genmath.inc 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287
  1. {
  2. This file is part of the Free Pascal run time library.
  3. Copyright (c) 1999-2007 by Several contributors
  4. Generic mathematical routines (on type real)
  5. See the file COPYING.FPC, included in this distribution,
  6. for details about the copyright.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  10. **********************************************************************}
  11. {*************************************************************************}
  12. { Credits }
  13. {*************************************************************************}
  14. { Copyright Abandoned, 1987, Fred Fish }
  15. { }
  16. { This previously copyrighted work has been placed into the }
  17. { public domain by the author (Fred Fish) and may be freely used }
  18. { for any purpose, private or commercial. I would appreciate }
  19. { it, as a courtesy, if this notice is left in all copies and }
  20. { derivative works. Thank you, and enjoy... }
  21. { }
  22. { The author makes no warranty of any kind with respect to this }
  23. { product and explicitly disclaims any implied warranties of }
  24. { merchantability or fitness for any particular purpose. }
  25. {-------------------------------------------------------------------------}
  26. { Copyright (c) 1992 Odent Jean Philippe }
  27. { }
  28. { The source can be modified as long as my name appears and some }
  29. { notes explaining the modifications done are included in the file. }
  30. {-------------------------------------------------------------------------}
  31. { Copyright (c) 1997 Carl Eric Codere }
  32. {-------------------------------------------------------------------------}
  33. {-------------------------------------------------------------------------
  34. Using functions from AMath/DAMath libraries, which are covered by the
  35. following license:
  36. (C) Copyright 2009-2013 Wolfgang Ehrhardt
  37. This software is provided 'as-is', without any express or implied warranty.
  38. In no event will the authors be held liable for any damages arising from
  39. the use of this software.
  40. Permission is granted to anyone to use this software for any purpose,
  41. including commercial applications, and to alter it and redistribute it
  42. freely, subject to the following restrictions:
  43. 1. The origin of this software must not be misrepresented; you must not
  44. claim that you wrote the original software. If you use this software in
  45. a product, an acknowledgment in the product documentation would be
  46. appreciated but is not required.
  47. 2. Altered source versions must be plainly marked as such, and must not be
  48. misrepresented as being the original software.
  49. 3. This notice may not be removed or altered from any source distribution.
  50. ----------------------------------------------------------------------------}
  51. type
  52. PReal = ^Real;
  53. { also necessary for Int() on systems with 64bit floats (JM) }
  54. {$ifndef FPC_SYSTEM_HAS_float64}
  55. {$ifdef ENDIAN_LITTLE}
  56. float64 = record
  57. {$ifndef FPC_DOUBLE_HILO_SWAPPED}
  58. low,high: longint;
  59. {$else}
  60. high,low: longint;
  61. {$endif FPC_DOUBLE_HILO_SWAPPED}
  62. end;
  63. {$else}
  64. float64 = record
  65. {$ifndef FPC_DOUBLE_HILO_SWAPPED}
  66. high,low: longint;
  67. {$else}
  68. low,high: longint;
  69. {$endif FPC_DOUBLE_HILO_SWAPPED}
  70. end;
  71. {$endif}
  72. {$endif FPC_SYSTEM_HAS_float64}
  73. const
  74. PIO4 = 7.85398163397448309616E-1; { pi/4 }
  75. SQRT2 = 1.41421356237309504880; { sqrt(2) }
  76. LOG2E = 1.4426950408889634073599; { 1/log(2) }
  77. lossth = 1.073741824e9;
  78. MAXLOG = 8.8029691931113054295988E1; { log(2**127) }
  79. MINLOG = -8.872283911167299960540E1; { log(2**-128) }
  80. H2_54: double = 18014398509481984.0; {2^54}
  81. huge: double = 1e300;
  82. one: double = 1.0;
  83. zero: double = 0;
  84. {$if not defined(FPC_SYSTEM_HAS_SIN) or not defined(FPC_SYSTEM_HAS_COS)}
  85. const sincof : array[0..5] of Real = (
  86. 1.58962301576546568060E-10,
  87. -2.50507477628578072866E-8,
  88. 2.75573136213857245213E-6,
  89. -1.98412698295895385996E-4,
  90. 8.33333333332211858878E-3,
  91. -1.66666666666666307295E-1);
  92. coscof : array[0..5] of Real = (
  93. -1.13585365213876817300E-11,
  94. 2.08757008419747316778E-9,
  95. -2.75573141792967388112E-7,
  96. 2.48015872888517045348E-5,
  97. -1.38888888888730564116E-3,
  98. 4.16666666666665929218E-2);
  99. {$endif}
  100. {*
  101. -------------------------------------------------------------------------------
  102. Raises the exceptions specified by `flags'. Floating-point traps can be
  103. defined here if desired. It is currently not possible for such a trap
  104. to substitute a result value. If traps are not implemented, this routine
  105. should be simply `softfloat_exception_flags |= flags;'.
  106. -------------------------------------------------------------------------------
  107. *}
  108. procedure float_raise(i: TFPUException);
  109. begin
  110. float_raise([i]);
  111. end;
  112. procedure float_raise(i: TFPUExceptionMask);
  113. var
  114. pflags: ^TFPUExceptionMask;
  115. unmasked_flags: TFPUExceptionMask;
  116. Begin
  117. { taking address of threadvar produces somewhat more compact code }
  118. pflags := @softfloat_exception_flags;
  119. pflags^:=pflags^ + i;
  120. unmasked_flags := pflags^ - softfloat_exception_mask;
  121. if (float_flag_invalid in unmasked_flags) then
  122. HandleError(207)
  123. else
  124. if (float_flag_divbyzero in unmasked_flags) then
  125. HandleError(208)
  126. else
  127. if (float_flag_overflow in unmasked_flags) then
  128. HandleError(205)
  129. else
  130. if (float_flag_underflow in unmasked_flags) then
  131. HandleError(206)
  132. else
  133. if (float_flag_inexact in unmasked_flags) then
  134. HandleError(207);
  135. end;
  136. { This function does nothing, but its argument is expected to be an expression
  137. which causes FPE when calculated. If exception is masked, it just returns true,
  138. allowing to use it in expressions. }
  139. function fpe_helper(x: valreal): boolean;
  140. begin
  141. result:=true;
  142. end;
  143. {$ifdef SUPPORT_DOUBLE}
  144. {$ifndef FPC_HAS_FLOAT64HIGH}
  145. {$define FPC_HAS_FLOAT64HIGH}
  146. function float64high(d: double): longint; inline;
  147. begin
  148. result:=float64(d).high;
  149. end;
  150. procedure float64sethigh(var d: double; l: longint); inline;
  151. begin
  152. float64(d).high:=l;
  153. end;
  154. {$endif FPC_HAS_FLOAT64HIGH}
  155. {$ifndef FPC_HAS_FLOAT64LOW}
  156. {$define FPC_HAS_FLOAT64LOW}
  157. function float64low(d: double): longint; inline;
  158. begin
  159. result:=float64(d).low;
  160. end;
  161. procedure float64setlow(var d: double; l: longint); inline;
  162. begin
  163. float64(d).low:=l;
  164. end;
  165. {$endif FPC_HAS_FLOAT64LOW}
  166. {$endif SUPPORT_DOUBLE}
  167. {$ifndef FPC_SYSTEM_HAS_TRUNC}
  168. {$ifndef FPC_SYSTEM_HAS_float32}
  169. type
  170. float32 = longint;
  171. {$endif FPC_SYSTEM_HAS_float32}
  172. {$ifdef SUPPORT_DOUBLE}
  173. { based on softfloat float64_to_int64_round_to_zero }
  174. function fpc_trunc_real(d : valreal) : int64; compilerproc;
  175. var
  176. aExp, shiftCount : smallint;
  177. aSig : int64;
  178. z : int64;
  179. a: float64;
  180. begin
  181. a:=float64(d);
  182. aSig:=(int64(a.high and $000fffff) shl 32) or longword(a.low);
  183. aExp:=(a.high shr 20) and $7FF;
  184. if aExp<>0 then
  185. aSig:=aSig or $0010000000000000;
  186. shiftCount:= aExp-$433;
  187. if 0<=shiftCount then
  188. begin
  189. if aExp>=$43e then
  190. begin
  191. if (a.high<>longint($C3E00000)) or (a.low<>0) then
  192. begin
  193. fpe_helper(zero/zero);
  194. if (longint(a.high)>=0) or ((aExp=$7FF) and
  195. (aSig<>$0010000000000000 )) then
  196. begin
  197. result:=$7FFFFFFFFFFFFFFF;
  198. exit;
  199. end;
  200. end;
  201. result:=$8000000000000000;
  202. exit;
  203. end;
  204. z:=aSig shl shiftCount;
  205. end
  206. else
  207. begin
  208. if aExp<$3fe then
  209. begin
  210. result:=0;
  211. exit;
  212. end;
  213. z:=aSig shr -shiftCount;
  214. {
  215. if (aSig shl (shiftCount and 63))<>0 then
  216. float_exception_flags |= float_flag_inexact;
  217. }
  218. end;
  219. if longint(a.high)<0 then
  220. z:=-z;
  221. result:=z;
  222. end;
  223. {$else SUPPORT_DOUBLE}
  224. { based on softfloat float32_to_int64_round_to_zero }
  225. Function fpc_trunc_real( d: valreal ): int64; compilerproc;
  226. Var
  227. a : float32;
  228. aExp, shiftCount : smallint;
  229. aSig : longint;
  230. aSig64, z : int64;
  231. Begin
  232. a := float32(d);
  233. aSig := a and $007FFFFF;
  234. aExp := (a shr 23) and $FF;
  235. shiftCount := aExp - $BE;
  236. if ( 0 <= shiftCount ) then
  237. Begin
  238. if ( a <> Float32($DF000000) ) then
