Browse Source

* replaced by genmath.inc

carl 23 years ago
parent
commit
3e7cd76b65
1 changed files with 0 additions and 885 deletions
  1. 0 885
      rtl/template/math.inc

+ 0 - 885
rtl/template/math.inc

@@ -1,885 +0,0 @@
-{
-    $Id$
-    This file is part of the Free Pascal run time library.
-    Copyright (c) 1999-2000 by xxxx
-    member of the Free Pascal development team
-
-    See the file COPYING.FPC, included in this distribution,
-    for details about the copyright.
-
-    This program is distributed in the hope that it will be useful,
-    but WITHOUT ANY WARRANTY; without even the implied warranty of
-    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
-
- **********************************************************************}
-{*************************************************************************}
-{  math.inc                                                               }
-{*************************************************************************}
-{       Copyright Abandoned, 1987, Fred Fish                              }
-{                                                                         }
-{       This previously copyrighted work has been placed into the         }
-{       public domain by the author (Fred Fish) and may be freely used    }
-{       for any purpose, private or commercial.  I would appreciate       }
-{       it, as a courtesy, if this notice is left in all copies and       }
-{       derivative works.  Thank you, and enjoy...                        }
-{                                                                         }
-{       The author makes no warranty of any kind with respect to this     }
-{       product and explicitly disclaims any implied warranties of        }
-{       merchantability or fitness for any particular purpose.            }
-{-------------------------------------------------------------------------}
-{       Copyright (c) 1992 Odent Jean Philippe                            }
-{                                                                         }
-{       The source can be modified as long as my name appears and some    }
-{       notes explaining the modifications done are included in the file. }
-{-------------------------------------------------------------------------}
-{       Copyright (c) 1997 Carl Eric Codere                               }
-{                                                                         }
-{       This include implements a template for                            }
-{       all real (whatever this type maps to) and fixed point standard    }
-{       rtl routines.                                                     }
-{       NOTE: Trunc and Int must be implemented depending on the target   }
-{             for real values.Sqrt must also be implemented for fixed.    }
-{*************************************************************************}
-
-
-
-type
-    TabCoef = array[0..6] of Real;
-
-
-const
-      PIO2   =  1.57079632679489661923;       {  pi/2        }
-      PIO4   =  7.85398163397448309616E-1;    {  pi/4        }
-      SQRT2  =  1.41421356237309504880;       {  sqrt(2)     }
-      SQRTH  =  7.07106781186547524401E-1;    {  sqrt(2)/2   }
-      LOG2E  =  1.4426950408889634073599;     {  1/log(2)    }
-      SQ2OPI =  7.9788456080286535587989E-1;  {  sqrt( 2/pi )}
-      LOGE2  =  6.93147180559945309417E-1;    {  log(2)      }
-      LOGSQ2 =  3.46573590279972654709E-1;    {  log(2)/2    }
-      THPIO4 =  2.35619449019234492885;       {  3*pi/4      }
-      TWOOPI =  6.36619772367581343075535E-1; {  2/pi        }
-      lossth =  1.073741824e9;
-      MAXLOG =  8.8029691931113054295988E1;    { log(2**127)  }
-      MINLOG = -8.872283911167299960540E1;     { log(2**-128) }
-
-      DP1 =   7.85398125648498535156E-1;
-      DP2 =   3.77489470793079817668E-8;
-      DP3 =   2.69515142907905952645E-15;
-
-const sincof : TabCoef = (
-                1.58962301576546568060E-10,
-               -2.50507477628578072866E-8,
-                2.75573136213857245213E-6,
-               -1.98412698295895385996E-4,
-                8.33333333332211858878E-3,
-               -1.66666666666666307295E-1, 0);
-      coscof : TabCoef = (
-               -1.13585365213876817300E-11,
-                2.08757008419747316778E-9,
-               -2.75573141792967388112E-7,
-                2.48015872888517045348E-5,
-               -1.38888888888730564116E-3,
-                4.16666666666665929218E-2, 0);
-
-
-    function int(d : real) : real;
-    { these routine should be implemented all depending on the }
-    { target processor/operating system.                       }
-      begin
-      end;
-
-    function trunc(d : real) : longint;
-    { these routine should be implemented all depending on the }
-    { target processor/operating system.                       }
-    Begin
-    end;
-
-
-    function abs(d : Real) : Real;
-    begin
-       if( d < 0.0 ) then
-         abs := -d
