Browse Source

+ more mess to make the skeleton amiga rtl compile

git-svn-id: trunk@2393 -
Károly Balogh 19 years ago
parent
commit
572c8430ac
6 changed files with 39 additions and 946 deletions
  1. 1 0
      .gitattributes
  2. 16 0
      rtl/m68k/int64p.inc
  3. 7 13
      rtl/m68k/m68k.inc
  4. 13 931
      rtl/m68k/math.inc
  5. 1 1
      rtl/m68k/set.inc
  6. 1 1
      rtl/m68k/setjump.inc

+ 1 - 0
.gitattributes

@@ -3976,6 +3976,7 @@ rtl/linux/x86_64/stat.inc svneol=native#text/plain
 rtl/linux/x86_64/syscall.inc svneol=native#text/plain
 rtl/linux/x86_64/syscall.inc svneol=native#text/plain
 rtl/linux/x86_64/syscallh.inc svneol=native#text/plain
 rtl/linux/x86_64/syscallh.inc svneol=native#text/plain
 rtl/linux/x86_64/sysnr.inc svneol=native#text/plain
 rtl/linux/x86_64/sysnr.inc svneol=native#text/plain
+rtl/m68k/int64p.inc -text
 rtl/m68k/lowmath.inc svneol=native#text/plain
 rtl/m68k/lowmath.inc svneol=native#text/plain
 rtl/m68k/m68k.inc svneol=native#text/plain
 rtl/m68k/m68k.inc svneol=native#text/plain
 rtl/m68k/makefile.cpu -text
 rtl/m68k/makefile.cpu -text

+ 16 - 0
rtl/m68k/int64p.inc

@@ -0,0 +1,16 @@
+{
+    This file is part of the Free Pascal run time library.
+    Copyright (c) 2006 by the Free Pascal development team
+
+    This file contains some helper routines for int64 and qword
+
+    See the file COPYING.FPC, included in this distribution,
+    for details about the copyright.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
+
+ **********************************************************************}
+
+// still empty... to be filled

+ 7 - 13
rtl/m68k/m68k.inc

@@ -44,7 +44,7 @@ function get_frame : pointer; assembler;
 function get_caller_addr(framebp : pointer) : pointer;
 function get_caller_addr(framebp : pointer) : pointer;
   begin
   begin
      asm
      asm
-        move.l FRAMEBP,a0
+        move.l framebp,a0
         cmp.l #0,a0
         cmp.l #0,a0
         beq @Lnul_address
         beq @Lnul_address
         move.l 4(a0),a0
         move.l 4(a0),a0
@@ -69,19 +69,14 @@ function get_caller_frame(framebp : pointer) : pointer;
 
 
 
 
 {$define FPC_SYSTEM_HAS_SPTR}
 {$define FPC_SYSTEM_HAS_SPTR}
-function Sptr : Longint;
-  begin
-    asm
-      move.l sp,d0
-      add.l  #8,d0
-      move.l d0,@RESULT
-    end ['d0'];
-  end;
+function Sptr : pointer; assembler;
+asm
+  move.l sp,d0
+end ['d0'];
 
 
 
 
 {$define FPC_SYSTEM_HAS_FILLCHAR}
 {$define FPC_SYSTEM_HAS_FILLCHAR}
-procedure FillChar(var x;count:longint;value:byte);[public,alias: 'FPC_FILL_OBJECT'];
-  begin
+procedure FillChar(var x;count:longint;value:byte); assembler;
     asm
     asm
      move.l 8(a6), a0      { destination                   }
      move.l 8(a6), a0      { destination                   }
      move.l 12(a6), d1     { number of bytes to fill       }
      move.l 12(a6), d1     { number of bytes to fill       }
@@ -104,7 +99,6 @@ procedure FillChar(var x;count:longint;value:byte);[public,alias: 'FPC_FILL_OBJE
 
 
    @LMEMSET5:
    @LMEMSET5:
     end ['d0','d1','a0'];
     end ['d0','d1','a0'];
-  end;
 
 
 
 
 {$ifdef dummy}
 {$ifdef dummy}
@@ -232,7 +226,7 @@ end;
 
 
 
 
 {$define FPC_SYSTEM_HAS_MOVE}
 {$define FPC_SYSTEM_HAS_MOVE}
-procedure move(var source;var dest;count : longint);
+procedure move(const source;var dest;count : longint);
 { base pointer+8 = source                  }
 { base pointer+8 = source                  }
 { base pointer+12 = destination            }
 { base pointer+12 = destination            }
 { base pointer+16 = number of bytes to move}
 { base pointer+16 = number of bytes to move}

+ 13 - 931
rtl/m68k/math.inc

@@ -1,7 +1,6 @@
 {
 {
     This file is part of the Free Pascal run time library.
     This file is part of the Free Pascal run time library.
-    Copyright (c) 1999-2000 by several people
-    member of the Free Pascal development team.
+    Copyright (c) 2006 by the Free Pascal development team.
 
