ncgmat.pas 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl
  3. Generate generic mathematical nodes
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. unit ncgmat;
  18. {$i fpcdefs.inc}
  19. interface
  20. uses
  21. node,nmat,cpubase,cgbase;
  22. type
  23. tcgunaryminusnode = class(tunaryminusnode)
  24. protected
  25. { This routine is called to change the sign of the
  26. floating point value in the floating point
  27. register r.
  28. This routine should be overridden, since
  29. the generic version is not optimal at all. The
  30. generic version assumes that floating
  31. point values are stored in the register
  32. in IEEE-754 format.
  33. }
  34. procedure emit_float_sign_change(r: tregister; _size : tcgsize);virtual;
  35. {$ifdef SUPPORT_MMX}
  36. procedure second_mmx;virtual;abstract;
  37. {$endif SUPPORT_MMX}
  38. {$ifndef cpu64bitalu}
  39. procedure second_64bit;virtual;
  40. {$endif not cpu64bitalu}
  41. procedure second_integer;virtual;
  42. procedure second_float;virtual;
  43. public
  44. procedure pass_generate_code;override;
  45. end;
  46. tcgmoddivnode = class(tmoddivnode)
  47. procedure pass_generate_code;override;
  48. protected
  49. { This routine must do an actual 32-bit division, be it
  50. signed or unsigned. The result must set into the the
  51. @var(num) register.
  52. @param(signed Indicates if the division must be signed)
  53. @param(denum Register containing the denominator
  54. @param(num Register containing the numerator, will also receive result)
  55. The actual optimizations regarding shifts have already
  56. been done and emitted, so this should really a do a divide.
  57. }
  58. procedure emit_div_reg_reg(signed: boolean;denum,num : tregister);virtual;abstract;
  59. { This routine must do an actual 32-bit modulo, be it
  60. signed or unsigned. The result must set into the the
  61. @var(num) register.
  62. @param(signed Indicates if the modulo must be signed)
  63. @param(denum Register containing the denominator
  64. @param(num Register containing the numerator, will also receive result)
  65. The actual optimizations regarding shifts have already
  66. been done and emitted, so this should really a do a modulo.
  67. }
  68. procedure emit_mod_reg_reg(signed: boolean;denum,num : tregister);virtual;abstract;
  69. {$ifndef cpu64bitalu}
  70. { This routine must do an actual 64-bit division, be it
  71. signed or unsigned. The result must set into the the
  72. @var(num) register.
  73. @param(signed Indicates if the division must be signed)
  74. @param(denum Register containing the denominator
  75. @param(num Register containing the numerator, will also receive result)
  76. The actual optimizations regarding shifts have already
  77. been done and emitted, so this should really a do a divide.
  78. Currently, this routine should only be implemented on
  79. 64-bit systems, otherwise a helper is called in 1st pass.
