rgx86.pas 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. This unit implements the x86 specific class for the register
  4. allocator
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************
  17. }
  18. unit rgx86;
  19. {$i fpcdefs.inc}
  20. interface
  21. uses
  22. cpubase,cgbase,cgutils,
  23. aasmtai,aasmdata,aasmsym,aasmcpu,
  24. rgobj;
  25. type
  26. trgx86 = class(trgobj)
  27. function get_spill_subreg(r : tregister) : tsubregister;override;
  28. function do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;override;
  29. end;
  30. tpushedsavedloc = record
  31. case byte of
  32. 0: (pushed: boolean);
  33. 1: (ofs: longint);
  34. end;
  35. tpushedsavedfpu = array[tsuperregister] of tpushedsavedloc;
  36. trgx86fpu = class
  37. { these counters contain the number of elements in the }
  38. { unusedregsxxx/usableregsxxx sets }
  39. countunusedregsfpu : byte;
  40. { Contains the registers which are really used by the proc itself.
  41. It doesn't take care of registers used by called procedures
  42. }
  43. used_in_proc : tcpuregisterset;
  44. {reg_pushes_other : regvarother_longintarray;
  45. is_reg_var_other : regvarother_booleanarray;
  46. regvar_loaded_other : regvarother_booleanarray;}
  47. fpuvaroffset : byte;
  48. constructor create;
  49. function getregisterfpu(list: TAsmList) : tregister;
  50. procedure ungetregisterfpu(list: TAsmList; r : tregister);
  51. { pushes and restores registers }
  52. procedure saveusedfpuregisters(list:TAsmList;
  53. var saved:Tpushedsavedfpu;
  54. const s:Tcpuregisterset);
  55. procedure restoreusedfpuregisters(list:TAsmList;
  56. const saved:Tpushedsavedfpu);
  57. { corrects the fpu stack register by ofs }
  58. function correct_fpuregister(r : tregister;ofs : byte) : tregister;
  59. end;
  60. implementation
  61. uses
  62. verbose;
  63. const
  64. { This value is used in tsaved. If the array value is equal
  65. to this, then this means that this register is not used.}
  66. reg_not_saved = $7fffffff;
  67. {******************************************************************************
  68. Trgcpu
  69. ******************************************************************************}
  70. function trgx86.get_spill_subreg(r : tregister) : tsubregister;
  71. begin
  72. result:=getsubreg(r);
  73. end;
  74. { Decide wether a "replace" spill is possible, i.e. wether we can replace a register
  75. in an instruction by a memory reference. For example, in "mov ireg26d,0", the imaginary
  76. register ireg26d can be replaced by a memory reference.}
  77. function trgx86.do_spill_replace(list:TAsmList;instr:tai_cpu_abstract_sym;orgreg:tsuperregister;const spilltemp:treference):boolean;
  78. { returns true if opcde is an avx opcode which allows only the first (zero) operand might be a memory reference }