 
     See the file COPYING.FPC, included in this distribution,
     See the file COPYING.FPC, included in this distribution,
     for details about the copyright.
     for details about the copyright.
@@ -11,932 +10,15 @@
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
 
  **********************************************************************}
  **********************************************************************}
-{*************************************************************************}
-{  math.inc                                                               }
-{*************************************************************************}
-{       Copyright Abandoned, 1987, Fred Fish                              }
-{                                                                         }
-{       This previously copyrighted work has been placed into the         }
-{       public domain by the author (Fred Fish) and may be freely used    }
-{       for any purpose, private or commercial.  I would appreciate       }
-{       it, as a courtesy, if this notice is left in all copies and       }
-{       derivative works.  Thank you, and enjoy...                        }
-{                                                                         }
-{       The author makes no warranty of any kind with respect to this     }
-{       product and explicitly disclaims any implied warranties of        }
-{       merchantability or fitness for any particular purpose.            }
-{-------------------------------------------------------------------------}
-{       Copyright (c) 1992 Odent Jean Philippe                            }
-{                                                                         }
-{       The source can be modified as long as my name appears and some    }
-{       notes explaining the modifications done are included in the file. }
-{-------------------------------------------------------------------------}
-{       Copyright (c) 1997 Carl Eric Codere                               }
-{                                                                         }
-{*************************************************************************}
-{  This is the Motorola 680x0 specific port of the math include.          }
-{*************************************************************************}
-{                                                                         }
-{  o all reals are mapped to the single type under the motorola version   }
-{                                                                         }
-{   What is left to do:                                                   }
-{    o add support for sqrt with fixed.                                   }
-
-type
-    TabCoef = array[0..6] of Real;
-
-
-const
-      PIO2   =  1.57079632679489661923;       {  pi/2        }
-      PIO4   =  7.85398163397448309616E-1;    {  pi/4        }
-      SQRT2  =  1.41421356237309504880;       {  sqrt(2)     }
-      SQRTH  =  7.07106781186547524401E-1;    {  sqrt(2)/2   }
-      LOG2E  =  1.4426950408889634073599;     {  1/log(2)    }
-      SQ2OPI =  7.9788456080286535587989E-1;  {  sqrt( 2/pi )}
-      LOGE2  =  6.93147180559945309417E-1;    {  log(2)      }
-      LOGSQ2 =  3.46573590279972654709E-1;    {  log(2)/2    }
-      THPIO4 =  2.35619449019234492885;       {  3*pi/4      }
-      TWOOPI =  6.36619772367581343075535E-1; {  2/pi        }
-      lossth =  1.073741824e9;
-      MAXLOG =  8.8029691931113054295988E1;    { log(2**127)  }
-      MINLOG = -8.872283911167299960540E1;     { log(2**-128) }
-
-      DP1 =   7.85398125648498535156E-1;
-      DP2 =   3.77489470793079817668E-8;
-      DP3 =   2.69515142907905952645E-15;
-
-const sincof : TabCoef = (
-                1.58962301576546568060E-10,
-               -2.50507477628578072866E-8,
-                2.75573136213857245213E-6,
-               -1.98412698295895385996E-4,
-                8.33333333332211858878E-3,
-               -1.66666666666666307295E-1, 0);
-      coscof : TabCoef = (
-               -1.13585365213876817300E-11,
-                2.08757008419747316778E-9,
-               -2.75573141792967388112E-7,
-                2.48015872888517045348E-5,
-               -1.38888888888730564116E-3,
-                4.16666666666665929218E-2, 0);
-
-
-
-
-    function int(d : real) : real;
-      begin
-        { this will be correct since real = single in the case of }
-        { the motorola version of the compiler...                 }
-        int:=real(trunc(d));
-      end;
-
-    function trunc(d : real) : longint;
-    var
-     l: longint;
-    Begin
-     asm
-        move.l   d,d0           { get number                        }
-        move.l   d2,-(sp)       { save register                     }
-        move.l   d0,d1