  239. Begin
  240. fpe_helper( zero/zero );
  241. if ( (longint(a)>=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
  242. Begin
  243. result:=$7fffffffffffffff;
  244. exit;
  245. end;
  246. End;
  247. result:=$8000000000000000;
  248. exit;
  249. End
  250. else
  251. if ( aExp <= $7E ) then
  252. Begin
  253. result := 0;
  254. exit;
  255. End;
  256. aSig64 := int64( aSig or $00800000 ) shl 40;
  257. z := aSig64 shr ( - shiftCount );
  258. if ( longint(a)<0 ) then z := - z;
  259. result := z;
  260. End;
  261. {$endif SUPPORT_DOUBLE}
  262. {$endif not FPC_SYSTEM_HAS_TRUNC}
  263. {$ifndef FPC_SYSTEM_HAS_INT}
  264. {$ifdef SUPPORT_DOUBLE}
  265. { straight Pascal translation of the code for __trunc() in }
  266. { the file sysdeps/libm-ieee754/s_trunc.c of glibc (JM) }
  267. function fpc_int_real(d: ValReal): ValReal;compilerproc;
  268. var
  269. i0, j0: longint;
  270. i1: cardinal;
  271. sx: longint;
  272. f64 : float64;
  273. begin
  274. f64:=float64(d);
  275. i0 := f64.high;
  276. i1 := cardinal(f64.low);
  277. sx := i0 and $80000000;
  278. j0 := ((i0 shr 20) and $7ff) - $3ff;
  279. if (j0 < 20) then
  280. begin
  281. if (j0 < 0) then
  282. begin
  283. { the magnitude of the number is < 1 so the result is +-0. }
  284. f64.high := sx;
  285. f64.low := 0;
  286. end
  287. else
  288. begin
  289. f64.high := sx or (i0 and not($fffff shr j0));
  290. f64.low := 0;
  291. end
  292. end
  293. else if (j0 > 51) then
  294. begin
  295. if (j0 = $400) then
  296. { d is inf or NaN }
  297. exit(d + d); { don't know why they do this (JM) }
  298. end
  299. else
  300. begin
  301. f64.high := i0;
  302. f64.low := longint(i1 and not(cardinal($ffffffff) shr (j0 - 20)));
  303. end;
  304. result:=double(f64);
  305. end;
  306. {$else SUPPORT_DOUBLE}
  307. function fpc_int_real(d : ValReal) : ValReal;compilerproc;
  308. begin
  309. { this will be correct since real = single in the case of }
  310. { the motorola version of the compiler... }
  311. result:=ValReal(trunc(d));
  312. end;
  313. {$endif SUPPORT_DOUBLE}
  314. {$endif not FPC_SYSTEM_HAS_INT}
  315. {$ifndef FPC_SYSTEM_HAS_ABS}
  316. function fpc_abs_real(d : ValReal) : ValReal;compilerproc;
  317. begin
  318. if (d<0.0) then
  319. result := -d
  320. else
  321. result := d ;
  322. end;
  323. {$endif not FPC_SYSTEM_HAS_ABS}
  324. {$ifndef SYSTEM_HAS_FREXP}
  325. procedure frexp(X: Real; out Mantissa: Real; out Exponent: longint);
  326. {* frexp() extracts the exponent from x. It returns an integer *}
  327. {* power of two to expnt and the significand between 0.5 and 1 *}
  328. {* to y. Thus x = y * 2**expn. *}
  329. begin
  330. exponent:=0;
  331. if (abs(x)<0.5) then
  332. While (abs(x)<0.5) do
  333. begin
  334. x := x*2;
  335. Dec(exponent);
  336. end
  337. else
  338. While (abs(x)>1) do
  339. begin
  340. x := x/2;
  341. Inc(exponent);
  342. end;
  343. Mantissa := x;
  344. end;
  345. {$endif not SYSTEM_HAS_FREXP}
  346. {$ifndef SYSTEM_HAS_LDEXP}
  347. {$ifdef SUPPORT_DOUBLE}
  348. { ldexpd function adapted from DAMath library (C) Copyright 2013 Wolfgang Ehrhardt }
  349. function ldexp( x: Real; N: Integer):Real;
  350. {* ldexp() multiplies x by 2**n. *}
  351. var
  352. i: integer;
  353. begin
  354. i := (float64high(x) and $7ff00000) shr 20;
  355. {if +-INF, NaN, 0 or if e=0 return d}
  356. if (i=$7FF) or (N=0) or (x=0.0) then
  357. ldexp := x
  358. else if i=0 then {Denormal: result = d*2^54*2^(e-54)}
  359. ldexp := ldexp(x*H2_54, N-54)
  360. else
  361. begin
  362. N := N+i;
  363. if N>$7FE then { overflow }
  364. begin
  365. if x>0.0 then
  366. ldexp := 2.0*huge
  367. else
  368. ldexp := (-2.0)*huge;
  369. end
  370. else if N<1 then
  371. begin
  372. {underflow or denormal}
  373. if N<-53 then
  374. ldexp := 0.0
  375. else
  376. begin
  377. {Denormal: result = d*2^(e+54)/2^54}
  378. inc(N,54);
  379. float64sethigh(x,(float64high(x) and $800FFFFF) or (longint(N) shl 20));
  380. ldexp := x/H2_54;
  381. end;
  382. end
  383. else
  384. begin
  385. float64sethigh(x,(float64high(x) and $800FFFFF) or (longint(N) shl 20));
  386. ldexp := x;
  387. end;
  388. end;
  389. end;
  390. {$else SUPPORT_DOUBLE}
  391. function ldexp( x: Real; N: Integer):Real;
  392. {* ldexp() multiplies x by 2**n. *}
  393. var r : Real;
  394. begin
  395. R := 1;
  396. if N>0 then
  397. while N>0 do
  398. begin
  399. R:=R*2;
  400. Dec(N);
  401. end
  402. else
  403. while N<0 do
  404. begin
  405. R:=R/2;
  406. Inc(N);
  407. end;
  408. ldexp := x * R;
  409. end;
  410. {$endif SUPPORT_DOUBLE}
  411. {$endif not SYSTEM_HAS_LDEXP}
  412. function polevl(x:Real; Coef:PReal; N:sizeint):Real;
  413. {*****************************************************************}
  414. { Evaluate polynomial }
  415. {*****************************************************************}
  416. { }
  417. { SYNOPSIS: }
  418. { }
  419. { int N; }
  420. { double x, y, coef[N+1], polevl[]; }
  421. { }
  422. { y = polevl( x, coef, N ); }
  423. { }
  424. { DESCRIPTION: }
  425. { }
  426. { Evaluates polynomial of degree N: }
  427. { }
  428. { 2 N }
  429. { y = C + C x + C x +...+ C x }
  430. { 0 1 2 N }
  431. { }
  432. { Coefficients are stored in reverse order: }
  433. { }
  434. { coef[0] = C , ..., coef[N] = C . }
  435. { N 0 }
  436. { }
  437. { The function p1evl() assumes that coef[N] = 1.0 and is }
  438. { omitted from the array. Its calling arguments are }
  439. { otherwise the same as polevl(). }
  440. { }
  441. { SPEED: }
  442. { }
  443. { In the interest of speed, there are no checks for out }
  444. { of bounds arithmetic. This routine is used by most of }
  445. { the functions in the library. Depending on available }
  446. { equipment features, the user may wish to rewrite the }
  447. { program in microcode or assembly language. }
  448. {*****************************************************************}
  449. var ans : Real;
  450. i : sizeint;
  451. begin
  452. ans := Coef[0];
  453. for i:=1 to N do
  454. ans := ans * x + Coef[i];
  455. polevl:=ans;
  456. end;
  457. function p1evl(x:Real; Coef:PReal; N:sizeint):Real;
  458. { }
  459. { Evaluate polynomial when coefficient of x is 1.0. }
  460. { Otherwise same as polevl. }
  461. { }
  462. var
  463. ans : Real;
  464. i : sizeint;
  465. begin
  466. ans := x + Coef[0];
  467. for i:=1 to N-1 do
  468. ans := ans * x + Coef[i];
  469. p1evl := ans;
  470. end;
  471. function floord(x: double): double;
  472. var
  473. t: double;
  474. begin
  475. t := int(x);
  476. if (x>=0.0) or (x=t) then
  477. floord := t
  478. else
  479. floord := t - 1.0;
  480. end;
  481. {*
  482. * ====================================================
  483. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  484. *
  485. * Developed at SunPro, a Sun Microsystems, Inc. business.
  486. * Permission to use, copy, modify, and distribute this
  487. * software is freely granted, provided that this notice
  488. * is preserved.
  489. * ====================================================
  490. *
  491. * Pascal port of this routine comes from DAMath library
  492. * (C) Copyright 2013 Wolfgang Ehrhardt
  493. *
  494. * k_rem_pio2 return the last three bits of N with y = x - N*pi/2
  495. * so that |y| < pi/2.
  496. *
  497. * The method is to compute the integer (mod 8) and fraction parts of
  498. * (2/pi)*x without doing the full multiplication. In general we
  499. * skip the part of the product that are known to be a huge integer
  500. * (more accurately, = 0 mod 8 ). Thus the number of operations are
  501. * independent of the exponent of the input.
  502. *
  503. * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  504. *
  505. * Input parameters:
  506. * x[] The input value (must be positive) is broken into nx
  507. * pieces of 24-bit integers in double precision format.
  508. * x[i] will be the i-th 24 bit of x. The scaled exponent
  509. * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  510. * match x's up to 24 bits.
  511. *
  512. * Example of breaking a double positive z into x[0]+x[1]+x[2]:
  513. * e0 = ilogb(z)-23
  514. * z = scalbn(z,-e0)
  515. * for i = 0,1,2
  516. * x[i] = floor(z)
  517. * z = (z-x[i])*2**24
  518. *
  519. *
  520. * y[] output result in an array of double precision numbers.
  521. * The dimension of y[] is:
  522. * 24-bit precision 1
  523. * 53-bit precision 2
  524. * 64-bit precision 2
  525. * 113-bit precision 3
  526. * The actual value is the sum of them. Thus for 113-bit
  527. * precison, one may have to do something like:
  528. *
  529. * long double t,w,r_head, r_tail;
  530. * t = (long double)y[2] + (long double)y[1];
  531. * w = (long double)y[0];
  532. * r_head = t+w;
  533. * r_tail = w - (r_head - t);
  534. *
  535. * e0 The exponent of x[0]. Must be <= 16360 or you need to
  536. * expand the ipio2 table.