-      else
-         abs := d ;
-    end;
-
-
-    function frexp(x:Real; var e:Integer ):Real;
-    {*  frexp() extracts the exponent from x.  It returns an integer     *}
-    {*  power of two to expnt and the significand between 0.5 and 1      *}
-    {*  to y.  Thus  x = y * 2**expn.                                    *}
-    begin
-      e :=0;
-      if (abs(x)<0.5) then
-       While (abs(x)<0.5) do
-       begin
-         x := x*2;
-         Dec(e);
-       end
-      else
-       While (abs(x)>1) do
-       begin
-         x := x/2;
-         Inc(e);
-       end;
-      frexp := x;
-    end;
-
-
-    function ldexp( x: Real; N: Integer):Real;
-    {* ldexp() multiplies x by 2**n.                                    *}
-    var r : Real;
-    begin
-      R := 1;
-      if N>0 then
-         while N>0 do
-         begin
-            R:=R*2;
-            Dec(N);
-         end
-      else
-        while N<0 do
-        begin
-           R:=R/2;
-           Inc(N);
-        end;
-      ldexp := x * R;
-    end;
-
-
-    function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real;
-    {*****************************************************************}
-    { Evaluate polynomial                                             }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    {  int N;                                                         }
-    {  double x, y, coef[N+1], polevl[];                              }
-    {                                                                 }
-    {  y = polevl( x, coef, N );                                      }
-    {                                                                 }
-    {  DESCRIPTION:                                                   }
-    {                                                                 }
-    {     Evaluates polynomial of degree N:                           }
-    {                                                                 }
-    {                       2          N                              }
-    {   y  =  C  + C x + C x  +...+ C x                               }
-    {          0    1     2          N                                }
-    {                                                                 }
-    {   Coefficients are stored in reverse order:                     }
-    {                                                                 }
-    {   coef[0] = C  , ..., coef[N] = C  .                            }
-    {              N                   0                              }
-    {                                                                 }
-    {   The function p1evl() assumes that coef[N] = 1.0 and is        }
-    {   omitted from the array.  Its calling arguments are            }
-    {   otherwise the same as polevl().                               }
-    {                                                                 }
-    {  SPEED:                                                         }
-    {                                                                 }
-    {   In the interest of speed, there are no checks for out         }
-    {   of bounds arithmetic.  This routine is used by most of        }
-    {   the functions in the library.  Depending on available         }
-    {   equipment features, the user may wish to rewrite the          }
-    {   program in microcode or assembly language.                    }
-    {*****************************************************************}
-    var ans : Real;
-        i   : Integer;
-
-    begin
-      ans := Coef[0];
-      for i:=1 to N do
-        ans := ans * x + Coef[i];
-      polevl:=ans;
-    end;
-
-
-    function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real;
-    {                                                           }
-    { Evaluate polynomial when coefficient of x  is 1.0.        }
-    { Otherwise same as polevl.                                 }
-    {                                                           }
-    var
-        ans : Real;
-        i   : Integer;
-    begin
-      ans := x + Coef[0];
-      for i:=1 to N-1 do
-        ans := ans * x + Coef[i];
-      p1evl := ans;
-    end;
-
-
-
-
-
-    function sqr(d : Real) : Real;
-    begin
-      sqr := d*d;
-    end;
-
-
-    function pi : Real;
-    begin
-      pi := 3.1415926535897932385;
-    end;
-
-
-    function sqrt(x:Real):Real;
-    {*****************************************************************}
-    { Square root                                                     }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, sqrt();                                            }
-    {                                                                 }
-    { y = sqrt( x );                                                  }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns the square root of x.                                   }
-    {                                                                 }