-        swap     d1             { extract exp                       }
-        move.w   d1,d2          { extract sign                      }
-        bclr     #15,d1         { kill sign bit                     }
-        lsr.w    #7,d1
-
-        and.l    #$7fffff,d0    { remove exponent from mantissa     }
-        bset     #23,d0         { restore implied leading "1"       }
-
-        cmp.w    #BIAS4,d1      { check exponent                    }
-        blt      @zero           { strictly factional, no integer part ?   }
-        cmp.w    #BIAS4+32,d1   { is it too big to fit in a 32-bit integer ? }
-        bgt      @toobig
-
-        sub.w    #BIAS4+24,d1   { adjust exponent                   }
-        bgt      @trunclab2     { shift up                          }
-        beq      @trunclab7     { no shift (never too big)          }
-
-        neg.w    d1
-        lsr.l    d1,d0          { shift down to align radix point;  }
-              { extra bits fall off the end (no rounding) }
-        bra      @trunclab7      { never too big                     }
-    @trunclab2:
-        lsl.l   d1,d0           { shift up to align radix point     }
-    @trunclab3:
-        cmp.l   #$80000000,d0   { -2147483648 is a nasty evil special case }
-        bne      @trunclab6
-        tst.w    d2             { this had better be -2^31 and not 2^31    }
-        bpl      @toobig
-        bra      @trunclab8
-    @trunclab6:
-        tst.l   d0              { sign bit set ? (i.e. too big)     }
-        bmi     @toobig
-    @trunclab7:
-        tst.w   d2              { is it negative ?                  }
-        bpl     @trunclab8
-        neg.l   d0              { negate                            }
-        bra     @trunclab8
-    @zero:
-        clr.l   d0              { make the whole thing zero         }
-        bra     @trunclab8
-    @toobig:
-        moveq   #-1,d0          { ugh. Should cause a trap here.    }
-        bclr    #31,d0          { make it #0x7fffffff               }
-    @trunclab8:
-        move.l  (sp)+,d2
-        move.l  d0,l
-     end;
-     if l = $7fffffff then
-      RunError(207)
-     else
-       trunc := l
-    end;
-
-
-
-
-
-    function abs(d : Real) : Real;
-    begin
-       if( d < 0.0 ) then
-         abs := -d
-      else
-         abs := d ;
-    end;
-
-
-    function frexp(x:Real; var e:Integer ):Real;
-    {*  frexp() extracts the exponent from x.  It returns an integer     *}
-    {*  power of two to expnt and the significand between 0.5 and 1      *}
-    {*  to y.  Thus  x = y * 2**expn.                                    *}
-    begin
-      e :=0;
-      if (abs(x)<0.5) then
-       While (abs(x)<0.5) do
-       begin
-         x := x*2;
-         Dec(e);
-       end
-      else
-       While (abs(x)>1) do
-       begin
-         x := x/2;
-         Inc(e);
-       end;
-      frexp := x;
-    end;
-
-
-    function ldexp( x: Real; N: Integer):Real;
-    {* ldexp() multiplies x by 2**n.                                    *}
-    var r : Real;
-    begin
-      R := 1;
-      if N>0 then
-         while N>0 do
-         begin
-            R:=R*2;
-            Dec(N);
-         end
-      else
-        while N<0 do
-        begin
-           R:=R/2;
-           Inc(N);
-        end;
-      ldexp := x * R;
-    end;
-
-
-    function polevl(var x:Real; var Coef:TabCoef; N:Integer):Real;
-    {*****************************************************************}
-    { Evaluate polynomial                                             }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    {  int N;                                                         }
-    {  double x, y, coef[N+1], polevl[];                              }
-    {                                                                 }
-    {  y = polevl( x, coef, N );                                      }
-    {                                                                 }
-    {  DESCRIPTION:                                                   }
-    {                                                                 }
-    {     Evaluates polynomial of degree N:                           }
-    {                                                                 }
-    {                       2          N                              }
-    {   y  =  C  + C x + C x  +...+ C x                               }
-    {          0    1     2          N                                }
-    {                                                                 }
-    {   Coefficients are stored in reverse order:                     }
-    {                                                                 }
-    {   coef[0] = C  , ..., coef[N] = C  .                            }
-    {              N                   0                              }