  80. }
  81. procedure emit64_div_reg_reg(signed: boolean;denum,num : tregister64);virtual;
  82. {$endif not cpu64bitalu}
  83. end;
  84. tcgshlshrnode = class(tshlshrnode)
  85. {$ifndef cpu64bitalu}
  86. procedure second_64bit;virtual;
  87. {$endif not cpu64bitalu}
  88. procedure second_integer;virtual;
  89. procedure pass_generate_code;override;
  90. end;
  91. tcgnotnode = class(tnotnode)
  92. protected
  93. procedure second_boolean;virtual;abstract;
  94. {$ifdef SUPPORT_MMX}
  95. procedure second_mmx;virtual;abstract;
  96. {$endif SUPPORT_MMX}
  97. {$ifndef cpu64bitalu}
  98. procedure second_64bit;virtual;
  99. {$endif not cpu64bitalu}
  100. procedure second_integer;virtual;
  101. public
  102. procedure pass_generate_code;override;
  103. end;
  104. implementation
  105. uses
  106. globtype,systems,
  107. cutils,verbose,globals,
  108. symconst,symtype,symdef,aasmbase,aasmtai,aasmdata,aasmcpu,defutil,
  109. parabase,
  110. pass_2,
  111. ncon,
  112. tgobj,ncgutil,cgobj,cgutils,paramgr,hlcgobj
  113. {$ifndef cpu64bitalu}
  114. ,cg64f32
  115. {$endif not cpu64bitalu}
  116. ;
  117. {*****************************************************************************
  118. TCGUNARYMINUSNODE
  119. *****************************************************************************}
  120. procedure tcgunaryminusnode.emit_float_sign_change(r: tregister; _size : tcgsize);
  121. var
  122. href,
  123. href2 : treference;
  124. begin
  125. { get a temporary memory reference to store the floating
  126. point value
  127. }
  128. tg.gettemp(current_asmdata.CurrAsmList,tcgsize2size[_size],tcgsize2size[_size],tt_normal,href);
  129. { store the floating point value in the temporary memory area }
  130. cg.a_loadfpu_reg_ref(current_asmdata.CurrAsmList,_size,_size,r,href);
  131. { only single and double ieee are supported, for little endian
  132. the signed bit is in the second dword }
  133. href2:=href;
  134. case _size of
  135. OS_F64 :
  136. if target_info.endian = endian_little then
  137. inc(href2.offset,4);
  138. OS_F32 :
  139. ;
  140. else
  141. internalerror(200406021);
  142. end;
  143. { flip sign-bit (bit 31/63) of single/double }
  144. cg.a_op_const_ref(current_asmdata.CurrAsmList,OP_XOR,OS_32,aint($80000000),href2);
  145. cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,_size,_size,href,r);
  146. tg.ungetiftemp(current_asmdata.CurrAsmList,href);
  147. end;
  148. {$ifndef cpu64bitalu}
  149. procedure tcgunaryminusnode.second_64bit;
  150. var
  151. tr: tregister;
  152. hl: tasmlabel;
  153. begin
  154. secondpass(left);
  155. location_reset(location,LOC_REGISTER,left.location.size);
  156. location.register64.reglo:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  157. location.register64.reghi:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  158. cg64.a_op64_loc_reg(current_asmdata.CurrAsmList,OP_NEG,OS_S64,
  159. left.location,joinreg64(location.register64.reglo,location.register64.reghi));
  160. { there's only overflow in case left was low(int64) -> -left = left }
  161. if (cs_check_overflow in current_settings.localswitches) then
  162. begin
  163. tr:=cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  164. cg.a_op_const_reg_reg(current_asmdata.CurrAsmList,OP_XOR,OS_INT,
  165. aint($80000000),location.register64.reghi,tr);
  166. cg.a_op_reg_reg(current_asmdata.CurrAsmList,OP_OR,OS_INT,
  167. location.register64.reglo,tr);
  168. current_asmdata.getjumplabel(hl);
  169. cg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,OS_INT,OC_NE,0,tr,hl);
  170. cg.a_call_name(current_asmdata.CurrAsmList,'FPC_OVERFLOW',false);
  171. cg.a_label(current_asmdata.CurrAsmList,hl);
  172. end;
  173. end;
  174. {$endif not cpu64bitalu}
  175. procedure tcgunaryminusnode.second_float;
