cpubase.pas 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# Base unit for processor information. This unit contains
  18. enumerations of registers, opcodes, sizes, and other
  19. such things which are processor specific.
  20. }
  21. unit cpubase;
  22. {$i fpcdefs.inc}
  23. interface
  24. uses
  25. cutils,cclasses,
  26. globtype,globals,
  27. cpuinfo,
  28. aasmbase,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. TAsmOp= {$i armop.inc}
  36. { This should define the array of instructions as string }
  37. op2strtable=array[tasmop] of string[11];
  38. const
  39. { First value of opcode enumeration }
  40. firstop = low(tasmop);
  41. { Last value of opcode enumeration }
  42. lastop = high(tasmop);
  43. {*****************************************************************************
  44. Registers
  45. *****************************************************************************}
  46. type
  47. { Number of registers used for indexing in tables }
  48. tregisterindex=0..{$i rarmnor.inc}-1;
  49. const
  50. { Available Superregisters }
  51. {$i rarmsup.inc}
  52. RS_PC = RS_R15;
  53. { No Subregisters }
  54. R_SUBWHOLE = R_SUBNONE;
  55. { Available Registers }
  56. {$i rarmcon.inc}
  57. { aliases }
  58. NR_PC = NR_R15;
  59. { Integer Super registers first and last }
  60. first_int_supreg = RS_R0;
  61. first_int_imreg = $10;
  62. { Float Super register first and last }
  63. first_fpu_supreg = RS_F0;
  64. first_fpu_imreg = $08;
  65. { MM Super register first and last }
  66. first_mm_supreg = RS_S0;
  67. first_mm_imreg = $20;
  68. {$warning TODO Calculate bsstart}
  69. regnumber_count_bsstart = 64;
  70. regnumber_table : array[tregisterindex] of tregister = (
  71. {$i rarmnum.inc}
  72. );
  73. regstabs_table : array[tregisterindex] of shortint = (
  74. {$i rarmsta.inc}
  75. );
  76. regdwarf_table : array[tregisterindex] of shortint = (
  77. {$i rarmdwa.inc}
  78. );
  79. { registers which may be destroyed by calls }
  80. VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R15];
  81. VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
  82. type
  83. totherregisterset = set of tregisterindex;
  84. {*****************************************************************************
  85. Instruction post fixes
  86. *****************************************************************************}
  87. type
  88. { ARM instructions load/store and arithmetic instructions
  89. can have several instruction post fixes which are collected
  90. in this enumeration
  91. }
  92. TOpPostfix = (PF_None,
  93. { update condition flags
  94. or floating point single }
  95. PF_S,
  96. { floating point size }
  97. PF_D,PF_E,PF_P,PF_EP,
  98. { load/store }
  99. PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
  100. { multiple load/store address modes }
  101. PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA
  102. );
  103. TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
  104. const
  105. cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
  106. PF_None,
  107. PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
  108. PF_S,PF_D,PF_E,PF_None,PF_None);
  109. oppostfix2str : array[TOpPostfix] of string[2] = ('',
  110. 's',
  111. 'd','e','p','ep',
  112. 'b','sb','bt','h','sh','t',
  113. 'ia','ib','da','db','fd','fa','ed','ea');
  114. roundingmode2str : array[TRoundingMode] of string[1] = ('',
  115. 'p','m','z');
  116. {*****************************************************************************
  117. Conditions
  118. *****************************************************************************}
  119. type
  120. TAsmCond=(C_None,
  121. C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  122. C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
  123. );
  124. const
  125. cond2str : array[TAsmCond] of string[2]=('',
  126. 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
  127. 'ge','lt','gt','le','al','nv'
  128. );
  129. uppercond2str : array[TAsmCond] of string[2]=('',
  130. 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
  131. 'GE','LT','GT','LE','AL','NV'
  132. );
  133. {*****************************************************************************
  134. Flags
  135. *****************************************************************************}
  136. type
  137. TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
  138. F_GE,F_LT,F_GT,F_LE);
  139. {*****************************************************************************
  140. Operands
  141. *****************************************************************************}
  142. taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
  143. tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
  144. tupdatereg = (UR_None,UR_Update);
  145. pshifterop = ^tshifterop;
  146. tshifterop = record
  147. shiftmode : tshiftmode;
  148. rs : tregister;
  149. shiftimm : byte;
  150. end;
  151. {*****************************************************************************
  152. Constants
  153. *****************************************************************************}
  154. const
  155. max_operands = 4;
  156. {# Constant defining possibly all registers which might require saving }
  157. ALL_OTHERREGISTERS = [];
  158. general_superregisters = [RS_R0..RS_PC];
  159. {# Table of registers which can be allocated by the code generator
  160. internally, when generating the code.