-    { Range reduction involves isolating the power of two of the      }
-    { argument and using a polynomial approximation to obtain         }
-    { a rough value for the square root.  Then Heron's iteration      }
-    { is used three times to converge to an accurate value.           }
-    {*****************************************************************}
-    var e   : Integer;
-        w,z : Real;
-    begin
-       if( x <= 0.0 ) then
-       begin
-           if( x < 0.0 ) then
-               RunError(207);
-           sqrt := 0.0;
-       end
-     else
-       begin
-          w := x;
-          { separate exponent and significand }
-           z := frexp( x, e );
-
-          {  approximate square root of number between 0.5 and 1  }
-          {  relative error of approximation = 7.47e-3            }
-          x := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
-
-          { adjust for odd powers of 2 }
-          if odd(e) then
-             x := x*SQRT2;
-
-          { re-insert exponent }
-          x := ldexp( x, (e div 2) );
-
-          { Newton iterations: }
-          x := 0.5*(x + w/x);
-          x := 0.5*(x + w/x);
-          x := 0.5*(x + w/x);
-          x := 0.5*(x + w/x);
-          x := 0.5*(x + w/x);
-          x := 0.5*(x + w/x);
-          sqrt := x;
-       end;
-    end;
-
-
-
-
-    function Exp(x:Real):Real;
-    {*****************************************************************}
-    { Exponential Function                                            }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, exp();                                             }
-    {                                                                 }
-    { y = exp( x );                                                   }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns e (2.71828...) raised to the x power.                   }
-    {                                                                 }
-    { Range reduction is accomplished by separating the argument      }
-    { into an integer k and fraction f such that                      }
-    {                                                                 }
-    {     x    k  f                                                   }
-    {    e  = 2  e.                                                   }
-    {                                                                 }
-    { A Pade' form of degree 2/3 is used to approximate exp(f)- 1     }
-    { in the basic range [-0.5 ln 2, 0.5 ln 2].                       }
-    {*****************************************************************}
-    const  P : TabCoef = (
-           1.26183092834458542160E-4,
-           3.02996887658430129200E-2,
-           1.00000000000000000000E0, 0, 0, 0, 0);
-           Q : TabCoef = (
-           3.00227947279887615146E-6,
-           2.52453653553222894311E-3,
-           2.27266044198352679519E-1,
-           2.00000000000000000005E0, 0 ,0 ,0);
-
-           C1 = 6.9335937500000000000E-1;
-            C2 = 2.1219444005469058277E-4;
-    var n : Integer;
-        px, qx, xx : Real;
-    begin
-      if( x > MAXLOG) then
-          RunError(205)
-      else
-      if( x < MINLOG ) then
-      begin
-        Runerror(205);
-      end
-      else
-      begin
-
-     { Express e**x = e**g 2**n }
-     {   = e**g e**( n loge(2) ) }
-     {   = e**( g + n loge(2) )  }
-
-        px := x * LOG2E;
-        qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
-        n  := Trunc(qx);
-        x  := x - qx * C1;
-        x  := x + qx * C2;
-
-      { rational approximation for exponential  }
-      { of the fractional part: }
-      { e**x - 1  =  2x P(x**2)/( Q(x**2) - P(x**2) )  }
-        xx := x * x;
-        px := x * polevl( xx, P, 2 );
-        x  :=  px/( polevl( xx, Q, 3 ) - px );
-        x  := ldexp( x, 1 );
-        x  :=  x + 1.0;
-        x  := ldexp( x, n );
-        Exp := x;
-      end;
-    end;
-
-
-    function Round(x: Real): longint;
-     var
-      fr: Real;
-      tr: Real;
-    Begin
-       fr := Frac(x);
-       tr := Trunc(x);
-       if fr > 0.5 then
-          Round:=Trunc(x)+1
-       else
-       if fr < 0.5 then
-          Round:=Trunc(x)
-       else { fr = 0.5 }
-          { check sign to decide ... }
-          { as in Turbo Pascal...    }
-          if x >= 0.0 then
-            Round := Trunc(x)+1
-          else
-            Round := Trunc(x);
-    end;
-
-
-    function Ln(x:Real):Real;
-    {*****************************************************************}
-    { Natural Logarithm                                               }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, log();                                             }
-    {                                                                 }
-    { y = ln( x );                                                    }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns the base e (2.718...) logarithm of x.                   }
