[2]=('',
  126. 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
  127. 'ge','lt','gt','le','al','nv'
  128. );
  129. uppercond2str : array[TAsmCond] of string[2]=('',
  130. 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
  131. 'GE','LT','GT','LE','AL','NV'
  132. );
  133. {*****************************************************************************
  134. Flags
  135. *****************************************************************************}
  136. type
  137. TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
  138. F_GE,F_LT,F_GT,F_LE);
  139. {*****************************************************************************
  140. Operands
  141. *****************************************************************************}
  142. taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
  143. tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
  144. tupdatereg = (UR_None,UR_Update);
  145. pshifterop = ^tshifterop;
  146. tshifterop = record
  147. shiftmode : tshiftmode;
  148. rs : tregister;
  149. shiftimm : byte;
  150. end;
  151. {*****************************************************************************
  152. Constants
  153. *****************************************************************************}
  154. const
  155. max_operands = 4;
  156. {# Constant defining possibly all registers which might require saving }
  157. ALL_OTHERREGISTERS = [];
  158. general_superregisters = [RS_R0..RS_PC];
  159. {# Table of registers which can be allocated by the code generator
  160. internally, when generating the code.
  161. }
  162. { legend: }
  163. { xxxregs = set of all possibly used registers of that type in the code }
  164. { generator }
  165. { usableregsxxx = set of all 32bit components of registers that can be }
  166. { possible allocated to a regvar or using getregisterxxx (this }
  167. { excludes registers which can be only used for parameter }
  168. { passing on ABI's that define this) }
  169. { c_countusableregsxxx = amount of registers in the usableregsxxx set }
  170. maxintregs = 15;
  171. { to determine how many registers to use for regvars }
  172. maxintscratchregs = 3;
  173. usableregsint = [RS_R4..RS_R10];
  174. c_countusableregsint = 7;
  175. maxfpuregs = 8;
  176. fpuregs = [RS_F0..RS_F7];
  177. usableregsfpu = [RS_F4..RS_F7];
  178. c_countusableregsfpu = 4;
  179. mmregs = [RS_D0..RS_D15];
  180. usableregsmm = [RS_D8..RS_D15];
  181. c_countusableregsmm = 8;
  182. maxaddrregs = 0;
  183. addrregs = [];
  184. usableregsaddr = [];
  185. c_countusableregsaddr = 0;
  186. {*****************************************************************************
  187. Operand Sizes
  188. *****************************************************************************}
  189. type
  190. topsize = (S_NO,
  191. S_B,S_W,S_L,S_BW,S_BL,S_WL,
  192. S_IS,S_IL,S_IQ,
  193. S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
  194. );
  195. {*****************************************************************************
  196. Constants
  197. *****************************************************************************}
  198. const
  199. firstsaveintreg = RS_R4;
  200. lastsaveintreg = RS_R10;
  201. firstsavefpureg = RS_F4;
  202. lastsavefpureg = RS_F7;
  203. firstsavemmreg = RS_D8;
  204. lastsavemmreg = RS_D15;
  205. maxvarregs = 7;
  206. varregs : Array [1..maxvarregs] of tsuperregister =
  207. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  208. maxfpuvarregs = 4;
  209. fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
  210. (RS_F4,RS_F5,RS_F6,RS_F7);
  211. {*****************************************************************************
  212. Default generic sizes
  213. *****************************************************************************}
  214. { Defines the default address size for a processor, }
  215. OS_ADDR = OS_32;
  216. { the natural int size for a processor, }
  217. OS_INT = OS_32;
  218. OS_SINT = OS_S32;
  219. { the maximum float size for a processor, }
  220. OS_FLOAT = OS_F64;
  221. { the size of a vector register for a processor }
  222. OS_VECTOR = OS_M32;
  223. {*****************************************************************************
  224. Generic Register names
  225. *****************************************************************************}
  226. { Stack pointer register }
  227. NR_STACK_POINTER_REG = NR_R13;
  228. RS_STACK_POINTER_REG = RS_R13;
  229. { Frame pointer register }
  230. RS_FRAME_POINTER_REG = RS_R11;
  231. NR_FRAME_POINTER_REG = NR_R11;
  232. { Register for addressing absolute data in a position independant way,
  233. such as in PIC code. The exact meaning is ABI specific. For
  234. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  235. }
  236. NR_PIC_OFFSET_REG = NR_R9;
  237. { Results are returned in this register (32-bit values) }
  238. NR_FUNCTION_RETURN_REG = NR_R0;
  239. RS_FUNCTION_RETURN_REG = RS_R0;
  240. { The value returned from a function is available in this register }
  241. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  242. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  243. NR_FPU_RESULT_REG = NR_F0;
  244. NR_MM_RESULT_REG = NR_NO;
  245. NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
  246. { Offset where the parent framepointer is pushed }
  247. PARENT_FRAMEPOINTER_OFFSET = 0;
  248. { Low part of 64bit return value }
  249. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  250. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  251. { High part of 64bit return value }
  252. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  253. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  254. {*****************************************************************************
  255. GCC /ABI linking information
  256. *****************************************************************************}
  257. const
  258. { Registers which must be saved when calling a routine declared as
  259. cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
  260. saved should be the ones as defined in the target ABI and / or GCC.
  261. This value can be deduced from the CALLED_USED_REGISTERS array in the
  262. GCC source.
  263. }
  264. saved_standard_registers : array[0..6] of tsuperregister =
  265. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  266. { this is only for the generic code which is not used for this architecture }
  267. saved_mm_registers : array[0..0] of tsuperregister = (RS_NO);
  268. { Required parameter alignment when calling a routine declared as
  269. stdcall and cdecl. The alignment value should be the one defined
  270. by GCC or the target ABI.