  161. }
  162. { legend: }
  163. { xxxregs = set of all possibly used registers of that type in the code }
  164. { generator }
  165. { usableregsxxx = set of all 32bit components of registers that can be }
  166. { possible allocated to a regvar or using getregisterxxx (this }
  167. { excludes registers which can be only used for parameter }
  168. { passing on ABI's that define this) }
  169. { c_countusableregsxxx = amount of registers in the usableregsxxx set }
  170. maxintregs = 15;
  171. { to determine how many registers to use for regvars }
  172. maxintscratchregs = 3;
  173. usableregsint = [RS_R4..RS_R10];
  174. c_countusableregsint = 7;
  175. maxfpuregs = 8;
  176. fpuregs = [RS_F0..RS_F7];
  177. usableregsfpu = [RS_F4..RS_F7];
  178. c_countusableregsfpu = 4;
  179. mmregs = [RS_D0..RS_D15];
  180. usableregsmm = [RS_D8..RS_D15];
  181. c_countusableregsmm = 8;
  182. maxaddrregs = 0;
  183. addrregs = [];
  184. usableregsaddr = [];
  185. c_countusableregsaddr = 0;
  186. {*****************************************************************************
  187. Operand Sizes
  188. *****************************************************************************}
  189. type
  190. topsize = (S_NO,
  191. S_B,S_W,S_L,S_BW,S_BL,S_WL,
  192. S_IS,S_IL,S_IQ,
  193. S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
  194. );
  195. {*****************************************************************************
  196. Constants
  197. *****************************************************************************}
  198. const
  199. firstsaveintreg = RS_R4;
  200. lastsaveintreg = RS_R10;
  201. firstsavefpureg = RS_F4;
  202. lastsavefpureg = RS_F7;
  203. firstsavemmreg = RS_D8;
  204. lastsavemmreg = RS_D15;
  205. maxvarregs = 7;
  206. varregs : Array [1..maxvarregs] of tsuperregister =
  207. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  208. maxfpuvarregs = 4;
  209. fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
  210. (RS_F4,RS_F5,RS_F6,RS_F7);
  211. {*****************************************************************************
  212. Default generic sizes
  213. *****************************************************************************}
  214. { Defines the default address size for a processor, }
  215. OS_ADDR = OS_32;
  216. { the natural int size for a processor, }
  217. OS_INT = OS_32;
  218. OS_SINT = OS_S32;
  219. { the maximum float size for a processor, }
  220. OS_FLOAT = OS_F64;
  221. { the size of a vector register for a processor }
  222. OS_VECTOR = OS_M32;
  223. {*****************************************************************************
  224. Generic Register names
  225. *****************************************************************************}
  226. { Stack pointer register }
  227. NR_STACK_POINTER_REG = NR_R13;
  228. RS_STACK_POINTER_REG = RS_R13;
  229. { Frame pointer register }
  230. RS_FRAME_POINTER_REG = RS_R11;
  231. NR_FRAME_POINTER_REG = NR_R11;
  232. { Register for addressing absolute data in a position independant way,
  233. such as in PIC code. The exact meaning is ABI specific. For
  234. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  235. }
  236. NR_PIC_OFFSET_REG = NR_R9;
  237. { Results are returned in this register (32-bit values) }
  238. NR_FUNCTION_RETURN_REG = NR_R0;
  239. RS_FUNCTION_RETURN_REG = RS_R0;
  240. { Low part of 64bit return value }
  241. NR_FUNCTION_RETURN64_LOW_REG = NR_R0;
  242. RS_FUNCTION_RETURN64_LOW_REG = RS_R0;
  243. { High part of 64bit return value }
  244. NR_FUNCTION_RETURN64_HIGH_REG = NR_R1;
  245. RS_FUNCTION_RETURN64_HIGH_REG = RS_R1;
  246. { The value returned from a function is available in this register }
  247. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  248. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  249. { The lowh part of 64bit value returned from a function }
  250. NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG;
  251. RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG;
  252. { The high part of 64bit value returned from a function }
  253. NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG;
  254. RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG;
  255. NR_FPU_RESULT_REG = NR_F0;
  256. NR_MM_RESULT_REG = NR_NO;
  257. NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
  258. { Offset where the parent framepointer is pushed }
  259. PARENT_FRAMEPOINTER_OFFSET = 0;
  260. {*****************************************************************************
  261. GCC /ABI linking information
  262. *****************************************************************************}
  263. const
  264. { Registers which must be saved when calling a routine declared as
  265. cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
  266. saved should be the ones as defined in the target ABI and / or GCC.
  267. This value can be deduced from the CALLED_USED_REGISTERS array in the
  268. GCC source.
  269. }
  270. saved_standard_registers : array[0..6] of tsuperregister =
  271. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  272. { Required parameter alignment when calling a routine declared as
  273. stdcall and cdecl. The alignment value should be the one defined
  274. by GCC or the target ABI.