  537. *
  538. * nx dimension of x[]
  539. *
  540. * prec an integer indicating the precision:
  541. * 0 24 bits (single)
  542. * 1 53 bits (double)
  543. * 2 64 bits (extended)
  544. * 3 113 bits (quad)
  545. *
  546. * Here is the description of some local variables:
  547. *
  548. * jk jk+1 is the initial number of terms of ipio2[] needed
  549. * in the computation. The recommended value is 2,3,4,
  550. * 6 for single, double, extended,and quad.
  551. *
  552. * jz local integer variable indicating the number of
  553. * terms of ipio2[] used.
  554. *
  555. * jx nx - 1
  556. *
  557. * jv index for pointing to the suitable ipio2[] for the
  558. * computation. In general, we want
  559. * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
  560. * is an integer. Thus
  561. * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
  562. * Hence jv = max(0,(e0-3)/24).
  563. *
  564. * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
  565. *
  566. * q[] double array with integral value, representing the
  567. * 24-bits chunk of the product of x and 2/pi.
  568. *
  569. * q0 the corresponding exponent of q[0]. Note that the
  570. * exponent for q[i] would be q0-24*i.
  571. *
  572. * PIo2[] double precision array, obtained by cutting pi/2
  573. * into 24 bits chunks.
  574. *
  575. * f[] ipio2[] in floating point
  576. *
  577. * iq[] integer array by breaking up q[] in 24-bits chunk.
  578. *
  579. * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
  580. *
  581. * ih integer. If >0 it indicates q[] is >= 0.5, hence
  582. * it also indicates the *sign* of the result.
  583. *}
  584. {PIo2[] double array, obtained by cutting pi/2 into 24 bits chunks.}
  585. const
  586. PIo2chunked: array[0..7] of double = (
  587. 1.57079625129699707031e+00, { 0x3FF921FB, 0x40000000 }
  588. 7.54978941586159635335e-08, { 0x3E74442D, 0x00000000 }
  589. 5.39030252995776476554e-15, { 0x3CF84698, 0x80000000 }
  590. 3.28200341580791294123e-22, { 0x3B78CC51, 0x60000000 }
  591. 1.27065575308067607349e-29, { 0x39F01B83, 0x80000000 }
  592. 1.22933308981111328932e-36, { 0x387A2520, 0x40000000 }
  593. 2.73370053816464559624e-44, { 0x36E38222, 0x80000000 }
  594. 2.16741683877804819444e-51 { 0x3569F31D, 0x00000000 }
  595. );
  596. {Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi }
  597. ipio2: array[0..65] of longint = (
  598. $A2F983, $6E4E44, $1529FC, $2757D1, $F534DD, $C0DB62,
  599. $95993C, $439041, $FE5163, $ABDEBB, $C561B7, $246E3A,
  600. $424DD2, $E00649, $2EEA09, $D1921C, $FE1DEB, $1CB129,
  601. $A73EE8, $8235F5, $2EBB44, $84E99C, $7026B4, $5F7E41,
  602. $3991D6, $398353, $39F49C, $845F8B, $BDF928, $3B1FF8,
  603. $97FFDE, $05980F, $EF2F11, $8B5A0A, $6D1F6D, $367ECF,
  604. $27CB09, $B74F46, $3F669E, $5FEA2D, $7527BA, $C7EBE5,
  605. $F17B3D, $0739F7, $8A5292, $EA6BFB, $5FB11F, $8D5D08,
  606. $560330, $46FC7B, $6BABF0, $CFBC20, $9AF436, $1DA9E3,
  607. $91615E, $E61B08, $659985, $5F14A0, $68408D, $FFD880,
  608. $4D7327, $310606, $1556CA, $73A8C9, $60E27B, $C08C6B);
  609. init_jk: array[0..3] of integer = (2,3,4,6); {initial value for jk}
  610. two24: double = 16777216.0; {2^24}
  611. twon24: double = 5.9604644775390625e-08; {1/2^24}
  612. type
  613. TDA02 = array[0..2] of double; { 3 elements is enough for float128 }
  614. function k_rem_pio2(const x: TDA02; out y: TDA02; e0, nx, prec: integer): sizeint;
  615. var
  616. i,ih,j,jz,jx,jv,jp,jk,carry,k,n,q0: longint;
  617. t: longint;
  618. iq: array[0..19] of longint;
  619. f,fq,q: array[0..19] of double;
  620. z,fw: double;
  621. begin
  622. {initialize jk}
  623. jk := init_jk[prec];
  624. jp := jk;
  625. {determine jx,jv,q0, note that 3>q0}
  626. jx := nx-1;
  627. jv := (e0-3) div 24; if jv<0 then jv := 0;
  628. q0 := e0-24*(jv+1);
  629. {set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk]}
  630. j := jv-jx;
  631. for i:=0 to jx+jk do
  632. begin
  633. if j<0 then f[i] := 0.0 else f[i] := ipio2[j];
  634. inc(j);
  635. end;
  636. {compute q[0],q[1],...q[jk]}
  637. for i:=0 to jk do
  638. begin
  639. fw := 0.0;
  640. for j:=0 to jx do
  641. fw := fw + x[j]*f[jx+i-j];
  642. q[i] := fw;
  643. end;
  644. jz := jk;
  645. repeat
  646. {distill q[] into iq[] reversingly}
  647. i := 0;
  648. z := q[jz];
  649. for j:=jz downto 1 do
  650. begin
  651. fw := trunc(twon24*z);
  652. iq[i] := trunc(z-two24*fw);
  653. z := q[j-1]+fw;
  654. inc(i);
  655. end;
  656. {compute n}
  657. z := ldexp(z,q0); {actual value of z}
  658. z := z - 8.0*floord(z*0.125); {trim off integer >= 8}
  659. n := trunc(z);
  660. z := z - n;
  661. ih := 0;
  662. if q0>0 then
  663. begin
  664. {need iq[jz-1] to determine n}
  665. t := (iq[jz-1] shr (24-q0));
  666. inc(n,t);
  667. dec(iq[jz-1], t shl (24-q0));
  668. ih := iq[jz-1] shr (23-q0);
  669. end
  670. else if q0=0 then
  671. ih := iq[jz-1] shr 23
  672. else if z>=0.5 then
  673. ih := 2;
  674. if ih>0 then {q > 0.5}
  675. begin
  676. inc(n);
  677. carry := 0;
  678. for i:=0 to jz-1 do
  679. begin
  680. {compute 1-q}
  681. t := iq[i];
  682. if carry=0 then
  683. begin
  684. if t<>0 then
  685. begin
  686. carry := 1;
  687. iq[i] := $1000000 - t;
  688. end
  689. end
  690. else
  691. iq[i] := $ffffff - t;
  692. end;
  693. if q0>0 then
  694. begin
  695. {rare case: chance is 1 in 12}
  696. case q0 of
  697. 1: iq[jz-1] := iq[jz-1] and $7fffff;
  698. 2: iq[jz-1] := iq[jz-1] and $3fffff;
  699. end;
  700. end;
  701. if ih=2 then
  702. begin
  703. z := 1.0 - z;
  704. if carry<>0 then
  705. z := z - ldexp(1.0,q0);
  706. end;
  707. end;
  708. {check if recomputation is needed}
  709. if z<>0.0 then
  710. break;
  711. t := 0;
  712. for i:=jz-1 downto jk do
  713. t := t or iq[i];
  714. if t<>0 then
  715. break;
  716. {need recomputation}
  717. k := 1;
  718. while iq[jk-k]=0 do {k = no. of terms needed}
  719. inc(k);
  720. for i:=jz+1 to jz+k do
  721. begin
  722. {add q[jz+1] to q[jz+k]}
  723. f[jx+i] := ipio2[jv+i];
  724. fw := 0.0;
  725. for j:=0 to jx do
  726. fw := fw + x[j]*f[jx+i-j];
  727. q[i] := fw;
  728. end;
  729. inc(jz,k);
  730. until False;
  731. {chop off zero terms}
  732. if z=0.0 then
  733. begin
  734. repeat
  735. dec(jz);
  736. dec(q0,24);
  737. until iq[jz]<>0;
  738. end
  739. else
  740. begin
  741. {break z into 24-bit if necessary}
  742. z := ldexp(z,-q0);
  743. if z>=two24 then
  744. begin
  745. fw := trunc(twon24*z);
  746. iq[jz] := trunc(z-two24*fw);
  747. inc(jz);
  748. inc(q0,24);
  749. iq[jz] := trunc(fw);
  750. end
  751. else
  752. iq[jz] := trunc(z);
  753. end;
  754. {convert integer "bit" chunk to floating-point value}
  755. fw := ldexp(1.0,q0);
  756. for i:=jz downto 0 do
  757. begin
  758. q[i] := fw*iq[i];
  759. fw := fw*twon24;
  760. end;
  761. {compute PIo2[0,...,jp]*q[jz,...,0]}
  762. for i:=jz downto 0 do
  763. begin
  764. fw :=0.0;
  765. k := 0;
  766. while (k<=jp) and (k<=jz-i) do
  767. begin
  768. fw := fw + double(PIo2chunked[k])*(q[i+k]);
  769. inc(k);
  770. end;
  771. fq[jz-i] := fw;
  772. end;
  773. {compress fq[] into y[]}
  774. case prec of
  775. 0:
  776. begin
  777. fw := 0.0;
  778. for i:=jz downto 0 do
  779. fw := fw + fq[i];
  780. if ih=0 then
  781. y[0] := fw
  782. else
  783. y[0] := -fw;
  784. end;
  785. 1, 2:
  786. begin
  787. fw := 0.0;