-    {                                                                 }
-    {   The function p1evl() assumes that coef[N] = 1.0 and is        }
-    {   omitted from the array.  Its calling arguments are            }
-    {   otherwise the same as polevl().                               }
-    {                                                                 }
-    {  SPEED:                                                         }
-    {                                                                 }
-    {   In the interest of speed, there are no checks for out         }
-    {   of bounds arithmetic.  This routine is used by most of        }
-    {   the functions in the library.  Depending on available         }
-    {   equipment features, the user may wish to rewrite the          }
-    {   program in microcode or assembly language.                    }
-    {*****************************************************************}
-    var ans : Real;
-        i   : Integer;
-
-    begin
-      ans := Coef[0];
-      for i:=1 to N do
-        ans := ans * x + Coef[i];
-      polevl:=ans;
-    end;
-
-
-    function p1evl(var x:Real; var Coef:TabCoef; N:Integer):Real;
-    {                                                           }
-    { Evaluate polynomial when coefficient of x  is 1.0.        }
-    { Otherwise same as polevl.                                 }
-    {                                                           }
-    var
-        ans : Real;
-        i   : Integer;
-    begin
-      ans := x + Coef[0];
-      for i:=1 to N-1 do
-        ans := ans * x + Coef[i];
-      p1evl := ans;
-    end;
-
-
-
-
-
-    function sqr(d : Real) : Real;
-    begin
-      sqr := d*d;
-    end;
-
-
-    function pi : Real;
-    begin
-      pi := 3.1415926535897932385;
-    end;
-
-
-    function sqrt(d:Real):Real;
-    {*****************************************************************}
-    { Square root                                                     }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, sqrt();                                            }
-    {                                                                 }
-    { y = sqrt( x );                                                  }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns the square root of x.                                   }
-    {                                                                 }
-    { Range reduction involves isolating the power of two of the      }
-    { argument and using a polynomial approximation to obtain         }
-    { a rough value for the square root.  Then Heron's iteration      }
-    { is used three times to converge to an accurate value.           }
-    {*****************************************************************}
-    var e   : Integer;
-        w,z : Real;
-    begin
-       if( d <= 0.0 ) then
-       begin
-           if( d < 0.0 ) then
-               RunError(207);
-           sqrt := 0.0;
-       end
-     else
-       begin
-          w := d;
-          { separate exponent and significand }
-           z := frexp( d, e );
-
-          {  approximate square root of number between 0.5 and 1  }
-          {  relative error of approximation = 7.47e-3            }
-          d := 4.173075996388649989089E-1 + 5.9016206709064458299663E-1 * z;
-
-          { adjust for odd powers of 2 }
-          if odd(e) then
-             d := d*SQRT2;
-
-          { re-insert exponent }
-          d := ldexp( d, (e div 2) );
-
-          { Newton iterations: }
-          d := 0.5*(d + w/d);
-          d := 0.5*(d + w/d);
-          d := 0.5*(d + w/d);
-          d := 0.5*(d + w/d);
-          d := 0.5*(d + w/d);
-          d := 0.5*(d + w/d);
-          sqrt := d;
-       end;
-    end;
-
-
-
-
-    function Exp(d:Real):Real;
-    {*****************************************************************}
-    { Exponential Function                                            }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, exp();                                             }
-    {                                                                 }
-    { y = exp( x );                                                   }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns e (2.71828...) raised to the x power.                   }
-    {                                                                 }
-    { Range reduction is accomplished by separating the argument      }
-    { into an integer k and fraction f such that                      }
-    {                                                                 }
-    {     x    k  f                                                   }
-    {    e  = 2  e.                                                   }