-    {                                                                 }
-    { The argument is separated into its exponent and fractional      }
-    { parts.  If the exponent is between -1 and +1, the logarithm     }
-    { of the fraction is approximated by                              }
-    {                                                                 }
-    {     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).                   }
-    {                                                                 }
-    { Otherwise, setting  z = 2(x-1)/x+1),                            }
-    {                                                                 }
-    {     log(x) = z + z**3 P(z)/Q(z).                                }
-    {                                                                 }
-    {*****************************************************************}
-    const  P : TabCoef = (
-     {  Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
-         1/sqrt(2) <= x < sqrt(2) }
-
-           4.58482948458143443514E-5,
-           4.98531067254050724270E-1,
-           6.56312093769992875930E0,
-           2.97877425097986925891E1,
-           6.06127134467767258030E1,
-           5.67349287391754285487E1,
-           1.98892446572874072159E1);
-       Q : TabCoef = (
-           1.50314182634250003249E1,
-           8.27410449222435217021E1,
-           2.20664384982121929218E2,
-           3.07254189979530058263E2,
-           2.14955586696422947765E2,
-           5.96677339718622216300E1, 0);
-
-     { Coefficients for log(x) = z + z**3 P(z)/Q(z),
-        where z = 2(x-1)/(x+1)
-        1/sqrt(2) <= x < sqrt(2)  }
-
-       R : TabCoef = (
-           -7.89580278884799154124E-1,
-            1.63866645699558079767E1,
-           -6.41409952958715622951E1, 0, 0, 0, 0);
-       S : TabCoef = (
-           -3.56722798256324312549E1,
-            3.12093766372244180303E2,
-           -7.69691943550460008604E2, 0, 0, 0, 0);
-
-    var e : Integer;
-       z, y : Real;
-
-    Label Ldone;
-    begin
-       if( x <= 0.0 ) then
-          RunError(207);
-       x := frexp( x, e );
-
-    { logarithm using log(x) = z + z**3 P(z)/Q(z),
-      where z = 2(x-1)/x+1) }
-
-       if( (e > 2) or (e < -2) ) then
-       begin
-         if( x < SQRTH ) then
-         begin
-           {  2( 2x-1 )/( 2x+1 ) }
-          Dec(e, 1);
-          z := x - 0.5;
-          y := 0.5 * z + 0.5;
-         end
-         else
-         begin
-         {   2 (x-1)/(x+1)   }
-           z := x - 0.5;
-         z := z - 0.5;
-         y := 0.5 * x  + 0.5;
-         end;
-         x := z / y;
-         { /* rational form */ }
-         z := x*x;
-         z := x + x * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) );
-         goto ldone;
-       end;
-
-    { logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) }
-
-       if( x < SQRTH ) then
-       begin
-         Dec(e, 1);
-         x := ldexp( x, 1 ) - 1.0; {  2x - 1  }
-       end
-       else
-         x := x - 1.0;
-
-       { rational form  }
-       z := x*x;
-       y := x * ( z * polevl( x, P, 6 ) / p1evl( x, Q, 6 ) );
-       y := y - ldexp( z, -1 );   {  y - 0.5 * z  }
-       z := x + y;
-
-    ldone:
-       { recombine with exponent term }
-       if( e <> 0 ) then
-       begin
-         y := e;
-         z := z - y * 2.121944400546905827679e-4;
-         z := z + y * 0.693359375;
-       end;
-
-       Ln:= z;
-    end;
-
-
-
-    function Sin(x:Real):Real;
-    {*****************************************************************}
-    { Circular Sine                                                   }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, sin();                                             }
-    {                                                                 }
-    { y = sin( x );                                                   }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Range reduction is into intervals of pi/4.  The reduction       }
-    { error is nearly eliminated by contriving an extended            }
-    { precision modular arithmetic.                                   }
-    {                                                                 }
-    { Two polynomial approximating functions are employed.            }
-    { Between 0 and pi/4 the sine is approximated by                  }
-    {      x  +  x**3 P(x**2).                                        }
-    { Between pi/4 and pi/2 the cosine is represented as              }
-    {      1  -  x**2 Q(x**2).                                        }
-    {*****************************************************************}
-    var  y, z, zz : Real;
-         j, sign : Integer;
-
-    begin
-      { make argument positive but save the sign }
-      sign := 1;
-      if( x < 0 ) then
-      begin
-         x := -x;
-         sign := -1;
-      end;
-
-      { above this value, approximate towards 0 }
-      if( x > lossth ) then
-      begin