  79. function avx_opcode_only_op0_may_be_memref(opcode : TAsmOp) : boolean;
  80. begin
  81. case opcode of
  82. A_VMAXPD,
  83. A_VMAXPS,
  84. A_VMAXSD,
  85. A_VMAXSS,
  86. A_VMINPD,
  87. A_VMINPS,
  88. A_VMINSD,
  89. A_VMINSS,
  90. A_VMULSS,
  91. A_VMULSD,
  92. A_VSUBSS,
  93. A_VSUBSD,
  94. A_VADDSD,
  95. A_VADDSS,
  96. A_VDIVSD,
  97. A_VDIVSS,
  98. A_VSQRTSD,
  99. A_VSQRTSS,
  100. A_VCVTDQ2PD,
  101. A_VCVTDQ2PS,
  102. A_VCVTPD2DQ,
  103. A_VCVTPD2PS,
  104. A_VCVTPS2DQ,
  105. A_VCVTPS2PD,
  106. A_VCVTSD2SI,
  107. A_VCVTSD2SS,
  108. A_VCVTSI2SD,
  109. A_VCVTSS2SD,
  110. A_VCVTTPD2DQ,
  111. A_VCVTTPS2DQ,
  112. A_VCVTTSD2SI,
  113. A_VCVTSI2SS,
  114. A_VCVTSS2SI,
  115. A_VCVTTSS2SI,
  116. A_VXORPD,
  117. A_VXORPS,
  118. A_VORPD,
  119. A_VORPS,
  120. A_VANDPD,
  121. A_VANDPS,
  122. A_VUNPCKLPS,
  123. A_VUNPCKHPS,
  124. A_VSHUFPD:
  125. result:=true;
  126. else
  127. result:=false;
  128. end;
  129. end;
  130. var
  131. n,replaceoper : longint;
  132. is_subh: Boolean;
  133. begin
  134. result:=false;
  135. with taicpu(instr) do
  136. begin
  137. replaceoper:=-1;
  138. case ops of
  139. 1 :
  140. begin
  141. if (oper[0]^.typ=top_reg) and
  142. (getregtype(oper[0]^.reg)=regtype) then
  143. begin
  144. if get_alias(getsupreg(oper[0]^.reg))<>orgreg then
  145. internalerror(200410101);
  146. replaceoper:=0;
  147. end;
  148. end;
  149. 2,3 :
  150. begin
  151. { avx instruction?
  152. currently this rule is sufficient but it might be extended }
  153. if (ops=3) and (opcode<>A_SHRD) and (opcode<>A_SHLD) and (opcode<>A_IMUL) then
  154. begin
  155. { BMI shifting/rotating instructions have special requirements regarding spilling, only
  156. the middle operand can be replaced }
  157. if ((opcode=A_RORX) or (opcode=A_SHRX) or (opcode=A_SARX) or (opcode=A_SHLX)) then
  158. begin
  159. if (oper[1]^.typ=top_reg) and (getregtype(oper[1]^.reg)=regtype) and (get_alias(getsupreg(oper[1]^.reg))=orgreg) then
  160. replaceoper:=1;
  161. end
  162. { avx instructions allow only the first operand (at&t counting) to be a register operand
  163. all operands must be registers ... }
  164. else if (oper[0]^.typ=top_reg) and
  165. (oper[1]^.typ=top_reg) and
  166. (oper[2]^.typ=top_reg) and
  167. { but they must be different }
  168. ((getregtype(oper[1]^.reg)<>regtype) or
  169. (get_alias(getsupreg(oper[0]^.reg))<>get_alias(getsupreg(oper[1]^.reg)))
  170. ) and
  171. ((getregtype(oper[2]^.reg)<>regtype) or
  172. (get_alias(getsupreg(oper[0]^.reg))<>get_alias(getsupreg(oper[2]^.reg)))
  173. ) and
  174. (get_alias(getsupreg(oper[0]^.reg))=orgreg) then
  175. replaceoper:=0;
  176. end
  177. else
  178. begin
  179. { We can handle opcodes with 2 and 3-op imul/shrd/shld the same way, where the 3rd operand is const or CL,
  180. that doesn't need spilling.