-    {                                                                 }
-    { A Pade' form of degree 2/3 is used to approximate exp(f)- 1     }
-    { in the basic range [-0.5 ln 2, 0.5 ln 2].                       }
-    {*****************************************************************}
-    const  P : TabCoef = (
-           1.26183092834458542160E-4,
-           3.02996887658430129200E-2,
-           1.00000000000000000000E0, 0, 0, 0, 0);
-           Q : TabCoef = (
-           3.00227947279887615146E-6,
-           2.52453653553222894311E-3,
-           2.27266044198352679519E-1,
-           2.00000000000000000005E0, 0 ,0 ,0);
-
-           C1 = 6.9335937500000000000E-1;
-            C2 = 2.1219444005469058277E-4;
-    var n : Integer;
-        px, qx, xx : Real;
-    begin
-      if( d > MAXLOG) then
-          RunError(205)
-      else
-      if( d < MINLOG ) then
-      begin
-        Runerror(205);
-      end
-      else
-      begin
-
-     { Express e**x = e**g 2**n }
-     {   = e**g e**( n loge(2) ) }
-     {   = e**( g + n loge(2) )  }
-
-        px := d * LOG2E;
-        qx := Trunc( px + 0.5 ); { Trunc() truncates toward -infinity. }
-        n  := Trunc(qx);
-        d  := d - qx * C1;
-        d  := d + qx * C2;
-
-      { rational approximation for exponential  }
-      { of the fractional part: }
-      { e**x - 1  =  2x P(x**2)/( Q(x**2) - P(x**2) )  }
-        xx := d * d;
-        px := d * polevl( xx, P, 2 );
-        d  :=  px/( polevl( xx, Q, 3 ) - px );
-        d  := ldexp( d, 1 );
-        d  :=  d + 1.0;
-        d  := ldexp( d, n );
-        Exp := d;
-      end;
-    end;
-
-
-    function Round(d: Real): longint;
-     var
-      fr: Real;
-      tr: Real;
-    Begin
-       fr := Frac(d);
-       tr := Trunc(d);
-       if fr > 0.5 then
-          Round:=Trunc(d)+1
-       else
-       if fr < 0.5 then
-          Round:=Trunc(d)
-       else { fr = 0.5 }
-          { check sign to decide ... }
-          { as in Turbo Pascal...    }
-          if d >= 0.0 then
-            Round := Trunc(d)+1
-          else
-            Round := Trunc(d);
-    end;
-
-
-    function Ln(d:Real):Real;
-    {*****************************************************************}
-    { Natural Logarithm                                               }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, log();                                             }
-    {                                                                 }
-    { y = ln( x );                                                    }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns the base e (2.718...) logarithm of x.                   }
-    {                                                                 }
-    { The argument is separated into its exponent and fractional      }
-    { parts.  If the exponent is between -1 and +1, the logarithm     }
-    { of the fraction is approximated by                              }
-    {                                                                 }
-    {     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).                   }
-    {                                                                 }
-    { Otherwise, setting  z = 2(x-1)/x+1),                            }
-    {                                                                 }
-    {     log(x) = z + z**3 P(z)/Q(z).                                }
-    {                                                                 }
-    {*****************************************************************}
-    const  P : TabCoef = (
-     {  Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
-         1/sqrt(2) <= x < sqrt(2) }
-
-           4.58482948458143443514E-5,
-           4.98531067254050724270E-1,
-           6.56312093769992875930E0,
-           2.97877425097986925891E1,
-           6.06127134467767258030E1,
-           5.67349287391754285487E1,
-           1.98892446572874072159E1);
-       Q : TabCoef = (
-           1.50314182634250003249E1,
-           8.27410449222435217021E1,
-           2.20664384982121929218E2,
-           3.07254189979530058263E2,
-           2.14955586696422947765E2,
-           5.96677339718622216300E1, 0);
-
-     { Coefficients for log(x) = z + z**3 P(z)/Q(z),
-        where z = 2(x-1)/(x+1)
-        1/sqrt(2) <= x < sqrt(2)  }
-
-       R : TabCoef = (
-           -7.89580278884799154124E-1,
-            1.63866645699558079767E1,
-           -6.41409952958715622951E1, 0, 0, 0, 0);
-       S : TabCoef = (
-           -3.56722798256324312549E1,
-            3.12093766372244180303E2,
-           -7.69691943550460008604E2, 0, 0, 0, 0);
-
-    var e : Integer;
-       z, y : Real;
-
-    Label Ldone;
-    begin
-       if( d <= 0.0 ) then
-          RunError(207);
-       d := frexp( d, e );