  788. for i:=jz downto 0 do
  789. fw := fw + fq[i];
  790. if ih=0 then
  791. y[0] := fw
  792. else
  793. y[0] := -fw;
  794. fw := fq[0]-fw;
  795. for i:=1 to jz do
  796. fw := fw + fq[i];
  797. if ih=0 then
  798. y[1] := fw
  799. else
  800. y[1] := -fw;
  801. end;
  802. 3:
  803. begin
  804. {painful}
  805. for i:=jz downto 1 do
  806. begin
  807. fw := fq[i-1]+fq[i];
  808. fq[i] := fq[i]+(fq[i-1]-fw);
  809. fq[i-1]:= fw;
  810. end;
  811. for i:=jz downto 2 do
  812. begin
  813. fw := fq[i-1]+fq[i];
  814. fq[i] := fq[i]+(fq[i-1]-fw);
  815. fq[i-1]:= fw;
  816. end;
  817. fw := 0.0;
  818. for i:=jz downto 2 do
  819. fw := fw + fq[i];
  820. if ih=0 then
  821. begin
  822. y[0] := fq[0];
  823. y[1] := fq[1];
  824. y[2] := fw;
  825. end
  826. else
  827. begin
  828. y[0] := -fq[0];
  829. y[1] := -fq[1];
  830. y[2] := -fw;
  831. end;
  832. end;
  833. end;
  834. k_rem_pio2 := n and 7;
  835. end;
  836. { Argument reduction of x: z = x - n*Pi/2, |z| <= Pi/4, result = n mod 8.}
  837. { Uses Payne/Hanek if |x| >= lossth, Cody/Waite otherwise}
  838. function rem_pio2(x: double; out z: double): sizeint;
  839. const
  840. tol: double = 2.384185791015625E-7; {lossth*eps_d}
  841. DP1 = double(7.85398125648498535156E-1);
  842. DP2 = double(3.77489470793079817668E-8);
  843. DP3 = double(2.69515142907905952645E-15);
  844. var
  845. i,e0,nx: longint;
  846. y: double;
  847. tx,ty: TDA02;
  848. begin
  849. y := abs(x);
  850. if (y < PIO4) then
  851. begin
  852. z := x;
  853. result := 0;
  854. exit;
  855. end
  856. else if (y < lossth) then
  857. begin
  858. y := floord(x/PIO4);
  859. i := trunc(y - 16.0*floord(y*0.0625));
  860. if odd(i) then
  861. begin
  862. inc(i);
  863. y := y + 1.0;
  864. end;
  865. z := ((x - y * DP1) - y * DP2) - y * DP3;
  866. result := (i shr 1) and 7;
  867. {If x is near a multiple of Pi/2, the C/W relative error may be large.}
  868. {In this case redo the calculation with the Payne/Hanek algorithm. }
  869. if abs(z) > tol then
  870. exit;
  871. end;
  872. z := abs(x);
  873. e0 := (float64high(z) shr 20)-1046;
  874. if (e0 = ($7ff-1046)) then { z is Inf or NaN }
  875. begin
  876. z := x - x;
  877. result:=0;
  878. exit;
  879. end;
  880. float64sethigh(z,float64high(z) - (e0 shl 20));
  881. tx[0] := trunc(z);
  882. z := (z-tx[0])*two24;
  883. tx[1] := trunc(z);
  884. tx[2] := (z-tx[1])*two24;
  885. nx := 3;
  886. while (tx[nx-1]=0.0) do dec(nx); { skip zero terms }
  887. result := k_rem_pio2(tx,ty,e0,nx,2);
  888. if (x<0) then
  889. begin
  890. result := (-result) and 7;
  891. z := -ty[0] - ty[1];
  892. end
  893. else
  894. z := ty[0] + ty[1];
  895. end;
  896. {$ifndef FPC_SYSTEM_HAS_SQR}
  897. function fpc_sqr_real(d : ValReal) : ValReal;compilerproc;{$ifdef MATHINLINE}inline;{$endif}
  898. begin
  899. result := d*d;
  900. end;
  901. {$endif}
  902. {$ifndef FPC_SYSTEM_HAS_SQRT}
  903. function fpc_sqrt_real(d:ValReal):ValReal;compilerproc;
  904. {*****************************************************************}
  905. { Square root }
  906. {*****************************************************************}
  907. { }
  908. { SYNOPSIS: }
  909. { }
  910. { double x, y, sqrt(); }
  911. { }
  912. { y = sqrt( x ); }
  913. { }
  914. { DESCRIPTION: }
  915. { }
  916. { Returns the square root of x. }
  917. { }
  918. { Range reduction involves isolating the power of two of the }
  919. { argument and using a polynomial approximation to obtain }
  920. { a rough value for the square root. Then Heron's iteration }
  921. { is used three times to converge to an accurate value. }
  922. {*****************************************************************}
  923. var e : Longint;
  924. w,z : Real;
  925. begin
  926. if( d <= 0.0 ) then
  927. begin
  928. if d < 0.0 then
  929. result:=(d-d)/zero
  930. else
  931. result := 0.0;
  932. end
  933. else
  934. begin
  935. w := d;
  936. { separate exponent and significand }
  937. frexp( d, z, e );
  938. { approximate square root of number between 0.5 and 1 }
  939. { relative error of approximation = 7.47e-3 }
  940. d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
  941. { adjust for odd powers of 2 }
  942. if odd(e) then
  943. d := d*SQRT2;
  944. { re-insert exponent }
  945. d := ldexp( d, (e div 2) );
  946. { Newton iterations: }
  947. d := 0.5*(d + w/d);
  948. d := 0.5*(d + w/d);
  949. d := 0.5*(d + w/d);
  950. d := 0.5*(d + w/d);
  951. d := 0.5*(d + w/d);
  952. d := 0.5*(d + w/d);
  953. result := d;
  954. end;
  955. end;
  956. {$endif}
  957. {$ifndef FPC_SYSTEM_HAS_EXP}
  958. {$ifdef SUPPORT_DOUBLE}
  959. {
  960. This code was translated from uclib code, the original code
  961. had the following copyright notice:
  962. *
  963. * ====================================================
  964. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  965. *
  966. * Developed at SunPro, a Sun Microsystems, Inc. business.
  967. * Permission to use, copy, modify, and distribute this
  968. * software is freely granted, provided that this notice
  969. * is preserved.
  970. * ====================================================
  971. *}
  972. {*
  973. * Returns the exponential of x.
  974. *
  975. * Method
  976. * 1. Argument reduction:
  977. * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
  978. * Given x, find r and integer k such that
  979. *
  980. * x = k*ln2 + r, |r| <= 0.5*ln2.
  981. *
  982. * Here r will be represented as r = hi-lo for better
  983. * accuracy.
  984. *
  985. * 2. Approximation of exp(r) by a special rational function on
  986. * the interval [0,0.34658]:
  987. * Write
  988. * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
  989. * We use a special Reme algorithm on [0,0.34658] to generate
  990. * a polynomial of degree 5 to approximate R. The maximum error
  991. * of this polynomial approximation is bounded by 2**-59. In
  992. * other words,
  993. * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
  994. * (where z=r*r, and the values of P1 to P5 are listed below)
  995. * and
  996. * | 5 | -59
  997. * | 2.0+P1*z+...+P5*z - R(z) | <= 2
  998. * | |
  999. * The computation of exp(r) thus becomes
  1000. * 2*r
  1001. * exp(r) = 1 + -------
  1002. * R - r
  1003. * r*R1(r)
  1004. * = 1 + r + ----------- (for better accuracy)
  1005. * 2 - R1(r)
  1006. * where
  1007. 2 4 10
  1008. * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
  1009. *
  1010. * 3. Scale back to obtain exp(x):
  1011. * From step 1, we have
  1012. * exp(x) = 2^k * exp(r)
  1013. *
  1014. * Special cases:
  1015. * exp(INF) is INF, exp(NaN) is NaN;
  1016. * exp(-INF) is 0, and
  1017. * for finite argument, only exp(0)=1 is exact.
  1018. *
  1019. * Accuracy:
  1020. * according to an error analysis, the error is always less than
  1021. * 1 ulp (unit in the last place).
  1022. *
  1023. * Misc. info.
  1024. * For IEEE double
  1025. * if x > 7.09782712893383973096e+02 then exp(x) overflow
  1026. * if x < -7.45133219101941108420e+02 then exp(x) underflow
  1027. *
  1028. * Constants:
  1029. * The hexadecimal values are the intended ones for the following
  1030. * constants. The decimal values may be used, provided that the
  1031. * compiler will convert from decimal to binary accurately enough
  1032. * to produce the hexadecimal values shown.