  176. begin
  177. secondpass(left);
  178. location_reset(location,LOC_FPUREGISTER,def_cgsize(resultdef));
  179. case left.location.loc of
  180. LOC_REFERENCE,
  181. LOC_CREFERENCE :
  182. begin
  183. location.register:=cg.getfpuregister(current_asmdata.CurrAsmList,location.size);
  184. cg.a_loadfpu_ref_reg(current_asmdata.CurrAsmList,
  185. left.location.size,location.size,
  186. left.location.reference,location.register);
  187. emit_float_sign_change(location.register,def_cgsize(left.resultdef));
  188. end;
  189. LOC_FPUREGISTER:
  190. begin
  191. location.register:=left.location.register;
  192. emit_float_sign_change(location.register,def_cgsize(left.resultdef));
  193. end;
  194. LOC_CFPUREGISTER:
  195. begin
  196. location.register:=cg.getfpuregister(current_asmdata.CurrAsmList,location.size);
  197. cg.a_loadfpu_reg_reg(current_asmdata.CurrAsmList,left.location.size,location.size,left.location.register,location.register);
  198. emit_float_sign_change(location.register,def_cgsize(left.resultdef));
  199. end;
  200. else
  201. internalerror(200306021);
  202. end;
  203. end;
  204. procedure tcgunaryminusnode.second_integer;
  205. var
  206. hl: tasmlabel;
  207. opsize: tdef;
  208. begin
  209. secondpass(left);
  210. { load left operator in a register }
  211. location_copy(location,left.location);
  212. { in case of a 32 bit system that can natively execute 64 bit operations }
  213. if (left.resultdef.size<=sinttype.size) then
  214. opsize:=sinttype
  215. else
  216. opsize:=s64inttype;
  217. hlcg.location_force_reg(current_asmdata.CurrAsmList,location,left.resultdef,opsize,false);
  218. hlcg.a_op_reg_reg(current_asmdata.CurrAsmList,OP_NEG,opsize,location.register,location.register);
  219. if (cs_check_overflow in current_settings.localswitches) then
  220. begin
  221. current_asmdata.getjumplabel(hl);
  222. hlcg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,opsize,OC_NE,low(aint),location.register,hl);
  223. cg.a_call_name(current_asmdata.CurrAsmList,'FPC_OVERFLOW',false);
  224. hlcg.a_label(current_asmdata.CurrAsmList,hl);
  225. end;
  226. end;
  227. procedure tcgunaryminusnode.pass_generate_code;
  228. begin
  229. {$ifndef cpu64bitalu}
  230. if is_64bit(left.resultdef) then
  231. second_64bit
  232. else
  233. {$endif not cpu64bitalu}
  234. {$ifdef SUPPORT_MMX}
  235. if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(left.resultdef) then
  236. second_mmx
  237. else
  238. {$endif SUPPORT_MMX}
  239. if (left.resultdef.typ=floatdef) then
  240. second_float
  241. else
  242. second_integer;
  243. end;
  244. {*****************************************************************************
  245. TCGMODDIVNODE
  246. *****************************************************************************}
  247. {$ifndef cpu64bitalu}
  248. procedure tcgmoddivnode.emit64_div_reg_reg(signed: boolean; denum,num:tregister64);
  249. begin
  250. { handled in pass_1 already, unless pass_1 is
  251. overridden
  252. }
  253. { should be handled in pass_1 (JM) }
  254. internalerror(200109052);
  255. end;
  256. {$endif not cpu64bitalu}
  257. procedure tcgmoddivnode.pass_generate_code;
  258. var
  259. hreg1 : tregister;
  260. hdenom : tregister;
  261. power : longint;
  262. hl : tasmlabel;
  263. paraloc1 : tcgpara;
  264. opsize : tcgsize;
  265. opdef : tdef;
  266. begin
  267. secondpass(left);
  268. if codegenerror then
  269. exit;
  270. secondpass(right);
  271. if codegenerror then
  272. exit;
  273. location_copy(location,left.location);
  274. {$ifndef cpu64bitalu}
  275. if is_64bit(resultdef) then
  276. begin
  277. if is_signed(left.resultdef) then
  278. opdef:=s64inttype
  279. else
  280. opdef:=u64inttype;
  281. { this code valid for 64-bit cpu's only ,