  181. However, due to AT&T order inside the compiler, the 3rd operand is
  182. numbered 0, so look at operand no. 1 and 2 if we have 3 operands by
  183. adding a "n". }
  184. n:=0;
  185. if ops=3 then
  186. n:=1;
  187. { lea is tricky: part of operand 0 can be spilled and the instruction can converted into an
  188. add, if base or index shall be spilled and the other one is equal the destination }
  189. if (opcode=A_LEA) then
  190. begin
  191. if (oper[0]^.ref^.offset=0) and
  192. (oper[0]^.ref^.scalefactor in [0,1]) and
  193. (((getregtype(oper[0]^.ref^.base)=regtype) and
  194. (get_alias(getsupreg(oper[0]^.ref^.base))=orgreg) and
  195. (getregtype(oper[0]^.ref^.index)=getregtype(oper[1]^.reg)) and
  196. (get_alias(getsupreg(oper[0]^.ref^.index))=get_alias(getsupreg(oper[1]^.reg)))) or
  197. ((getregtype(oper[0]^.ref^.index)=regtype) and
  198. (get_alias(getsupreg(oper[0]^.ref^.index))=orgreg) and
  199. (getregtype(oper[0]^.ref^.base)=getregtype(oper[1]^.reg)) and
  200. (get_alias(getsupreg(oper[0]^.ref^.base))=get_alias(getsupreg(oper[1]^.reg))))
  201. ) then
  202. replaceoper:=0;
  203. end
  204. else if (oper[n+0]^.typ=top_reg) and
  205. (oper[n+1]^.typ=top_reg) and
  206. ((getregtype(oper[n+0]^.reg)<>regtype) or
  207. (getregtype(oper[n+1]^.reg)<>regtype) or
  208. (get_alias(getsupreg(oper[n+0]^.reg))<>get_alias(getsupreg(oper[n+1]^.reg)))) then
  209. begin
  210. if (getregtype(oper[n+0]^.reg)=regtype) and
  211. (get_alias(getsupreg(oper[n+0]^.reg))=orgreg) then
  212. replaceoper:=0+n
  213. else if (getregtype(oper[n+1]^.reg)=regtype) and
  214. (get_alias(getsupreg(oper[n+1]^.reg))=orgreg) then
  215. replaceoper:=1+n;
  216. end
  217. else if (oper[n+0]^.typ=top_reg) and
  218. (oper[n+1]^.typ=top_const) then
  219. begin
  220. if (getregtype(oper[0+n]^.reg)=regtype) and
  221. (get_alias(getsupreg(oper[0+n]^.reg))=orgreg) then
  222. replaceoper:=0+n
  223. else
  224. internalerror(200704282);
  225. end
  226. else if (oper[n+0]^.typ=top_const) and
  227. (oper[n+1]^.typ=top_reg) then
  228. begin
  229. if (getregtype(oper[1+n]^.reg)=regtype) and
  230. (get_alias(getsupreg(oper[1+n]^.reg))=orgreg) then
  231. replaceoper:=1+n
  232. else
  233. internalerror(200704283);
  234. end;
  235. case replaceoper of
  236. 0 :
  237. begin
  238. { Some instructions don't allow memory references
  239. for source }
  240. case opcode of
  241. A_BT,
  242. A_BTS,
  243. A_BTC,
  244. A_BTR,
  245. { shufp*/unpcklp* would require 16 byte alignment for memory locations so we force the source
  246. operand into a register }
  247. A_SHUFPD,
  248. A_SHUFPS,
  249. A_UNPCKLPD,
  250. A_UNPCKLPS :
  251. replaceoper:=-1;
  252. end;
  253. end;
  254. 1 :
  255. begin
  256. { Some instructions don't allow memory references
  257. for destination }
  258. case opcode of
  259. A_CMOVcc,
  260. A_MOVZX,
  261. A_MOVSX,
  262. {$ifdef x86_64}
  263. A_MOVSXD,
  264. {$endif x86_64}
  265. A_MULSS,
  266. A_MULSD,
  267. A_SUBSS,
  268. A_SUBSD,
  269. A_ADDSD,
  270. A_ADDSS,
  271. A_DIVSD,
  272. A_DIVSS,
  273. A_SQRTSD,
  274. A_SQRTSS,
  275. A_SHLD,
  276. A_SHRD,