  1033. *
  1034. }
  1035. function fpc_exp_real(d: ValReal):ValReal;compilerproc;
  1036. const
  1037. halF : array[0..1] of double = (0.5,-0.5);
  1038. twom1000: double = 9.33263618503218878990e-302; { 2**-1000=0x01700000,0}
  1039. o_threshold: double = 7.09782712893383973096e+02; { 0x40862E42, 0xFEFA39EF }
  1040. u_threshold: double = -7.45133219101941108420e+02; { 0xc0874910, 0xD52D3051 }
  1041. ln2HI : array[0..1] of double = ( 6.93147180369123816490e-01, { 0x3fe62e42, 0xfee00000 }
  1042. -6.93147180369123816490e-01); { 0xbfe62e42, 0xfee00000 }
  1043. ln2LO : array[0..1] of double = (1.90821492927058770002e-10, { 0x3dea39ef, 0x35793c76 }
  1044. -1.90821492927058770002e-10); { 0xbdea39ef, 0x35793c76 }
  1045. invln2: double = 1.44269504088896338700e+00; { 0x3ff71547, 0x652b82fe }
  1046. P1: double = 1.66666666666666019037e-01; { 0x3FC55555, 0x5555553E }
  1047. P2: double = -2.77777777770155933842e-03; { 0xBF66C16C, 0x16BEBD93 }
  1048. P3: double = 6.61375632143793436117e-05; { 0x3F11566A, 0xAF25DE2C }
  1049. P4: double = -1.65339022054652515390e-06; { 0xBEBBBD41, 0xC5D26BF1 }
  1050. P5: double = 4.13813679705723846039e-08; { 0x3E663769, 0x72BEA4D0 }
  1051. var
  1052. c,hi,lo,t,y : double;
  1053. k,xsb : longint;
  1054. hx,hy,lx : dword;
  1055. begin
  1056. hi:=0.0;
  1057. lo:=0.0;
  1058. k:=0;
  1059. hx:=float64high(d);
  1060. xsb := (hx shr 31) and 1; { sign bit of d }
  1061. hx := hx and $7fffffff; { high word of |d| }
  1062. { filter out non-finite argument }
  1063. if hx >= $40862E42 then
  1064. begin { if |d|>=709.78... }
  1065. if hx >= $7ff00000 then
  1066. begin
  1067. lx:=float64low(d);
  1068. if ((hx and $fffff) or lx)<>0 then
  1069. begin
  1070. result:=d+d; { NaN }
  1071. exit;
  1072. end
  1073. else
  1074. begin
  1075. if xsb=0 then
  1076. result:=d
  1077. else
  1078. result:=0.0; { exp(+-inf)=(inf,0) }
  1079. exit;
  1080. end;
  1081. end;
  1082. if d > o_threshold then begin
  1083. result:=huge*huge; { overflow }
  1084. exit;
  1085. end;
  1086. if d < u_threshold then begin
  1087. result:=twom1000*twom1000; { underflow }
  1088. exit;
  1089. end;
  1090. end;
  1091. { argument reduction }
  1092. if hx > $3fd62e42 then
  1093. begin { if |d| > 0.5 ln2 }
  1094. if hx < $3FF0A2B2 then { and |d| < 1.5 ln2 }
  1095. begin
  1096. hi := d-ln2HI[xsb];
  1097. lo:=ln2LO[xsb];
  1098. k := 1-xsb-xsb;
  1099. end
  1100. else
  1101. begin
  1102. k := trunc(invln2*d+halF[xsb]);
  1103. t := k;
  1104. hi := d - t*ln2HI[0]; { t*ln2HI is exact here }
  1105. lo := t*ln2LO[0];
  1106. end;
  1107. d := hi - lo;
  1108. end
  1109. else if hx < $3e300000 then
  1110. begin { when |d|<2**-28 }
  1111. if huge+d>one then
  1112. begin
  1113. result:=one+d;{ trigger inexact }
  1114. exit;
  1115. end;
  1116. end
  1117. else
  1118. k := 0;
  1119. { d is now in primary range }
  1120. t:=d*d;
  1121. c:=d - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
  1122. if k=0 then
  1123. begin
  1124. result:=one-((d*c)/(c-2.0)-d);
  1125. exit;
  1126. end
  1127. else
  1128. y := one-((lo-(d*c)/(2.0-c))-hi);
  1129. if k >= -1021 then
  1130. begin
  1131. hy:=float64high(y);
  1132. float64sethigh(y,longint(hy)+(k shl 20)); { add k to y's exponent }
  1133. result:=y;
  1134. end
  1135. else
  1136. begin
  1137. hy:=float64high(y);
  1138. float64sethigh(y,longint(hy)+((k+1000) shl 20)); { add k to y's exponent }
  1139. result:=y*twom1000;
  1140. end;
  1141. end;
  1142. {$else SUPPORT_DOUBLE}
  1143. function fpc_exp_real(d: ValReal):ValReal;compilerproc;
  1144. {*****************************************************************}
  1145. { Exponential Function }
  1146. {*****************************************************************}
  1147. { }
  1148. { SYNOPSIS: }
  1149. { }
  1150. { double x, y, exp(); }
  1151. { }
  1152. { y = exp( x ); }
  1153. { }
  1154. { DESCRIPTION: }
  1155. { }
  1156. { Returns e (2.71828...) raised to the x power. }
  1157. { }
  1158. { Range reduction is accomplished by separating the argument }
  1159. { into an integer k and fraction f such that }
  1160. { }
  1161. { x k f }
  1162. { e = 2 e. }
  1163. { }
  1164. { A Pade' form of degree 2/3 is used to approximate exp(f)- 1 }
  1165. { in the basic range [-0.5 ln 2, 0.5 ln 2]. }
  1166. {*****************************************************************}
  1167. const P : array[0..2] of Real = (
  1168. 1.26183092834458542160E-4,
  1169. 3.02996887658430129200E-2,
  1170. 1.00000000000000000000E0);
  1171. Q : array[0..3] of Real = (
  1172. 3.00227947279887615146E-6,
  1173. 2.52453653553222894311E-3,
  1174. 2.27266044198352679519E-1,
  1175. 2.00000000000000000005E0);
  1176. C1 = 6.9335937500000000000E-1;
  1177. C2 = 2.1219444005469058277E-4;
  1178. var n : Integer;
  1179. px, qx, xx : Real;
  1180. begin
  1181. if( d > MAXLOG) then
  1182. float_raise(float_flag_overflow)
  1183. else
  1184. if( d < MINLOG ) then
  1185. begin
  1186. float_raise(float_flag_underflow);
  1187. result:=0; { Result if underflow masked }
  1188. end
  1189. else
  1190. begin
  1191. { Express e**x = e**g 2**n }
  1192. { = e**g e**( n loge(2) ) }
  1193. { = e**( g + n loge(2) ) }
  1194. px := d * LOG2E;
  1195. qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
  1196. n := Trunc(qx);
  1197. d := d - qx * C1;
  1198. d := d + qx * C2;
  1199. { rational approximation for exponential }
  1200. { of the fractional part: }
  1201. { e**x - 1 = 2x P(x**2)/( Q(x**2) - P(x**2) ) }
  1202. xx := d * d;
  1203. px := d * polevl( xx, P, 2 );
  1204. d := px/( polevl( xx, Q, 3 ) - px );
  1205. d := ldexp( d, 1 );
  1206. d := d + 1.0;
  1207. d := ldexp( d, n );
  1208. result := d;
  1209. end;
  1210. end;
  1211. {$endif SUPPORT_DOUBLE}
  1212. {$endif}
  1213. {$ifndef FPC_SYSTEM_HAS_ROUND}
  1214. function fpc_round_real(d : ValReal) : int64;compilerproc;
  1215. var
  1216. tmp: double;
  1217. j0: longint;
  1218. hx: longword;
  1219. sx: longint;
  1220. const
  1221. H2_52: array[0..1] of double = (
  1222. 4.50359962737049600000e+15,
  1223. -4.50359962737049600000e+15
  1224. );
  1225. Begin
  1226. { This basically calculates trunc((d+2**52)-2**52) }
  1227. hx:=float64high(d);
  1228. j0:=((hx shr 20) and $7ff) - $3ff;
  1229. sx:=hx shr 31;
  1230. hx:=(hx and $fffff) or $100000;
  1231. if j0>=52 then { No fraction bits, already integer }
  1232. begin
  1233. if j0>=63 then { Overflow, let trunc() raise an exception }
  1234. exit(trunc(d)) { and/or return +/-MaxInt64 if it's masked }
  1235. else
  1236. result:=((int64(hx) shl 32) or float64low(d)) shl (j0-52);
  1237. end
  1238. else
  1239. begin
  1240. { Rounding happens here. It is important that the expression is not
  1241. optimized by selecting a larger type to store 'tmp'. }
  1242. tmp:=H2_52[sx]+d;
  1243. d:=tmp-H2_52[sx];
  1244. hx:=float64high(d);
  1245. j0:=((hx shr 20) and $7ff)-$3ff;
  1246. hx:=(hx and $fffff) or $100000;
  1247. if j0<=20 then
  1248. begin
  1249. if j0<0 then
  1250. exit(0)
  1251. else { more than 32 fraction bits, low dword discarded }
  1252. result:=hx shr (20-j0);
  1253. end
  1254. else
  1255. result:=(int64(hx) shl (j0-20)) or (float64low(d) shr (52-j0));
  1256. end;
  1257. if sx<>0 then
  1258. result:=-result;
  1259. end;
  1260. {$endif FPC_SYSTEM_HAS_ROUND}
  1261. {$ifndef FPC_SYSTEM_HAS_LN}
  1262. function fpc_ln_real(d:ValReal):ValReal;compilerproc;
  1263. {
  1264. This code was translated from uclib code, the original code
  1265. had the following copyright notice:
  1266. *
  1267. * ====================================================
  1268. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  1269. *
  1270. * Developed at SunPro, a Sun Microsystems, Inc. business.
  1271. * Permission to use, copy, modify, and distribute this
  1272. * software is freely granted, provided that this notice
  1273. * is preserved.
  1274. * ====================================================
  1275. *}
  1276. {*****************************************************************}
  1277. { Natural Logarithm }
  1278. {*****************************************************************}
  1279. {*
  1280. * SYNOPSIS:
  1281. *
  1282. * double x, y, log();
  1283. *
  1284. * y = ln( x );
  1285. *
  1286. * DESCRIPTION:
  1287. *
  1288. * Returns the base e (2.718...) logarithm of x.
  1289. *
  1290. * Method :
  1291. * 1. Argument Reduction: find k and f such that
  1292. * x = 2^k * (1+f),
  1293. * where sqrt(2)/2 < 1+f < sqrt(2) .
  1294. *
  1295. * 2. Approximation of log(1+f).
  1296. * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
  1297. * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
  1298. * = 2s + s*R
  1299. * We use a special Reme algorithm on [0,0.1716] to generate
  1300. * a polynomial of degree 14 to approximate R The maximum error
  1301. * of this polynomial approximation is bounded by 2**-58.45. In
  1302. * other words,
  1303. * 2 4 6 8 10 12 14
  1304. * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
  1305. * (the values of Lg1 to Lg7 are listed in the program)
  1306. * and
  1307. * | 2 14 | -58.45
  1308. * | Lg1*s +...+Lg7*s - R(z) | <= 2
  1309. * | |
  1310. * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
  1311. * In order to guarantee error in log below 1ulp, we compute log
  1312. * by
  1313. * log(1+f) = f - s*(f - R) (if f is not too large)
  1314. * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
  1315. *
  1316. * 3. Finally, log(x) = k*ln2 + log(1+f).
  1317. * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
  1318. * Here ln2 is split into two floating point number:
  1319. * ln2_hi + ln2_lo,
  1320. * where n*ln2_hi is always exact for |n| < 2000.
  1321. *
  1322. * Special cases:
  1323. * log(x) is NaN with signal if x < 0 (including -INF) ;
  1324. * log(+INF) is +INF; log(0) is -INF with signal;
  1325. * log(NaN) is that NaN with no signal.