  282. otherwise helpers are called in pass_1
  283. }
  284. hlcg.location_force_reg(current_asmdata.CurrAsmList,location,left.resultdef,opdef,false);
  285. location_copy(location,left.location);
  286. hlcg.location_force_reg(current_asmdata.CurrAsmList,right.location,right.resultdef,opdef,false);
  287. emit64_div_reg_reg(is_signed(left.resultdef),
  288. joinreg64(right.location.register64.reglo,right.location.register64.reghi),
  289. joinreg64(location.register64.reglo,location.register64.reghi));
  290. end
  291. else
  292. {$endif not cpu64bitalu}
  293. begin
  294. if is_signed(left.resultdef) then
  295. begin
  296. opsize:=OS_SINT;
  297. opdef:=ossinttype;
  298. end
  299. else
  300. begin
  301. opsize:=OS_INT;
  302. opdef:=osuinttype;
  303. end;
  304. { put numerator in register }
  305. hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,opdef,false);
  306. hreg1:=left.location.register;
  307. if (nodetype=divn) and
  308. (right.nodetype=ordconstn) and
  309. ispowerof2(tordconstnode(right).value.svalue,power) then
  310. Begin
  311. { for signed numbers, the numerator must be adjusted before the
  312. shift instruction, but not wih unsigned numbers! Otherwise,
  313. "Cardinal($ffffffff) div 16" overflows! (JM) }
  314. If is_signed(left.resultdef) Then
  315. Begin
  316. current_asmdata.getjumplabel(hl);
  317. cg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,OS_INT,OC_GT,0,hreg1,hl);
  318. if power=1 then
  319. cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_ADD,OS_INT,1,hreg1)
  320. else
  321. cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_ADD,OS_INT,Tordconstnode(right).value.svalue-1,hreg1);
  322. cg.a_label(current_asmdata.CurrAsmList,hl);
  323. cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SAR,OS_INT,power,hreg1);
  324. End
  325. Else { not signed }
  326. cg.a_op_const_reg(current_asmdata.CurrAsmList,OP_SHR,OS_INT,power,hreg1);
  327. End
  328. else
  329. begin
  330. { bring denominator to hdenom }
  331. { hdenom is always free, it's }
  332. { only used for temporary }
  333. { purposes }
  334. hdenom := cg.getintregister(current_asmdata.CurrAsmList,OS_INT);
  335. hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,osuinttype,right.location,hdenom);
  336. { verify if the divisor is zero, if so return an error
  337. immediately
  338. }
  339. current_asmdata.getjumplabel(hl);
  340. cg.a_cmp_const_reg_label(current_asmdata.CurrAsmList,OS_INT,OC_NE,0,hdenom,hl);
  341. paraloc1.init;
  342. paramanager.getintparaloc(pocall_default,1,s32inttype,paraloc1);
  343. cg.a_load_const_cgpara(current_asmdata.CurrAsmList,OS_S32,aint(200),paraloc1);
  344. paramanager.freecgpara(current_asmdata.CurrAsmList,paraloc1);
  345. cg.a_call_name(current_asmdata.CurrAsmList,'FPC_HANDLEERROR',false);
  346. paraloc1.done;
  347. cg.a_label(current_asmdata.CurrAsmList,hl);
  348. if nodetype = modn then
  349. emit_mod_reg_reg(is_signed(left.resultdef),hdenom,hreg1)
  350. else
  351. emit_div_reg_reg(is_signed(left.resultdef),hdenom,hreg1);
  352. end;
  353. location_reset(location,LOC_REGISTER,opsize);
  354. location.register:=hreg1;
  355. end;
  356. cg.g_overflowcheck(current_asmdata.CurrAsmList,location,resultdef);
  357. end;
  358. {*****************************************************************************
  359. TCGSHLRSHRNODE
  360. *****************************************************************************}
  361. {$ifndef cpu64bitalu}
  362. procedure tcgshlshrnode.second_64bit;
  363. begin
  364. { already hanled in 1st pass }
  365. internalerror(2002081501);
  366. end;
  367. {$endif not cpu64bitalu}
  368. procedure tcgshlshrnode.second_integer;
  369. var
  370. op : topcg;
  371. opdef : tdef;
  372. hcountreg : tregister;
  373. opsize : tcgsize;
  374. begin
  375. { determine operator }