  271. The value of this constant is equal to the constant
  272. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  273. }
  274. std_param_align = 4;
  275. {*****************************************************************************
  276. Helpers
  277. *****************************************************************************}
  278. { Returns the tcgsize corresponding with the size of reg.}
  279. function reg_cgsize(const reg: tregister) : tcgsize;
  280. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  281. function is_calljmp(o:tasmop):boolean;
  282. procedure inverse_flags(var f: TResFlags);
  283. function flags_to_cond(const f: TResFlags) : TAsmCond;
  284. function findreg_by_number(r:Tregister):tregisterindex;
  285. function std_regnum_search(const s:string):Tregister;
  286. function std_regname(r:Tregister):string;
  287. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  288. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  289. procedure shifterop_reset(var so : tshifterop);
  290. function is_pc(const r : tregister) : boolean;
  291. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  292. function dwarf_reg(r:tregister):shortint;
  293. implementation
  294. uses
  295. systems,rgBase,verbose;
  296. const
  297. std_regname_table : array[tregisterindex] of string[7] = (
  298. {$i rarmstd.inc}
  299. );
  300. regnumber_index : array[tregisterindex] of tregisterindex = (
  301. {$i rarmrni.inc}
  302. );
  303. std_regname_index : array[tregisterindex] of tregisterindex = (
  304. {$i rarmsri.inc}
  305. );
  306. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  307. begin
  308. cgsize2subreg:=R_SUBWHOLE;
  309. end;
  310. function reg_cgsize(const reg: tregister): tcgsize;
  311. begin
  312. case getregtype(reg) of
  313. R_INTREGISTER :
  314. reg_cgsize:=OS_32;
  315. R_FPUREGISTER :
  316. reg_cgsize:=OS_F80;
  317. else
  318. internalerror(200303181);
  319. end;
  320. end;
  321. function is_calljmp(o:tasmop):boolean;
  322. begin
  323. { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
  324. To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
  325. is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
  326. end;
  327. procedure inverse_flags(var f: TResFlags);
  328. const
  329. inv_flags: array[TResFlags] of TResFlags =
  330. (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
  331. F_LT,F_GE,F_LE,F_GT);
  332. begin
  333. f:=inv_flags[f];
  334. end;
  335. function flags_to_cond(const f: TResFlags) : TAsmCond;
  336. const
  337. flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
  338. (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  339. C_GE,C_LT,C_GT,C_LE);
  340. begin
  341. if f>high(flag_2_cond) then
  342. internalerror(200112301);
  343. result:=flag_2_cond[f];
  344. end;
  345. function findreg_by_number(r:Tregister):tregisterindex;
  346. begin
  347. result:=rgBase.findreg_by_number_table(r,regnumber_index);
  348. end;
  349. function std_regnum_search(const s:string):Tregister;
  350. begin
  351. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  352. end;
  353. function std_regname(r:Tregister):string;
  354. var
  355. p : tregisterindex;
  356. begin
  357. p:=findreg_by_number_table(r,regnumber_index);
  358. if p<>0 then
  359. result:=std_regname_table[p]
  360. else
  361. result:=generic_regname(r);
  362. end;
  363. procedure shifterop_reset(var so : tshifterop);
  364. begin
  365. FillChar(so,sizeof(so),0);
  366. end;
  367. function is_pc(const r : tregister) : boolean;
  368. begin
  369. is_pc:=(r=NR_R15);
  370. end;
  371. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  372. const
  373. inverse: array[TAsmCond] of TAsmCond=(C_None,
  374. C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
  375. C_LT,C_GE,C_LE,C_GT,C_None,C_None
  376. );
  377. begin
  378. result := inverse[c];
  379. end;
  380. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  381. begin
  382. result := c1 = c2;
  383. end;
  384. function rotl(d : dword;b : byte) : dword;
  385. begin
  386. result:=(d shr (32-b)) or (d shl b);
  387. end;
  388. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  389. var
  390. i : longint;
  391. begin
  392. if current_settings.cputype in cpu_thumb2 then
  393. begin
  394. for i:=0 to 24 do
  395. begin
  396. if (dword(d) and not($ff shl i))=0 then
  397. begin
  398. imm_shift:=i;
  399. result:=true;
  400. exit;
  401. end;
  402. end;
  403. end
  404. else
  405. begin
  406. for i:=0 to 15 do
  407. begin
  408. if (dword(d) and not(rotl($ff,i*2)))=0 then
  409. begin
  410. imm_shift:=i*2;
  411. result:=true;
  412. exit;
  413. end;
  414. end;
  415. end;
  416. result:=false;
  417. end;
  418. function dwarf_reg(r:tregister):shortint;
  419. begin
  420. result:=regdwarf_table[findreg_by_number(r)];
  421. if result=-1 then
  422. internalerror(200603251);
  423. end;
  424. { Low part of 64bit return value }
  425. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  426. begin
  427. if target_info.endian=endian_little then
  428. result:=NR_R0
  429. else
  430. result:=NR_R1;
  431. end;
  432. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  433. begin
  434. if target_info.endian=endian_little then
  435. result:=RS_R0
  436. else
  437. result:=RS_R1;
  438. end;
  439. { High part of 64bit return value }
  440. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  441. begin
  442. if target_info.endian=endian_little then
  443. result:=NR_R1
  444. else
  445. result:=NR_R0;
  446. end;
  447. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  448. begin
  449. if target_info.endian=endian_little then
  450. result:=RS_R1
  451. else
  452. result:=RS_R0;
  453. end;
  454. end.