-
-    { logarithm using log(x) = z + z**3 P(z)/Q(z),
-      where z = 2(x-1)/x+1) }
-
-       if( (e > 2) or (e < -2) ) then
-       begin
-         if( d < SQRTH ) then
-         begin
-           {  2( 2x-1 )/( 2x+1 ) }
-          Dec(e, 1);
-          z := d - 0.5;
-          y := 0.5 * z + 0.5;
-         end
-         else
-         begin
-         {   2 (x-1)/(x+1)   }
-           z := d - 0.5;
-         z := z - 0.5;
-         y := 0.5 * d  + 0.5;
-         end;
-         d := z / y;
-         { /* rational form */ }
-         z := d*d;
-         z := d + d * ( z * polevl( z, R, 2 ) / p1evl( z, S, 3 ) );
-         goto ldone;
-       end;
-
-    { logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) }
-
-       if( d < SQRTH ) then
-       begin
-         Dec(e, 1);
-         d := ldexp( d, 1 ) - 1.0; {  2x - 1  }
-       end
-       else
-         d := d - 1.0;
-
-       { rational form  }
-       z := d*d;
-       y := d * ( z * polevl( d, P, 6 ) / p1evl( d, Q, 6 ) );
-       y := y - ldexp( z, -1 );   {  y - 0.5 * z  }
-       z := d + y;
-
-    ldone:
-       { recombine with exponent term }
-       if( e <> 0 ) then
-       begin
-         y := e;
-         z := z - y * 2.121944400546905827679e-4;
-         z := z + y * 0.693359375;
-       end;
-
-       Ln:= z;
-    end;
-
-
-
-    function Sin(d:Real):Real;
-    {*****************************************************************}
-    { Circular Sine                                                   }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, sin();                                             }
-    {                                                                 }
-    { y = sin( x );                                                   }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Range reduction is into intervals of pi/4.  The reduction       }
-    { error is nearly eliminated by contriving an extended            }
-    { precision modular arithmetic.                                   }
-    {                                                                 }
-    { Two polynomial approximating functions are employed.            }
-    { Between 0 and pi/4 the sine is approximated by                  }
-    {      x  +  x**3 P(x**2).                                        }
-    { Between pi/4 and pi/2 the cosine is represented as              }
-    {      1  -  x**2 Q(x**2).                                        }
-    {*****************************************************************}
-    var  y, z, zz : Real;
-         j, sign : Integer;
-
-    begin
-      { make argument positive but save the sign }
-      sign := 1;
-      if( d < 0 ) then
-      begin
-         d := -d;
-         sign := -1;
-      end;
-
-      { above this value, approximate towards 0 }
-      if( d > lossth ) then
-      begin
-        sin := 0.0;
-        exit;
-      end;
-
-      y := Trunc( d/PIO4 ); { integer part of x/PIO4 }
-
-      { strip high bits of integer part to prevent integer overflow }
-      z := ldexp( y, -4 );
-      z := Trunc(z);           { integer part of y/8 }
-      z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
-
-      j := Trunc(z); { convert to integer for tests on the phase angle }
-      { map zeros to origin }
-      if odd( j ) then
-      begin
-         inc(j);
-         y := y + 1.0;
-      end;
-      j := j and 7; { octant modulo 360 degrees }
-      { reflect in x axis }
-      if( j > 3) then
-      begin
-        sign := -sign;
-        dec(j, 4);
-      end;
-
-      { Extended precision modular arithmetic }
-      z := ((d - y * DP1) - y * DP2) - y * DP3;
-
-      zz := z * z;
-
-      if( (j=1) or (j=2) ) then
-        y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 )
-      else
-      { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
-        y := z  +  z * z * z * polevl( zz, sincof, 5 );
-
-      if(sign < 0) then
-      y := -y;
-      sin := y;
-    end;
-
-
-
-
-    function Cos(d:Real):Real;
-    {*****************************************************************}
-    { Circular cosine                                                 }
-    {*****************************************************************}
-    {                                                                 }
-    { Circular cosine                                                 }
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, cos();                                             }
-    {                                                                 }
-    { y = cos( x );                                                   }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Range reduction is into intervals of pi/4.  The reduction       }
-    { error is nearly eliminated by contriving an extended            }