  376. case nodetype of
  377. shln: op:=OP_SHL;
  378. shrn: op:=OP_SHR;
  379. end;
  380. {$ifdef cpunodefaultint}
  381. opsize:=left.location.size;
  382. opdef:=left.resultdef;
  383. {$else cpunodefaultint}
  384. { load left operators in a register }
  385. if is_signed(left.resultdef) then
  386. begin
  387. opsize:=OS_SINT;
  388. opdef:=ossinttype
  389. end
  390. else
  391. begin
  392. opsize:=OS_INT;
  393. opdef:=osuinttype;
  394. end;
  395. {$endif cpunodefaultint}
  396. hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,opdef,true);
  397. location_reset(location,LOC_REGISTER,opsize);
  398. location.register:=cg.getintregister(current_asmdata.CurrAsmList,opsize);
  399. { shifting by a constant directly coded: }
  400. if (right.nodetype=ordconstn) then
  401. begin
  402. { l shl 32 should 0 imho, but neither TP nor Delphi do it in this way (FK)
  403. if right.value<=31 then
  404. }
  405. cg.a_op_const_reg_reg(current_asmdata.CurrAsmList,op,location.size,
  406. tordconstnode(right).value.uvalue and 31,left.location.register,location.register);
  407. {
  408. else
  409. emit_reg_reg(A_XOR,S_L,hregister1,
  410. hregister1);
  411. }
  412. end
  413. else
  414. begin
  415. { load right operators in a register - this
  416. is done since most target cpu which will use this
  417. node do not support a shift count in a mem. location (cec)
  418. }
  419. if not(right.location.loc in [LOC_CREGISTER,LOC_REGISTER]) then
  420. begin
  421. hcountreg:=cg.getintregister(current_asmdata.CurrAsmList,opsize);
  422. hlcg.a_load_loc_reg(current_asmdata.CurrAsmList,right.resultdef,opdef,right.location,hcountreg);
  423. end
  424. else
  425. hcountreg:=right.location.register;
  426. cg.a_op_reg_reg_reg(current_asmdata.CurrAsmList,op,opsize,hcountreg,left.location.register,location.register);
  427. end;
  428. end;
  429. procedure tcgshlshrnode.pass_generate_code;
  430. begin
  431. secondpass(left);
  432. secondpass(right);
  433. {$ifndef cpu64bitalu}
  434. if is_64bit(left.resultdef) then
  435. second_64bit
  436. else
  437. {$endif not cpu64bitalu}
  438. second_integer;
  439. end;
  440. {*****************************************************************************
  441. TCGNOTNODE
  442. *****************************************************************************}
  443. {$ifndef cpu64bitalu}
  444. procedure tcgnotnode.second_64bit;
  445. begin
  446. secondpass(left);
  447. hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,false);
  448. location_copy(location,left.location);
  449. { perform the NOT operation }
  450. cg64.a_op64_reg_reg(current_asmdata.CurrAsmList,OP_NOT,location.size,left.location.register64,location.register64);
  451. end;
  452. {$endif not cpu64bitalu}
  453. procedure tcgnotnode.second_integer;
  454. begin
  455. secondpass(left);
  456. hlcg.location_force_reg(current_asmdata.CurrAsmList,left.location,left.resultdef,left.resultdef,false);
  457. location_copy(location,left.location);
  458. { perform the NOT operation }
  459. hlcg.a_op_reg_reg(current_asmdata.CurrAsmList,OP_NOT,left.resultdef,location.register,location.register);
  460. end;
  461. procedure tcgnotnode.pass_generate_code;
  462. begin
  463. if is_boolean(resultdef) then
  464. second_boolean
  465. {$ifdef SUPPORT_MMX}
  466. else if (cs_mmx in current_settings.localswitches) and is_mmx_able_array(left.resultdef) then
  467. second_mmx
  468. {$endif SUPPORT_MMX}
  469. {$ifndef cpu64bitalu}
  470. else if is_64bit(left.resultdef) then
  471. second_64bit
  472. {$endif not cpu64bitalu}
  473. else
  474. second_integer;
  475. end;
  476. begin
  477. cmoddivnode:=tcgmoddivnode;
  478. cunaryminusnode:=tcgunaryminusnode;
  479. cshlshrnode:=tcgshlshrnode;
  480. cnotnode:=tcgnotnode;
  481. end.