  277. A_COMISD,
  278. A_COMISS,
  279. A_CVTDQ2PD,
  280. A_CVTDQ2PS,
  281. A_CVTPD2DQ,
  282. A_CVTPD2PI,
  283. A_CVTPD2PS,
  284. A_CVTPI2PD,
  285. A_CVTPS2DQ,
  286. A_CVTPS2PD,
  287. A_CVTSD2SI,
  288. A_CVTSD2SS,
  289. A_CVTSI2SD,
  290. A_CVTSS2SD,
  291. A_CVTTPD2PI,
  292. A_CVTTPD2DQ,
  293. A_CVTTPS2DQ,
  294. A_CVTTSD2SI,
  295. A_CVTPI2PS,
  296. A_CVTPS2PI,
  297. A_CVTSI2SS,
  298. A_CVTSS2SI,
  299. A_CVTTPS2PI,
  300. A_CVTTSS2SI,
  301. A_XORPD,
  302. A_XORPS,
  303. A_ORPD,
  304. A_ORPS,
  305. A_ANDPD,
  306. A_ANDPS,
  307. A_UNPCKLPS,
  308. A_UNPCKHPS,
  309. A_SHUFPD,
  310. A_SHUFPS,
  311. A_VCOMISD,
  312. A_VCOMISS,
  313. A_MINSS,
  314. A_MINSD,
  315. A_MINPS,
  316. A_MINPD,
  317. A_MAXSS,
  318. A_MAXSD,
  319. A_MAXPS,
  320. A_MAXPD:
  321. replaceoper:=-1;
  322. A_IMUL:
  323. if ops<>3 then
  324. replaceoper:=-1;
  325. {$ifdef x86_64}
  326. A_MOV:
  327. { 64 bit constants can only be moved into registers }
  328. if (oper[0]^.typ=top_const) and
  329. (oper[1]^.typ=top_reg) and
  330. ((oper[0]^.val<low(longint)) or
  331. (oper[0]^.val>high(longint))) then
  332. replaceoper:=-1;
  333. {$endif x86_64}
  334. else
  335. if avx_opcode_only_op0_may_be_memref(opcode) then
  336. replaceoper:=-1;
  337. end;
  338. end;
  339. 2 :
  340. begin
  341. { Some 3-op instructions don't allow memory references
  342. for destination }
  343. case instr.opcode of
  344. A_IMUL:
  345. replaceoper:=-1;
  346. else
  347. if avx_opcode_only_op0_may_be_memref(opcode) then
  348. replaceoper:=-1;
  349. end;
  350. end;
  351. end;
  352. end;
  353. end;
  354. end;
  355. {$ifdef x86_64}
  356. { 32 bit operations on 32 bit registers on x86_64 can result in
  357. zeroing the upper 32 bits of the register. This does not happen
  358. with memory operations, so we have to perform these calculations
  359. in registers. }
  360. if (opsize=S_L) then
  361. replaceoper:=-1;
  362. {$endif x86_64}
  363. { Replace register with spill reference }
  364. if replaceoper<>-1 then
  365. begin
  366. if opcode=A_LEA then
  367. begin
  368. opcode:=A_ADD;
  369. oper[0]^.ref^:=spilltemp;
  370. end
  371. else
  372. begin
  373. is_subh:=getsubreg(oper[replaceoper]^.reg)=R_SUBH;
  374. oper[replaceoper]^.typ:=top_ref;
  375. new(oper[replaceoper]^.ref);
  376. oper[replaceoper]^.ref^:=spilltemp;
  377. if is_subh then
  378. inc(oper[replaceoper]^.ref^.offset);
  379. { memory locations aren't guaranteed to be aligned }
  380. case opcode of
  381. A_MOVAPS:
  382. opcode:=A_MOVSS;
  383. A_MOVAPD:
  384. opcode:=A_MOVSD;
  385. A_VMOVAPS:
  386. opcode:=A_VMOVSS;
  387. A_VMOVAPD:
  388. opcode:=A_VMOVSD;
  389. end;
  390. end;
  391. result:=true;
  392. end;
  393. end;
  394. end;
  395. {******************************************************************************
  396. Trgx86fpu
  397. ******************************************************************************}
  398. constructor Trgx86fpu.create;
  399. begin
  400. used_in_proc:=[];
  401. end;
  402. function trgx86fpu.getregisterfpu(list: TAsmList) : tregister;
  403. begin