-    { precision modular arithmetic.                                   }
-    {                                                                 }
-    { Two polynomial approximating functions are employed.            }
-    { Between 0 and pi/4 the cosine is approximated by                }
-    {      1  -  x**2 Q(x**2).                                        }
-    { Between pi/4 and pi/2 the sine is represented as                }
-    {      x  +  x**3 P(x**2).                                        }
-    {*****************************************************************}
-    var  y, z, zz : Real;
-         j, sign : Integer;
-         i : LongInt;
-    begin
-    { make argument positive }
-      sign := 1;
-      if( d < 0 ) then
-        d := -d;
-
-      { above this value, round towards zero }
-      if( d > lossth ) then
-      begin
-        cos := 0.0;
-        exit;
-      end;
-
-      y := Trunc( d/PIO4 );
-      z := ldexp( y, -4 );
-      z := Trunc(z);  { integer part of y/8 }
-      z := y - ldexp( z, 4 );  { y - 16 * (y/16) }
-
-      { integer and fractional part modulo one octant }
-      i := Trunc(z);
-      if odd( i ) then { map zeros to origin }
-      begin
-        inc(i);
-        y := y + 1.0;
-      end;
-      j := i and 07;
-      if( j > 3) then
-      begin
-        dec(j,4);
-        sign := -sign;
-      end;
-      if( j > 1 ) then
-        sign := -sign;
-
-      { Extended precision modular arithmetic  }
-      z := ((d - y * DP1) - y * DP2) - y * DP3;
-
-      zz := z * z;
-
-      if( (j=1) or (j=2) ) then
-      { y = z  +  z * (zz * polevl( zz, sincof, 5 )); }
-        y := z  +  z * z * z * polevl( zz, sincof, 5 )
-      else
-        y := 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 );
-
-      if(sign < 0) then
-        y := -y;
-
-      cos := y ;
-    end;
-
-
-
-    function ArcTan(d:Real):Real;
-    {*****************************************************************}
-    { Inverse circular tangent (arctangent)                           }
-    {*****************************************************************}
-    {                                                                 }
-    { SYNOPSIS:                                                       }
-    {                                                                 }
-    { double x, y, atan();                                            }
-    {                                                                 }
-    { y = atan( x );                                                  }
-    {                                                                 }
-    { DESCRIPTION:                                                    }
-    {                                                                 }
-    { Returns radian angle between -pi/2 and +pi/2 whose tangent      }
-    { is x.                                                           }
-    {                                                                 }
-    { Range reduction is from four intervals into the interval        }
-    { from zero to  tan( pi/8 ).  The approximant uses a rational     }
-    { function of degree 3/4 of the form x + x**3 P(x)/Q(x).          }
-    {*****************************************************************}
-    const P : TabCoef = (
-          -8.40980878064499716001E-1,
-          -8.83860837023772394279E0,
-          -2.18476213081316705724E1,
-          -1.48307050340438946993E1, 0, 0, 0);
-          Q : TabCoef = (
-          1.54974124675307267552E1,
-          6.27906555762653017263E1,
-          9.22381329856214406485E1,
-          4.44921151021319438465E1, 0, 0, 0);
-
-    { tan( 3*pi/8 ) }
-    T3P8 = 2.41421356237309504880;
-    { tan( pi/8 )   }
-    TP8 = 0.41421356237309504880;
-
-    var y,z  : Real;
-        Sign : Integer;
-
-    begin
-      { make argument positive and save the sign }
-      sign := 1;
-      if( d < 0.0 ) then
-      begin
-       sign := -1;
-       d := -d;
-      end;
-
-      { range reduction }
-      if( d > T3P8 ) then
-      begin
-        y := PIO2;
-        d := -( 1.0/d );
-      end
-      else if( d > TP8 ) then
-      begin
-        y := PIO4;
-        d := (d-1.0)/(d+1.0);
-      end
-      else
-       y := 0.0;
-
-      { rational form in x**2 }
-
-      z := d * d;
-      y := y + ( polevl( z, P, 3 ) / p1evl( z, Q, 4 ) ) * z * d + d;
-
-      if( sign < 0 ) then
-        y := -y;
-      Arctan := y;
-    end;
-
-    function frac(d : Real) : Real;
-    begin
-       frac := d - Int(d);
-    end;
-
-{$ifdef fixed}
-
-
-    function sqrt(d : fixed) : fixed;
-      begin
-      end;
-
-    function int(d : fixed) : fixed; assembler;
-    {*****************************************************************}