  1326. *
  1327. * Accuracy:
  1328. * according to an error analysis, the error is always less than
  1329. * 1 ulp (unit in the last place).
  1330. *}
  1331. const
  1332. ln2_hi: double = 6.93147180369123816490e-01; { 3fe62e42 fee00000 }
  1333. ln2_lo: double = 1.90821492927058770002e-10; { 3dea39ef 35793c76 }
  1334. two54: double = 1.80143985094819840000e+16; { 43500000 00000000 }
  1335. Lg1: double = 6.666666666666735130e-01; { 3FE55555 55555593 }
  1336. Lg2: double = 3.999999999940941908e-01; { 3FD99999 9997FA04 }
  1337. Lg3: double = 2.857142874366239149e-01; { 3FD24924 94229359 }
  1338. Lg4: double = 2.222219843214978396e-01; { 3FCC71C5 1D8E78AF }
  1339. Lg5: double = 1.818357216161805012e-01; { 3FC74664 96CB03DE }
  1340. Lg6: double = 1.531383769920937332e-01; { 3FC39A09 D078C69F }
  1341. Lg7: double = 1.479819860511658591e-01; { 3FC2F112 DF3E5244 }
  1342. zero: double = 0.0;
  1343. var
  1344. hfsq,f,s,z,R,w,t1,t2,dk: double;
  1345. k,hx,i,j: longint;
  1346. lx: longword;
  1347. {$push}
  1348. { if we have to check manually fpu exceptions, then force the exit statements here to
  1349. throw one }
  1350. {$CHECKFPUEXCEPTIONS+}
  1351. { turn off fastmath as it converts (d-d)/zero into 0 and thus not raising an exception }
  1352. {$OPTIMIZATION NOFASTMATH}
  1353. begin
  1354. hx := float64high(d);
  1355. lx := float64low(d);
  1356. k := 0;
  1357. if (hx < $00100000) then { x < 2**-1022 }
  1358. begin
  1359. if (((hx and $7fffffff) or longint(lx))=0) then
  1360. exit(-two54/zero); { log(+-0)=-inf }
  1361. if (hx<0) then
  1362. exit((d-d)/zero); { log(-#) = NaN }
  1363. dec(k, 54); d := d * two54; { subnormal number, scale up x }
  1364. hx := float64high(d);
  1365. end;
  1366. if (hx >= $7ff00000) then
  1367. exit(d+d);
  1368. {$pop}
  1369. inc(k, (hx shr 20)-1023);
  1370. hx := hx and $000fffff;
  1371. i := (hx + $95f64) and $100000;
  1372. float64sethigh(d,hx or (i xor $3ff00000)); { normalize x or x/2 }
  1373. inc(k, (i shr 20));
  1374. f := d-1.0;
  1375. if (($000fffff and (2+hx))<3) then { |f| < 2**-20 }
  1376. begin
  1377. if (f=zero) then
  1378. begin
  1379. if (k=0) then
  1380. exit(zero)
  1381. else
  1382. begin
  1383. dk := k;
  1384. exit(dk*ln2_hi+dk*ln2_lo);
  1385. end;
  1386. end;
  1387. R := f*f*(0.5-0.33333333333333333*f);
  1388. if (k=0) then
  1389. exit(f-R)
  1390. else
  1391. begin
  1392. dk := k;
  1393. exit(dk*ln2_hi-((R-dk*ln2_lo)-f));
  1394. end;
  1395. end;
  1396. s := f/(2.0+f);
  1397. dk := k;
  1398. z := s*s;
  1399. i := hx-$6147a;
  1400. w := z*z;
  1401. j := $6b851-hx;
  1402. t1 := w*(Lg2+w*(Lg4+w*Lg6));
  1403. t2 := z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
  1404. i := i or j;
  1405. R := t2+t1;
  1406. if (i>0) then
  1407. begin
  1408. hfsq := 0.5*f*f;
  1409. if (k=0) then
  1410. result := f-(hfsq-s*(hfsq+R))
  1411. else
  1412. result := dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
  1413. end
  1414. else
  1415. begin
  1416. if (k=0) then
  1417. result := f-s*(f-R)
  1418. else
  1419. result := dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
  1420. end;
  1421. end;
  1422. {$endif}
  1423. {$ifndef FPC_SYSTEM_HAS_SIN}
  1424. function fpc_Sin_real(d:ValReal):ValReal;compilerproc;
  1425. {*****************************************************************}
  1426. { Circular Sine }
  1427. {*****************************************************************}
  1428. { }
  1429. { SYNOPSIS: }
  1430. { }
  1431. { double x, y, sin(); }
  1432. { }
  1433. { y = sin( x ); }
  1434. { }
  1435. { DESCRIPTION: }
  1436. { }
  1437. { Range reduction is into intervals of pi/4. The reduction }
  1438. { error is nearly eliminated by contriving an extended }
  1439. { precision modular arithmetic. }
  1440. { }
  1441. { Two polynomial approximating functions are employed. }
  1442. { Between 0 and pi/4 the sine is approximated by }
  1443. { x + x**3 P(x**2). }
  1444. { Between pi/4 and pi/2 the cosine is represented as }
  1445. { 1 - x**2 Q(x**2). }
  1446. {*****************************************************************}
  1447. var y, z, zz : Real;
  1448. j : sizeint;
  1449. begin
  1450. { This seemingly useless condition ensures that sin(-0.0)=-0.0 }
  1451. if (d=0.0) then
  1452. exit(d);
  1453. j := rem_pio2(d,z) and 3;
  1454. zz := z * z;
  1455. if( (j=1) or (j=3) ) then
  1456. y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
  1457. else
  1458. { y = z + z * (zz * polevl( zz, sincof, 5 )); }
  1459. y := z + z * z * z * polevl( zz, sincof, 5 );
  1460. if (j > 1) then
  1461. result := -y
  1462. else
  1463. result := y;
  1464. end;
  1465. {$endif}
  1466. {$ifndef FPC_SYSTEM_HAS_COS}
  1467. function fpc_Cos_real(d:ValReal):ValReal;compilerproc;
  1468. {*****************************************************************}
  1469. { Circular cosine }
  1470. {*****************************************************************}
  1471. { }
  1472. { Circular cosine }
  1473. { }
  1474. { SYNOPSIS: }
  1475. { }
  1476. { double x, y, cos(); }
  1477. { }
  1478. { y = cos( x ); }
  1479. { }
  1480. { DESCRIPTION: }
  1481. { }
  1482. { Range reduction is into intervals of pi/4. The reduction }
  1483. { error is nearly eliminated by contriving an extended }
  1484. { precision modular arithmetic. }
  1485. { }
  1486. { Two polynomial approximating functions are employed. }
  1487. { Between 0 and pi/4 the cosine is approximated by }
  1488. { 1 - x**2 Q(x**2). }
  1489. { Between pi/4 and pi/2 the sine is represented as }
  1490. { x + x**3 P(x**2). }
  1491. {*****************************************************************}
  1492. var y, z, zz : Real;
  1493. j : sizeint;
  1494. begin
  1495. j := rem_pio2(d,z) and 3;
  1496. zz := z * z;
  1497. if( (j=1) or (j=3) ) then
  1498. { y = z + z * (zz * polevl( zz, sincof, 5 )); }
  1499. y := z + z * z * z * polevl( zz, sincof, 5 )
  1500. else
  1501. y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
  1502. if (j = 1) or (j = 2) then
  1503. result := -y
  1504. else
  1505. result := y ;
  1506. end;
  1507. {$endif}
  1508. {$ifndef FPC_SYSTEM_HAS_ARCTAN}
  1509. function fpc_ArcTan_real(d:ValReal):ValReal;compilerproc;
  1510. {
  1511. This code was translated from uclibc code, the original code
  1512. had the following copyright notice:
  1513. *
  1514. * ====================================================
  1515. * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  1516. *
  1517. * Developed at SunPro, a Sun Microsystems, Inc. business.
  1518. * Permission to use, copy, modify, and distribute this
  1519. * software is freely granted, provided that this notice
  1520. * is preserved.