  275. The value of this constant is equal to the constant
  276. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  277. }
  278. std_param_align = 4;
  279. {*****************************************************************************
  280. Helpers
  281. *****************************************************************************}
  282. { Returns the tcgsize corresponding with the size of reg.}
  283. function reg_cgsize(const reg: tregister) : tcgsize;
  284. function cgsize2subreg(s:Tcgsize):Tsubregister;
  285. function is_calljmp(o:tasmop):boolean;
  286. procedure inverse_flags(var f: TResFlags);
  287. function flags_to_cond(const f: TResFlags) : TAsmCond;
  288. function findreg_by_number(r:Tregister):tregisterindex;
  289. function std_regnum_search(const s:string):Tregister;
  290. function std_regname(r:Tregister):string;
  291. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  292. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  293. procedure shifterop_reset(var so : tshifterop);
  294. function is_pc(const r : tregister) : boolean;
  295. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  296. function dwarf_reg(r:tregister):shortint;
  297. implementation
  298. uses
  299. rgBase,verbose;
  300. const
  301. std_regname_table : array[tregisterindex] of string[7] = (
  302. {$i rarmstd.inc}
  303. );
  304. regnumber_index : array[tregisterindex] of tregisterindex = (
  305. {$i rarmrni.inc}
  306. );
  307. std_regname_index : array[tregisterindex] of tregisterindex = (
  308. {$i rarmsri.inc}
  309. );
  310. function cgsize2subreg(s:Tcgsize):Tsubregister;
  311. begin
  312. cgsize2subreg:=R_SUBWHOLE;
  313. end;
  314. function reg_cgsize(const reg: tregister): tcgsize;
  315. begin
  316. case getregtype(reg) of
  317. R_INTREGISTER :
  318. reg_cgsize:=OS_32;
  319. R_FPUREGISTER :
  320. reg_cgsize:=OS_F80;
  321. else
  322. internalerror(200303181);
  323. end;
  324. end;
  325. function is_calljmp(o:tasmop):boolean;
  326. begin
  327. { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
  328. To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
  329. is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
  330. end;
  331. procedure inverse_flags(var f: TResFlags);
  332. const
  333. inv_flags: array[TResFlags] of TResFlags =
  334. (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
  335. F_LT,F_GE,F_LE,F_GT);
  336. begin
  337. f:=inv_flags[f];
  338. end;
  339. function flags_to_cond(const f: TResFlags) : TAsmCond;
  340. const
  341. flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
  342. (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  343. C_GE,C_LT,C_GT,C_LE);
  344. begin
  345. if f>high(flag_2_cond) then
  346. internalerror(200112301);
  347. result:=flag_2_cond[f];
  348. end;
  349. function findreg_by_number(r:Tregister):tregisterindex;
  350. begin
  351. result:=rgBase.findreg_by_number_table(r,regnumber_index);
  352. end;
  353. function std_regnum_search(const s:string):Tregister;
  354. begin
  355. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  356. end;
  357. function std_regname(r:Tregister):string;
  358. var
  359. p : tregisterindex;
  360. begin
  361. p:=findreg_by_number_table(r,regnumber_index);
  362. if p<>0 then
  363. result:=std_regname_table[p]
  364. else
  365. result:=generic_regname(r);
  366. end;
  367. procedure shifterop_reset(var so : tshifterop);
  368. begin
  369. FillChar(so,sizeof(so),0);
  370. end;
  371. function is_pc(const r : tregister) : boolean;
  372. begin
  373. is_pc:=(r=NR_R15);
  374. end;
  375. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  376. const
  377. inverse: array[TAsmCond] of TAsmCond=(C_None,
  378. C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
  379. C_LT,C_GE,C_LE,C_GT,C_None,C_None
  380. );
  381. begin
  382. result := inverse[c];
  383. end;
  384. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  385. begin
  386. result := c1 = c2;
  387. end;
  388. function rotl(d : dword;b : byte) : dword;
  389. begin
  390. result:=(d shr (32-b)) or (d shl b);
  391. end;
  392. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  393. var
  394. i : longint;
  395. begin
  396. for i:=0 to 15 do
  397. begin
  398. if (dword(d) and not(rotl($ff,i*2)))=0 then
  399. begin
  400. imm_shift:=i*2;
  401. result:=true;
  402. exit;
  403. end;
  404. end;
  405. result:=false;
  406. end;
  407. function dwarf_reg(r:tregister):shortint;
  408. begin
  409. result:=regdwarf_table[findreg_by_number(r)];
  410. if result=-1 then
  411. internalerror(200603251);
  412. end;
  413. end.