{ Ported to FPC by Nikolay Nikolov (nickysn@users.sourceforge.net) } { Save example for OpenPTC 1.0 C++ Implementation Copyright (c) Glenn Fiedler (ptc@gaffer.org) This source code is in the public domain } Program SaveExample; {$MODE objfpc} Uses ptc, Math; Procedure save(surface : TPTCSurface; filename : String); Const { generate the header for a true color targa image } header : Array[0..17] Of char8 = (0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); Var F : File; width, height : Integer; size : Integer; y : Integer; pixels : Pchar8; format : TPTCFormat; palette : TPTCPalette; Begin { open image file for writing } ASSign(F, filename); Rewrite(F, 1); { get surface dimensions } width := surface.width; height := surface.height; { set targa image width } header[12] := width And $FF; header[13] := width Shr 8; { set targa image height } header[14] := height And $FF; header[15] := height Shr 8; { set bits per pixel } header[16] := 24; { write tga header } BlockWrite(F, header, 18); { calculate size of image pixels } size := width * height * 3; { allocate image pixels } pixels := GetMem(size); format := TPTCFormat.Create(24, $00FF0000, $0000FF00, $000000FF); palette := TPTCPalette.Create; { save surface to image pixels } surface.save(pixels, width, height, width * 3, format, palette); palette.Free; format.Free; { write image pixels one line at a time } For y := height - 1 DownTo 0 Do BlockWrite(F, pixels[width * y * 3], width * 3); { free image pixels } FreeMem(pixels); Close(F); End; Function calculate(real, imaginary : Single; maximum : Integer) : Integer; Var c_r, c_i : Single; z_r, z_i : Single; z_r_squared, z_i_squared : Single; z_squared_magnitude : Single; count : Integer; Begin { complex number 'c' } c_r := real; c_i := imaginary; { complex 'z' } z_r := 0; z_i := 0; { complex 'z' squares } z_r_squared := 0; z_i_squared := 0; { mandelbrot function iteration loop } For count := 0 To maximum - 1 Do Begin { square 'z' and add 'c' } z_i := 2 * z_r * z_i + c_i; z_r := z_r_squared - z_i_squared + c_r; { update 'z' squares } z_r_squared := z_r * z_r; z_i_squared := z_i * z_i; { calculate squared magnitude of complex 'z' } z_squared_magnitude := z_r_squared + z_i_squared; { stop iterating if the magnitude of 'z' is greater than two } If z_squared_magnitude > 4 Then Begin calculate := Count; Exit; End; End; { maximum } calculate := 0; End; Procedure mandelbrot(console : TPTCConsole; surface : TPTCSurface; x1, y1, x2, y2 : Single); Const { constant values } entries = 1024; maximum = 1024; Var { fractal color table } table : Array[0..entries - 1] Of int32; i : Integer; f_index : Single; time : Single; intensity : Single; pixels, pixel : Pint32; width, height : Integer; dx, dy : Single; real, imaginary : Single; x, y : Integer; count : Integer; index : Integer; color : int32; area : TPTCArea; Begin { generate fractal color table } For i := 0 To entries - 1 Do Begin { calculate normalized index } f_index := i / entries; { calculate sine curve time value } time := f_index * pi - pi / 2; { lookup sine curve intensity at time and scale to [0,1] } intensity := (sin(time) + 1) / 2; { raise the intensity to a power } intensity := power(intensity, 0.1); { store intensity as a shade of blue } table[i] := Trunc(255 * intensity); End; { lock surface pixels } pixels := surface.lock; Try { get surface dimensions } width := surface.width; height := surface.height; { current pixel pointer } pixel := pixels; { calculate real x,y deltas } dx := (x2 - x1) / width; dy := (y2 - y1) / height; { imaginary axis } imaginary := y1; { iterate down surface y } For y := 0 To height - 1 Do Begin { real axis } real := x1; { iterate across surface x } For x := 0 To width - 1 Do Begin { calculate the mandelbrot interation count } count := calculate(real, imaginary, maximum); { calculate color table index } index := count Mod entries; { lookup color from iteration } color := table[index]; { store color } pixel^ := color; { next pixel } Inc(pixel); { update real } real := real + dx; End; { update imaginary } imaginary := imaginary + dy; { setup line area } area := TPTCArea.Create(0, y, width, y + 1); Try { copy surface area to console } surface.copy(console, area, area); Finally area.Free; End; { update console area } console.update; End; Finally { unlock surface } surface.unlock; End; End; Var console : TPTCConsole; surface : TPTCSurface; format : TPTCFormat; x1, y1, x2, y2 : Single; Begin format := Nil; surface := Nil; console := Nil; Try Try { create console } console := TPTCConsole.Create; { create format } format := TPTCFormat.Create(32, $00FF0000, $0000FF00, $000000FF); { open the console with a single page } console.open('Save example', format, 1); { create surface matching console dimensions } surface := TPTCSurface.Create(console.width, console.height, format); { setup viewing area } x1 := -2.00; y1 := -1.25; x2 := +1.00; y2 := +1.25; { render the mandelbrot fractal } mandelbrot(console, surface, x1, y1, x2, y2); { save mandelbrot image } save(surface, 'save.tga'); { read key } console.ReadKey; Finally console.close; console.Free; surface.Free; format.Free; End; Except On error : TPTCError Do { report error } error.report; End; End.