  1521. * ====================================================
  1522. *}
  1523. {********************************************************************}
  1524. { Inverse circular tangent (arctangent) }
  1525. {********************************************************************}
  1526. { }
  1527. { SYNOPSIS: }
  1528. { }
  1529. { double x, y, atan(); }
  1530. { }
  1531. { y = atan( x ); }
  1532. { }
  1533. { DESCRIPTION: }
  1534. { }
  1535. { Returns radian angle between -pi/2 and +pi/2 whose tangent }
  1536. { is x. }
  1537. { }
  1538. { Method }
  1539. { 1. Reduce x to positive by atan(x) = -atan(-x). }
  1540. { 2. According to the integer k=4t+0.25 chopped, t=x, the argument }
  1541. { is further reduced to one of the following intervals and the }
  1542. { arctangent of t is evaluated by the corresponding formula: }
  1543. { }
  1544. { [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) }
  1545. { [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) }
  1546. { [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) }
  1547. { [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) }
  1548. { [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) }
  1549. {********************************************************************}
  1550. const
  1551. atanhi: array [0..3] of double = (
  1552. 4.63647609000806093515e-01, { atan(0.5)hi 0x3FDDAC67, 0x0561BB4F }
  1553. 7.85398163397448278999e-01, { atan(1.0)hi 0x3FE921FB, 0x54442D18 }
  1554. 9.82793723247329054082e-01, { atan(1.5)hi 0x3FEF730B, 0xD281F69B }
  1555. 1.57079632679489655800e+00 { atan(inf)hi 0x3FF921FB, 0x54442D18 }
  1556. );
  1557. atanlo: array [0..3] of double = (
  1558. 2.26987774529616870924e-17, { atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 }
  1559. 3.06161699786838301793e-17, { atan(1.0)lo 0x3C81A626, 0x33145C07 }
  1560. 1.39033110312309984516e-17, { atan(1.5)lo 0x3C700788, 0x7AF0CBBD }
  1561. 6.12323399573676603587e-17 { atan(inf)lo 0x3C91A626, 0x33145C07 }
  1562. );
  1563. aT: array[0..10] of double = (
  1564. 3.33333333333329318027e-01, { 0x3FD55555, 0x5555550D }
  1565. -1.99999999998764832476e-01, { 0xBFC99999, 0x9998EBC4 }
  1566. 1.42857142725034663711e-01, { 0x3FC24924, 0x920083FF }
  1567. -1.11111104054623557880e-01, { 0xBFBC71C6, 0xFE231671 }
  1568. 9.09088713343650656196e-02, { 0x3FB745CD, 0xC54C206E }
  1569. -7.69187620504482999495e-02, { 0xBFB3B0F2, 0xAF749A6D }
  1570. 6.66107313738753120669e-02, { 0x3FB10D66, 0xA0D03D51 }
  1571. -5.83357013379057348645e-02, { 0xBFADDE2D, 0x52DEFD9A }
  1572. 4.97687799461593236017e-02, { 0x3FA97B4B, 0x24760DEB }
  1573. -3.65315727442169155270e-02, { 0xBFA2B444, 0x2C6A6C2F }
  1574. 1.62858201153657823623e-02 { 0x3F90AD3A, 0xE322DA11 }
  1575. );
  1576. var
  1577. w,s1,s2,z: double;
  1578. ix,hx,id: longint;
  1579. low: longword;
  1580. begin
  1581. hx:=float64high(d);
  1582. ix := hx and $7fffffff;
  1583. if (ix>=$44100000) then { if |x| >= 2^66 }
  1584. begin
  1585. low:=float64low(d);
  1586. if (ix > $7ff00000) or ((ix = $7ff00000) and (low<>0)) then
  1587. exit(d+d); { NaN }
  1588. if (hx>0) then
  1589. exit(atanhi[3]+atanlo[3])
  1590. else
  1591. exit(-atanhi[3]-atanlo[3]);
  1592. end;
  1593. if (ix < $3fdc0000) then { |x| < 0.4375 }
  1594. begin
  1595. if (ix < $3e200000) then { |x| < 2^-29 }
  1596. begin
  1597. if (huge+d>one) then exit(d); { raise inexact }
  1598. end;
  1599. id := -1;
  1600. end
  1601. else
  1602. begin
  1603. d := abs(d);
  1604. if (ix < $3ff30000) then { |x| < 1.1875 }
  1605. begin
  1606. if (ix < $3fe60000) then { 7/16 <=|x|<11/16 }
  1607. begin
  1608. id := 0; d := (2.0*d-one)/(2.0+d);
  1609. end
  1610. else { 11/16<=|x|< 19/16 }
  1611. begin
  1612. id := 1; d := (d-one)/(d+one);
  1613. end
  1614. end
  1615. else
  1616. begin
  1617. if (ix < $40038000) then { |x| < 2.4375 }
  1618. begin
  1619. id := 2; d := (d-1.5)/(one+1.5*d);
  1620. end
  1621. else { 2.4375 <= |x| < 2^66 }
  1622. begin
  1623. id := 3; d := -1.0/d;
  1624. end;
  1625. end;
  1626. end;
  1627. { end of argument reduction }
  1628. z := d*d;
  1629. w := z*z;
  1630. { break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly }
  1631. s1 := z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
  1632. s2 := w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
  1633. if (id<0) then
  1634. result := d - d*(s1+s2)
  1635. else
  1636. begin
  1637. z := atanhi[id] - ((d*(s1+s2) - atanlo[id]) - d);
  1638. if hx<0 then
  1639. result := -z
  1640. else
  1641. result := z;
  1642. end;
  1643. end;
  1644. {$endif}
  1645. {$ifndef FPC_SYSTEM_HAS_FRAC}
  1646. function fpc_frac_real(d : ValReal) : ValReal;compilerproc;
  1647. begin
  1648. result := d - Int(d);
  1649. end;
  1650. {$endif}
  1651. {$ifdef FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
  1652. {$ifndef FPC_SYSTEM_HAS_QWORD_TO_DOUBLE}
  1653. function fpc_qword_to_double(q : qword): double; compilerproc;
  1654. begin
  1655. result:=dword(q and $ffffffff)+dword(q shr 32)*double(4294967296.0);
  1656. end;
  1657. {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1658. {$ifndef FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1659. function fpc_int64_to_double(i : int64): double; compilerproc;
  1660. begin
  1661. result:=dword(i and $ffffffff)+longint(i shr 32)*double(4294967296.0);
  1662. end;
  1663. {$endif FPC_SYSTEM_HAS_INT64_TO_DOUBLE}
  1664. {$endif FPC_INCLUDE_SOFTWARE_INT64_TO_DOUBLE}
  1665. {$ifdef SUPPORT_DOUBLE}
  1666. {****************************************************************************
  1667. Helper routines to support old TP styled reals
  1668. ****************************************************************************}
  1669. {$ifndef FPC_SYSTEM_HAS_REAL2DOUBLE}
  1670. function real2double(r : real48) : double;
  1671. var
  1672. res : array[0..7] of byte;
  1673. exponent : word;
  1674. begin
  1675. { check for zero }
  1676. if r[0]=0 then
  1677. begin
  1678. real2double:=0.0;
  1679. exit;
  1680. end;
  1681. { copy mantissa }
  1682. res[0]:=0;
  1683. res[1]:=r[1] shl 5;
  1684. res[2]:=(r[1] shr 3) or (r[2] shl 5);
  1685. res[3]:=(r[2] shr 3) or (r[3] shl 5);
  1686. res[4]:=(r[3] shr 3) or (r[4] shl 5);
  1687. res[5]:=(r[4] shr 3) or (r[5] and $7f) shl 5;
  1688. res[6]:=(r[5] and $7f) shr 3;
  1689. { copy exponent }
  1690. { correct exponent: }
  1691. exponent:=(word(r[0])+(1023-129));
  1692. res[6]:=res[6] or ((exponent and $f) shl 4);
  1693. res[7]:=exponent shr 4;
  1694. { set sign }
  1695. res[7]:=res[7] or (r[5] and $80);
  1696. real2double:=double(res);
  1697. end;
  1698. {$endif FPC_SYSTEM_HAS_REAL2DOUBLE}
  1699. {$endif SUPPORT_DOUBLE}
  1700. {$ifdef SUPPORT_EXTENDED}
  1701. { fast 10^n routine }
  1702. function FPower10(val: Extended; Power: Longint): Extended;
  1703. const
  1704. pow32 : array[0..31] of extended =
  1705. (
  1706. 1e0,1e1,1e2,1e3,1e4,1e5,1e6,1e7,1e8,1e9,1e10,
  1707. 1e11,1e12,1e13,1e14,1e15,1e16,1e17,1e18,1e19,1e20,
  1708. 1e21,1e22,1e23,1e24,1e25,1e26,1e27,1e28,1e29,1e30,
  1709. 1e31
  1710. );
  1711. pow512 : array[0..15] of extended =
  1712. (
  1713. 1,1e32,1e64,1e96,1e128,1e160,1e192,1e224,
  1714. 1e256,1e288,1e320,1e352,1e384,1e416,1e448,
  1715. 1e480
  1716. );
  1717. pow4096 : array[0..9] of extended =
  1718. (1,1e512,1e1024,1e1536,
  1719. 1e2048,1e2560,1e3072,1e3584,
  1720. 1e4096,1e4608
  1721. );
  1722. negpow32 : array[0..31] of extended =
  1723. (
  1724. 1e-0,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7,1e-8,1e-9,1e-10,
  1725. 1e-11,1e-12,1e-13,1e-14,1e-15,1e-16,1e-17,1e-18,1e-19,1e-20,
  1726. 1e-21,1e-22,1e-23,1e-24,1e-25,1e-26,1e-27,1e-28,1e-29,1e-30,
  1727. 1e-31
  1728. );
  1729. negpow512 : array[0..15] of extended =
  1730. (
  1731. 0,1e-32,1e-64,1e-96,1e-128,1e-160,1e-192,1e-224,
  1732. 1e-256,1e-288,1e-320,1e-352,1e-384,1e-416,1e-448,
  1733. 1e-480
  1734. );
  1735. negpow4096 : array[0..9] of extended =
  1736. (
  1737. 0,1e-512,1e-1024,1e-1536,
  1738. 1e-2048,1e-2560,1e-3072,1e-3584,
  1739. 1e-4096,1e-4608
  1740. );
  1741. begin
  1742. if Power<0 then
  1743. begin
  1744. Power:=-Power;
  1745. result:=val*negpow32[Power and $1f];
  1746. power:=power shr 5;
  1747. if power<>0 then
  1748. begin
  1749. result:=result*negpow512[Power and $f];
  1750. power:=power shr 4;
  1751. if power<>0 then
  1752. begin
  1753. if power<=9 then
  1754. result:=result*negpow4096[Power]
  1755. else
  1756. result:=1.0/0.0;
  1757. end;
  1758. end;
  1759. end
  1760. else
  1761. begin
  1762. result:=val*pow32[Power and $1f];
  1763. power:=power shr 5;
  1764. if power<>0 then