  404. { note: don't return R_ST0, see comments above implementation of }
  405. { a_loadfpu_* methods in cgcpu (JM) }
  406. result:=NR_ST;
  407. end;
  408. procedure trgx86fpu.ungetregisterfpu(list : TAsmList; r : tregister);
  409. begin
  410. { nothing to do, fpu stack management is handled by the load/ }
  411. { store operations in cgcpu (JM) }
  412. end;
  413. function trgx86fpu.correct_fpuregister(r : tregister;ofs : byte) : tregister;
  414. begin
  415. correct_fpuregister:=r;
  416. setsupreg(correct_fpuregister,ofs);
  417. end;
  418. procedure trgx86fpu.saveusedfpuregisters(list: TAsmList;
  419. var saved : tpushedsavedfpu;
  420. const s: tcpuregisterset);
  421. { var
  422. r : tregister;
  423. hr : treference; }
  424. begin
  425. used_in_proc:=used_in_proc+s;
  426. { TODO: firstsavefpureg}
  427. (*
  428. { don't try to save the fpu registers if not desired (e.g. for }
  429. { the 80x86) }
  430. if firstsavefpureg <> R_NO then
  431. for r.enum:=firstsavefpureg to lastsavefpureg do
  432. begin
  433. saved[r.enum].ofs:=reg_not_saved;
  434. { if the register is used by the calling subroutine and if }
  435. { it's not a regvar (those are handled separately) }
  436. if not is_reg_var_other[r.enum] and
  437. (r.enum in s) and
  438. { and is present in use }
  439. not(r.enum in unusedregsfpu) then
  440. begin
  441. { then save it }
  442. tg.GetTemp(list,extended_size,tt_persistent,hr);
  443. saved[r.enum].ofs:=hr.offset;
  444. cg.a_loadfpu_reg_ref(list,OS_FLOAT,OS_FLOAT,r,hr);
  445. cg.a_reg_dealloc(list,r);
  446. include(unusedregsfpu,r.enum);
  447. inc(countunusedregsfpu);
  448. end;
  449. end;
  450. *)
  451. end;
  452. procedure trgx86fpu.restoreusedfpuregisters(list : TAsmList;
  453. const saved : tpushedsavedfpu);
  454. {
  455. var
  456. r,r2 : tregister;
  457. hr : treference;
  458. }
  459. begin
  460. { TODO: firstsavefpureg}
  461. (*
  462. if firstsavefpureg <> R_NO then
  463. for r.enum:=lastsavefpureg downto firstsavefpureg do
  464. begin
  465. if saved[r.enum].ofs <> reg_not_saved then
  466. begin
  467. r2.enum:=R_INTREGISTER;
  468. r2.number:=NR_FRAME_POINTER_REG;
  469. reference_reset_base(hr,r2,saved[r.enum].ofs);
  470. cg.a_reg_alloc(list,r);
  471. cg.a_loadfpu_ref_reg(list,OS_FLOAT,OS_FLOAT,hr,r);
  472. if not (r.enum in unusedregsfpu) then
  473. { internalerror(10)
  474. in n386cal we always save/restore the reg *state*
  475. using save/restoreunusedstate -> the current state
  476. may not be real (JM) }
  477. else
  478. begin
  479. dec(countunusedregsfpu);
  480. exclude(unusedregsfpu,r.enum);
  481. end;
  482. tg.UnGetTemp(list,hr);
  483. end;
  484. end;
  485. *)
  486. end;
  487. (*
  488. procedure Trgx86fpu.saveotherregvars(list: TAsmList; const s: totherregisterset);
  489. var
  490. r: Tregister;
  491. begin
  492. if not(cs_opt_regvar in current_settings.optimizerswitches) then
  493. exit;
  494. if firstsavefpureg <> NR_NO then
  495. for r.enum := firstsavefpureg to lastsavefpureg do
  496. if is_reg_var_other[r.enum] and
  497. (r.enum in s) then
  498. store_regvar(list,r);
  499. end;
  500. *)
  501. end.