-    { Returns the integral part of d                                  }
-    {*****************************************************************}
-    asm
-      move.l d,d0
-      and.l  #$ffff0000,d0        { keep only upper bits   .. }
-    end;
-
-
-    function trunc(d : fixed) : longint;
-    {*****************************************************************}
-    { Returns the Truncated integral part of d                        }
-    {*****************************************************************}
-    begin
-      trunc:=longint(integer(d shr 16));   { keep only upper 16 bits  }
-    end;
-
-    function frac(d : fixed) : fixed; assembler;
-    {*****************************************************************}
-    { Returns the Fractional part of d                                }
-    {*****************************************************************}
-    asm
-      move.l d,d0
-      and.l  #$ffff,d0           { keep only decimal parts - lower 16 bits }
-    end;
-
-    function abs(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Absolute value of d                                 }
-    {*****************************************************************}
-    var
-     w: integer;
-    begin
-     w:=integer(d shr 16);
-     if w < 0 then
-     begin
-        w:=-w;                      { invert sign ...              }
-        d:=d and $ffff;
-        d:=d or (fixed(w) shl 16);  { add this to fixed number ... }
-        abs:=d;
-     end
-     else
-        abs:=d;                     { already positive... }
-    end;
-
-
-    function sqr(d : fixed) : fixed;
-    {*****************************************************************}
-    { Returns the Absolute squared value of d                         }
-    {*****************************************************************}
-    begin
-            {16-bit precision needed, not 32 =)}
-       sqr := d*d;
-{       sqr := (d SHR 8 * d) SHR 8; }
-    end;
-
-
-    function Round(x: fixed): longint;
-    {*****************************************************************}
-    { Returns the Rounded value of d as a longint                     }
-    {*****************************************************************}
-    var
-     lowf:integer;
-     highf:integer;
-    begin
-      lowf:=x and $ffff;       { keep decimal part ... }
-      highf :=integer(x shr 16);
-      if lowf > 5 then
-        highf:=highf+1
-      else
-      if lowf = 5 then
-      begin
-        { here we must check the sign ...       }
-        { if greater or equal to zero, then     }
-        { greater value will be found by adding }
-        { one...                                }
-         if highf >= 0 then
-           Highf:=Highf+1;
-      end;
-      Round:= longint(highf);
-    end;
-{$endif fixed}
-
-    function power(bas,expo : real) : real;
-     begin
-        if bas=0.0 then
-          begin
-            if expo<>0.0 then
-              power:=0.0
-            else
-              HandleError(207);
-          end
-        else if expo=0.0 then
-         power:=1
-        else
-        { bas < 0 is not allowed }
-         if bas<0.0 then
-          handleerror(207)
-         else
-          power:=exp(ln(bas)*expo);
-     end;
-
-   function power(bas,expo : longint) : longint;
-     begin
-        if bas=0 then
-          begin
-            if expo<>0 then
-              power:=0
-            else
-              HandleError(207);
-          end
-        else if expo=0 then
-         power:=1
-        else
-         begin
-           if bas<0 then
-            begin
-              if odd(expo) then
-               power:=-round(exp(ln(-bas)*expo))
-              else
-               power:=round(exp(ln(-bas)*expo));
-            end
-           else
-            power:=round(exp(ln(bas)*expo));
-         end;
-     end;
-
+ 
+{$WARNING FIX ME!! dummy int64_to_double}
+function fpc_int64_to_double(i: int64): double; compilerproc;
+assembler;
+asm
+end;
+
+{$WARNING FIX ME!! dummy longword_to_double}
+function fpc_longword_to_double(i: longword): double; compilerproc;
+assembler;
+asm
+end;

+ 1 - 1
rtl/m68k/set.inc

@@ -162,7 +162,7 @@
           { adjust value to correct endian }
           { adjust value to correct endian }
           lsl.w  #8,d0
           lsl.w  #8,d0
           pea    p
           pea    p
-          jsr    SET_SET_BYTE
+//          jsr    SET_SET_BYTE
           sub.b  #1,d0
           sub.b  #1,d0
           bra    @LSetRLoop
           bra    @LSetRLoop
        @Lend:
        @Lend:

+ 1 - 1
rtl/m68k/setjump.inc

@@ -26,7 +26,7 @@ Procedure longJmp (Var S : Jmp_buf; value : longint); assembler;[Public, alias :
 asm
 asm
 end;
 end;
 
 
-
+{
   Revision 1.4  2005/02/14 17:13:30  peter
   Revision 1.4  2005/02/14 17:13:30  peter
     * truncate log
     * truncate log