  1765. begin
  1766. result:=result*pow512[Power and $f];
  1767. power:=power shr 4;
  1768. if power<>0 then
  1769. begin
  1770. if power<=9 then
  1771. result:=result*pow4096[Power]
  1772. else
  1773. result:=1.0/0.0;
  1774. end;
  1775. end;
  1776. end;
  1777. end;
  1778. {$endif SUPPORT_EXTENDED}
  1779. {$if defined(SUPPORT_EXTENDED) or defined(FPC_SOFT_FPUX80)}
  1780. function TExtended80Rec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1781. begin
  1782. if IncludeHiddenbit then
  1783. Result:=Frac
  1784. else
  1785. Result:=Frac and $7fffffffffffffff;
  1786. end;
  1787. function TExtended80Rec.Fraction : Extended;
  1788. begin
  1789. {$ifdef SUPPORT_EXTENDED}
  1790. Result:=system.frac(Value);
  1791. {$else}
  1792. Result:=Frac / Double (1 shl 63) / 2.0;
  1793. {$endif}
  1794. end;
  1795. function TExtended80Rec.Exponent : Longint;
  1796. var
  1797. E: QWord;
  1798. begin
  1799. Result := 0;
  1800. E := GetExp;
  1801. if (0<E) and (E<2*Bias+1) then
  1802. Result:=Exp-Bias
  1803. else if (Exp=0) and (Frac<>0) then
  1804. Result:=-(Bias-1);
  1805. end;
  1806. function TExtended80Rec.GetExp : QWord;
  1807. begin
  1808. Result:=_Exp and $7fff;
  1809. end;
  1810. procedure TExtended80Rec.SetExp(e : QWord);
  1811. begin
  1812. _Exp:=(_Exp and $8000) or (e and $7fff);
  1813. end;
  1814. function TExtended80Rec.GetSign : Boolean;
  1815. begin
  1816. Result:=(_Exp and $8000)<>0;
  1817. end;
  1818. procedure TExtended80Rec.SetSign(s : Boolean);
  1819. begin
  1820. _Exp:=(_Exp and $7ffff) or (ord(s) shl 15);
  1821. end;
  1822. {
  1823. Based on information taken from http://en.wikipedia.org/wiki/Extended_precision#x86_Extended_Precision_Format
  1824. }
  1825. function TExtended80Rec.SpecialType : TFloatSpecial;
  1826. const
  1827. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1828. begin
  1829. case Exp of
  1830. 0:
  1831. begin
  1832. if Mantissa=0 then
  1833. begin
  1834. if Sign then
  1835. Result:=fsNZero
  1836. else
  1837. Result:=fsZero
  1838. end
  1839. else
  1840. Result:=Denormal[Sign];
  1841. end;
  1842. $7fff:
  1843. case (Frac shr 62) and 3 of
  1844. 0,1:
  1845. Result:=fsInvalidOp;
  1846. 2:
  1847. begin
  1848. if (Frac and $3fffffffffffffff)=0 then
  1849. begin
  1850. if Sign then
  1851. Result:=fsNInf
  1852. else
  1853. Result:=fsInf;
  1854. end
  1855. else
  1856. Result:=fsNaN;
  1857. end;
  1858. 3:
  1859. Result:=fsNaN;
  1860. end
  1861. else
  1862. begin
  1863. if (Frac and $8000000000000000)=0 then
  1864. Result:=fsInvalidOp
  1865. else
  1866. begin
  1867. if Sign then
  1868. Result:=fsNegative
  1869. else
  1870. Result:=fsPositive;
  1871. end;
  1872. end;
  1873. end;
  1874. end;
  1875. procedure TExtended80Rec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  1876. begin
  1877. {$ifdef SUPPORT_EXTENDED}
  1878. Value := 0.0;
  1879. {$else SUPPORT_EXTENDED}
  1880. FillChar(Value, SizeOf(Value),0);
  1881. {$endif SUPPORT_EXTENDED}
  1882. if (_Mantissa=0) and (_Exponent=0) then
  1883. SetExp(0)
  1884. else
  1885. SetExp(_Exponent + Bias);
  1886. SetSign(_Sign);
  1887. Frac := _Mantissa;
  1888. end;
  1889. {$endif SUPPORT_EXTENDED or FPC_SOFT_FPUX80}
  1890. {$ifdef SUPPORT_DOUBLE}
  1891. function TDoubleRec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1892. begin
  1893. Result:=(Data and $fffffffffffff);
  1894. if (Result=0) and (GetExp=0) then Exit;
  1895. if IncludeHiddenBit then Result := Result or $10000000000000; //add the hidden bit
  1896. end;
  1897. function TDoubleRec.Fraction : ValReal;
  1898. begin
  1899. Result:=system.frac(Value);
  1900. end;
  1901. function TDoubleRec.Exponent : Longint;
  1902. var
  1903. E: QWord;
  1904. begin
  1905. Result := 0;
  1906. E := GetExp;
  1907. if (0<E) and (E<2*Bias+1) then
  1908. Result:=Exp-Bias
  1909. else if (Exp=0) and (Frac<>0) then
  1910. Result:=-(Bias-1);
  1911. end;
  1912. function TDoubleRec.GetExp : QWord;
  1913. begin
  1914. Result:=(Data and $7ff0000000000000) shr 52;
  1915. end;
  1916. procedure TDoubleRec.SetExp(e : QWord);
  1917. begin
  1918. Data:=(Data and $800fffffffffffff) or ((e and $7ff) shl 52);
  1919. end;
  1920. function TDoubleRec.GetSign : Boolean;
  1921. begin
  1922. Result:=(Data and $8000000000000000)<>0;
  1923. end;
  1924. procedure TDoubleRec.SetSign(s : Boolean);
  1925. begin
  1926. Data:=(Data and $7fffffffffffffff) or (QWord(ord(s)) shl 63);
  1927. end;
  1928. function TDoubleRec.GetFrac : QWord;
  1929. begin
  1930. Result := Data and $fffffffffffff;
  1931. end;
  1932. procedure TDoubleRec.SetFrac(e : QWord);
  1933. begin
  1934. Data:=(Data and $7ff0000000000000) or (e and $fffffffffffff);
  1935. end;
  1936. {
  1937. Based on information taken from http://en.wikipedia.org/wiki/Double_precision#x86_Extended_Precision_Format
  1938. }
  1939. function TDoubleRec.SpecialType : TFloatSpecial;
  1940. const
  1941. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  1942. begin
  1943. case Exp of
  1944. 0:
  1945. begin
  1946. if Mantissa=0 then
  1947. begin
  1948. if Sign then
  1949. Result:=fsNZero
  1950. else
  1951. Result:=fsZero
  1952. end
  1953. else
  1954. Result:=Denormal[Sign];
  1955. end;
  1956. $7ff:
  1957. if Mantissa=0 then
  1958. begin
  1959. if Sign then
  1960. Result:=fsNInf
  1961. else
  1962. Result:=fsInf;
  1963. end
  1964. else
  1965. Result:=fsNaN;
  1966. else
  1967. begin
  1968. if Sign then
  1969. Result:=fsNegative
  1970. else
  1971. Result:=fsPositive;
  1972. end;
  1973. end;
  1974. end;
  1975. procedure TDoubleRec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  1976. begin
  1977. Value := 0.0;
  1978. SetSign(_Sign);
  1979. if (_Mantissa=0) and (_Exponent=0) then
  1980. Exit //SetExp(0)
  1981. else
  1982. SetExp(_Exponent + Bias);
  1983. SetFrac(_Mantissa and $fffffffffffff); //clear top bit
  1984. end;
  1985. {$endif SUPPORT_DOUBLE}
  1986. {$ifdef SUPPORT_SINGLE}
  1987. function TSingleRec.Mantissa(IncludeHiddenBit: Boolean = False) : QWord;
  1988. begin
  1989. Result:=(Data and $7fffff);
  1990. if (Result=0) and (GetExp=0) then Exit;
  1991. if IncludeHiddenBit then Result:=Result or $800000; //add the hidden bit
  1992. end;
  1993. function TSingleRec.Fraction : ValReal;
  1994. begin
  1995. Result:=system.frac(Value);
  1996. end;
  1997. function TSingleRec.Exponent : Longint;
  1998. var
  1999. E: QWord;
  2000. begin
  2001. Result := 0;
  2002. E := GetExp;
  2003. if (0<E) and (E<2*Bias+1) then
  2004. Result:=Exp-Bias
  2005. else if (Exp=0) and (Frac<>0) then
  2006. Result:=-(Bias-1);
  2007. end;
  2008. function TSingleRec.GetExp : QWord;
  2009. begin
  2010. Result:=(Data and $7f800000) shr 23;
  2011. end;
  2012. procedure TSingleRec.SetExp(e : QWord);
  2013. begin
  2014. Data:=(Data and $807fffff) or ((e and $ff) shl 23);
  2015. end;
  2016. function TSingleRec.GetSign : Boolean;
  2017. begin
  2018. Result:=(Data and $80000000)<>0;
  2019. end;
  2020. procedure TSingleRec.SetSign(s : Boolean);
  2021. begin
  2022. Data:=(Data and $7fffffff) or (DWord(ord(s)) shl 31);
  2023. end;
  2024. function TSingleRec.GetFrac : QWord;
  2025. begin
  2026. Result:=Data and $7fffff;
  2027. end;
  2028. procedure TSingleRec.SetFrac(e : QWord);
  2029. begin
  2030. Data:=(Data and $ff800000) or (e and $7fffff);
  2031. end;
  2032. {
  2033. Based on information taken from http://en.wikipedia.org/wiki/Single_precision#x86_Extended_Precision_Format
  2034. }
  2035. function TSingleRec.SpecialType : TFloatSpecial;
  2036. const
  2037. Denormal : array[boolean] of TFloatSpecial = (fsDenormal,fsNDenormal);
  2038. begin
  2039. case Exp of
  2040. 0:
  2041. begin
  2042. if Mantissa=0 then
  2043. begin
  2044. if Sign then
  2045. Result:=fsNZero
  2046. else
  2047. Result:=fsZero
  2048. end
  2049. else
  2050. Result:=Denormal[Sign];
  2051. end;
  2052. $ff:
  2053. if Mantissa=0 then
  2054. begin
  2055. if Sign then
  2056. Result:=fsNInf
  2057. else
  2058. Result:=fsInf;
  2059. end
  2060. else
  2061. Result:=fsNaN;
  2062. else
  2063. begin
  2064. if Sign then
  2065. Result:=fsNegative
  2066. else
  2067. Result:=fsPositive;
  2068. end;
  2069. end;
  2070. end;
  2071. procedure TSingleRec.BuildUp(const _Sign: Boolean; const _Mantissa: QWord; const _Exponent: Longint);
  2072. begin
  2073. Value := 0.0;
  2074. SetSign(_Sign);
  2075. if (_Mantissa=0) and (_Exponent=0) then
  2076. Exit //SetExp(0)
  2077. else
  2078. SetExp(_Exponent + Bias);
  2079. SetFrac(_Mantissa and $7fffff); //clear top bit
  2080. end;
  2081. {$endif SUPPORT_SINGLE}