-        sin := 0.0;
-        exit;
-      end;
-
-      y := Trunc( x/PIO4 ); { integer part of x/PIO4 }
-
-      { strip high bits of integer part to prevent integer overflow }
-      z := ldexp( y, -4 );
-      z := Trunc(z);           { integer part of y/8 }
-      z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
-
-      j := Trunc(z); { convert to integer for tests on the phase angle }
-      { map zeros to origin }
-      if odd( j ) then
-      begin
-         inc(j);
-         y := y + 1.0;
-      end;
-      j := j and 7; { octant modulo 360 degrees }
-      { reflect in x axis }
-      if( j > 3) then
-      begin
-        sign := -sign;
-        dec(j, 4);
-      end;
-
-      { Extended precision modular arithmetic }
-      z := ((x - y * DP1) - y * DP2) - y * DP3;
-
-      zz := z * z;
-
-      if( (j=1) or (j=2) ) then
-        y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
-      else
-      { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
-        y := z  +  z * z * z * polevl( zz, sincof, 5 );
-
-      if(sign < 0) then
-      y := -y;
-      sin := y;
-    end;
-
-
-
-    function frac(d : Real) : Real;
-    begin
-       frac := d - Int(d);
-    end;
-
-
-    function sqrt(d : fixed) : fixed;
-      begin
-      end;
-
-
-    function Cos(x:Real):Real;
-    {*****************************************************************}
-    { Circular cosine                                                 }
-    {*****************************************************************}
-    {                                                                 }
-    { Circular cosine                                                 }
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, cos();                                             }
-    {                                                                 }
-    { y = cos( x );                                                   }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Range reduction is into intervals of pi/4.  The reduction       }
-    { error is nearly eliminated by contriving an extended            }
-    { precision modular arithmetic.                                   }
-    {                                                                 }
-    { Two polynomial approximating functions are employed.            }
-    { Between 0 and pi/4 the cosine is approximated by                }
-    {      1  -  x**2 Q(x**2).                                        }
-    { Between pi/4 and pi/2 the sine is represented as                }
-    {      x  +  x**3 P(x**2).                                        }
-    {*****************************************************************}
-    var  y, z, zz : Real;
-         j, sign : Integer;
-         i : LongInt;
-    begin
-    { make argument positive }
-      sign := 1;
-      if( x < 0 ) then
-        x := -x;
-
-      { above this value, round towards zero }
-      if( x > lossth ) then
-      begin
-        cos := 0.0;
-        exit;
-      end;
-
-      y := Trunc( x/PIO4 );
-      z := ldexp( y, -4 );
-      z := Trunc(z);  { integer part of y/8 }
-      z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
-
-      { integer and fractional part modulo one octant }
-      i := Trunc(z);
-      if odd( i ) then { map zeros to origin }
-      begin
-        inc(i);
-        y := y + 1.0;
-      end;
-      j := i and 07;
-      if( j > 3) then
-      begin
-        dec(j,4);
-        sign := -sign;
-      end;
-      if( j > 1 ) then
-        sign := -sign;
-
-      { Extended precision modular arithmetic  }
-      z := ((x - y * DP1) - y * DP2) - y * DP3;
-
-      zz := z * z;
-
-      if( (j=1) or (j=2) ) then
-      { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
-        y := z  +  z * z * z * polevl( zz, sincof, 5 )
-      else
-        y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
-
-      if(sign < 0) then
-        y := -y;
-
-      cos := y ;
-    end;
-
-
-
-    function ArcTan(x:Real):Real;
-    {*****************************************************************}
-    { Inverse circular tangent (arctangent)                           }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, atan();                                            }
-    {                                                                 }
-    { y = atan( x );                                                  }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns radian angle between -pi/2 and +pi/2 whose tangent      }
-    { is x.                                                           }
-    {                                                                 }
-    { Range reduction is from four intervals into the interval        }
-    { from zero to  tan( pi/8 ).  The approximant uses a rational     }
-    { function of degree 3/4 of the form x + x**3 P(x)/Q(x).          }
-    {*****************************************************************}
-    const P : TabCoef = (
-          -8.40980878064499716001E-1,
-          -8.83860837023772394279E0,
-          -2.18476213081316705724E1,
-          -1.48307050340438946993E1, 0, 0, 0);
-          Q : TabCoef = (
-          1.54974124675307267552E1,
-          6.27906555762653017263E1,
-          9.22381329856214406485E1,
-          4.44921151021319438465E1, 0, 0, 0);
-
-    { tan( 3*pi/8 ) }
-    T3P8 = 2.41421356237309504880;
-    { tan( pi/8 )   }
-    TP8 = 0.41421356237309504880;
-
-    var y,z  : Real;
-        Sign : Integer;
-
-    begin
-      { make argument positive and save the sign }
-      sign := 1;
-      if( x < 0.0 ) then
-      begin
-       sign := -1;
-       x := -x;
-      end;
-
-      { range reduction }
-      if( x > T3P8 ) then
-      begin
-        y := PIO2;
-        x := -( 1.0/x );
-      end
-      else if( x > TP8 ) then
-      begin
-        y := PIO4;
-        x := (x-1.0)/(x+1.0);
-      end
-      else
-       y := 0.0;
-
-      { rational form in x**2 }
-
-      z := x * x;
-      y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * x + x;
-
-      if( sign < 0 ) then
-        y := -y;
-      Arctan := y;
-    end;
-
-
-    function int(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the integral part of d                                  }
-    {*****************************************************************}
-    begin
-      int:=d and $ffff0000;       { keep only upper bits      }
-    end;
-
-
-    function trunc(d : fixed) : longint;
-    {*****************************************************************}
-    { Returns the Truncated integral part of d                        }
-    {*****************************************************************}
-    begin
-      trunc:=longint(integer(d shr 16));   { keep only upper 16 bits  }
-    end;
-
-    function frac(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Fractional part of d                                }
-    {*****************************************************************}
-    begin
-      frac:=d AND $ffff;         { keep only decimal parts - lower 16 bits }
-    end;
-
-    function abs(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Absolute value of d                                 }
-    {*****************************************************************}
-    var
-     w: integer;
-    begin
-     w:=integer(d shr 16);
-     if w < 0 then
-     begin
-        w:=-w;                      { invert sign ...              }
-        d:=d and $ffff;
-        d:=d or (fixed(w) shl 16);  { add this to fixed number ... }
-        abs:=d;
-     end
-     else
-        abs:=d;                     { already positive... }
-    end;
-
-
-    function sqr(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Absolute squared value of d                         }
-    {*****************************************************************}
-    begin
-            {16-bit precision needed, not 32 =)}
-       sqr := d*d;
-{       sqr := (d SHR 8 * d) SHR 8; }
-    end;
-
-
-    function Round(x: fixed): longint;
-    {*****************************************************************}
-    { Returns the Rounded value of d as a longint                     }
-    {*****************************************************************}
-    var
-     lowf:integer;
-     highf:integer;
-    begin
-      lowf:=x and $ffff;       { keep decimal part ... }
-      highf :=integer(x shr 16);
-      if lowf > 5 then
-        highf:=highf+1
-      else
-      if lowf = 5 then
-      begin
-        { here we must check the sign ...       }
-        { if greater or equal to zero, then     }
-        { greater value will be found by adding }
-        { one...                                }
-         if highf >= 0 then
-           Highf:=Highf+1;
-      end;
-      Round:= longint(highf);
-    end;
-
-    function power(bas,expo : real) : real;
-     begin
-        if bas=0 then
-          begin
-            if expo<>0 then
-              power:=0.0
-            else
-              HandleError(207);
-          end
-        else if expo=0 then
-         power:=1
-        else
-        { bas < 0 is not allowed }
-         if bas<0 then
-          handleerror(207)
-         else
-          power:=exp(ln(bas)*expo);
-     end;
-
-   function power(bas,expo : longint) : longint;
-     begin
-        if bas=0 then
-          begin
-            if expo<>0 then
-              power:=0
-            else
-              HandleError(207);
-          end
-        else if expo=0 then
-         power:=1
-        else
-         begin
-           if bas<0 then
-            begin
-              if odd(expo) then
-               power:=-round(exp(ln(-bas)*expo))
-              else
-               power:=round(exp(ln(-bas)*expo));
-            end
-           else
-            power:=round(exp(ln(bas)*expo));
-         end;
-     end;
-
-
-{
-  $Log$
-  Revision 1.3  2002-09-07 16:01:26  peter
-    * old logs removed and tabs fixed
-
-}