{! @file AudioConverter.h @framework AudioToolbox.framework @copyright (c) 1985-2015 by Apple, Inc., all rights reserved. @abstract API's to perform audio format conversions. @discussion AudioConverters convert between various linear PCM and compressed audio formats. Supported transformations include: - PCM float/integer/bit depth conversions - PCM sample rate conversion - PCM interleaving and deinterleaving - encoding PCM to compressed formats - decoding compressed formats to PCM A single AudioConverter may perform more than one of the above transformations. } { Pascal Translation: Jonas Maebe , July 2019 } { Modified for use with Free Pascal Version 308 Please report any bugs to } {$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE} {$mode macpas} {$modeswitch cblocks} {$packenum 1} {$macro on} {$inline on} {$calling mwpascal} unit AudioConverter; interface {$setc UNIVERSAL_INTERFACES_VERSION := $0400} {$setc GAP_INTERFACES_VERSION := $0308} {$ifc not defined USE_CFSTR_CONSTANT_MACROS} {$setc USE_CFSTR_CONSTANT_MACROS := TRUE} {$endc} {$ifc defined CPUPOWERPC and defined CPUI386} {$error Conflicting initial definitions for CPUPOWERPC and CPUI386} {$endc} {$ifc defined FPC_BIG_ENDIAN and defined FPC_LITTLE_ENDIAN} {$error Conflicting initial definitions for FPC_BIG_ENDIAN and FPC_LITTLE_ENDIAN} {$endc} {$ifc not defined __ppc__ and defined CPUPOWERPC32} {$setc __ppc__ := 1} {$elsec} {$setc __ppc__ := 0} {$endc} {$ifc not defined __ppc64__ and defined CPUPOWERPC64} {$setc __ppc64__ := 1} {$elsec} {$setc __ppc64__ := 0} {$endc} {$ifc not defined __i386__ and defined CPUI386} {$setc __i386__ := 1} {$elsec} {$setc __i386__ := 0} {$endc} {$ifc not defined __x86_64__ and defined CPUX86_64} {$setc __x86_64__ := 1} {$elsec} {$setc __x86_64__ := 0} {$endc} {$ifc not defined __arm__ and defined CPUARM} {$setc __arm__ := 1} {$elsec} {$setc __arm__ := 0} {$endc} {$ifc not defined __arm64__ and defined CPUAARCH64} {$setc __arm64__ := 1} {$elsec} {$setc __arm64__ := 0} {$endc} {$ifc defined cpu64} {$setc __LP64__ := 1} {$elsec} {$setc __LP64__ := 0} {$endc} {$ifc defined __ppc__ and __ppc__ and defined __i386__ and __i386__} {$error Conflicting definitions for __ppc__ and __i386__} {$endc} {$ifc defined __ppc__ and __ppc__} {$setc TARGET_CPU_PPC := TRUE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_CPU_ARM64 := FALSE} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$setc TARGET_OS_EMBEDDED := FALSE} {$elifc defined __ppc64__ and __ppc64__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := TRUE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_CPU_ARM64 := FALSE} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$setc TARGET_OS_EMBEDDED := FALSE} {$elifc defined __i386__ and __i386__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := TRUE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_CPU_ARM64 := FALSE} {$ifc defined iphonesim} {$setc TARGET_OS_MAC := FALSE} {$setc TARGET_OS_IPHONE := TRUE} {$setc TARGET_IPHONE_SIMULATOR := TRUE} {$elsec} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$endc} {$setc TARGET_OS_EMBEDDED := FALSE} {$elifc defined __x86_64__ and __x86_64__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := TRUE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_CPU_ARM64 := FALSE} {$ifc defined iphonesim} {$setc TARGET_OS_MAC := FALSE} {$setc TARGET_OS_IPHONE := TRUE} {$setc TARGET_IPHONE_SIMULATOR := TRUE} {$elsec} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$endc} {$setc TARGET_OS_EMBEDDED := FALSE} {$elifc defined __arm__ and __arm__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := TRUE} {$setc TARGET_CPU_ARM64 := FALSE} {$setc TARGET_OS_MAC := FALSE} {$setc TARGET_OS_IPHONE := TRUE} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$setc TARGET_OS_EMBEDDED := TRUE} {$elifc defined __arm64__ and __arm64__} {$setc TARGET_CPU_PPC := FALSE} {$setc TARGET_CPU_PPC64 := FALSE} {$setc TARGET_CPU_X86 := FALSE} {$setc TARGET_CPU_X86_64 := FALSE} {$setc TARGET_CPU_ARM := FALSE} {$setc TARGET_CPU_ARM64 := TRUE} {$ifc defined ios} {$setc TARGET_OS_MAC := FALSE} {$setc TARGET_OS_IPHONE := TRUE} {$setc TARGET_OS_EMBEDDED := TRUE} {$elsec} {$setc TARGET_OS_MAC := TRUE} {$setc TARGET_OS_IPHONE := FALSE} {$setc TARGET_OS_EMBEDDED := FALSE} {$endc} {$setc TARGET_IPHONE_SIMULATOR := FALSE} {$elsec} {$error __ppc__ nor __ppc64__ nor __i386__ nor __x86_64__ nor __arm__ nor __arm64__ is defined.} {$endc} {$ifc defined __LP64__ and __LP64__ } {$setc TARGET_CPU_64 := TRUE} {$elsec} {$setc TARGET_CPU_64 := FALSE} {$endc} {$ifc defined FPC_BIG_ENDIAN} {$setc TARGET_RT_BIG_ENDIAN := TRUE} {$setc TARGET_RT_LITTLE_ENDIAN := FALSE} {$elifc defined FPC_LITTLE_ENDIAN} {$setc TARGET_RT_BIG_ENDIAN := FALSE} {$setc TARGET_RT_LITTLE_ENDIAN := TRUE} {$elsec} {$error Neither FPC_BIG_ENDIAN nor FPC_LITTLE_ENDIAN are defined.} {$endc} {$setc ACCESSOR_CALLS_ARE_FUNCTIONS := TRUE} {$setc CALL_NOT_IN_CARBON := FALSE} {$setc OLDROUTINENAMES := FALSE} {$setc OPAQUE_TOOLBOX_STRUCTS := TRUE} {$setc OPAQUE_UPP_TYPES := TRUE} {$setc OTCARBONAPPLICATION := TRUE} {$setc OTKERNEL := FALSE} {$setc PM_USE_SESSION_APIS := TRUE} {$setc TARGET_API_MAC_CARBON := TRUE} {$setc TARGET_API_MAC_OS8 := FALSE} {$setc TARGET_API_MAC_OSX := TRUE} {$setc TARGET_CARBON := TRUE} {$setc TARGET_CPU_68K := FALSE} {$setc TARGET_CPU_MIPS := FALSE} {$setc TARGET_CPU_SPARC := FALSE} {$setc TARGET_OS_UNIX := FALSE} {$setc TARGET_OS_WIN32 := FALSE} {$setc TARGET_RT_MAC_68881 := FALSE} {$setc TARGET_RT_MAC_CFM := FALSE} {$setc TARGET_RT_MAC_MACHO := TRUE} {$setc TYPED_FUNCTION_POINTERS := TRUE} {$setc TYPE_BOOL := FALSE} {$setc TYPE_EXTENDED := FALSE} {$setc TYPE_LONGLONG := TRUE} uses MacTypes,CoreAudioTypes; {$endc} {not MACOSALLINCLUDE} {$ALIGN POWER} //================================================================================================== {! @header AudioConverter.h } //============================================================================= // Includes //============================================================================= //CF_ASSUME_NONNULL_BEGIN //============================================================================= // Theory of Operation //============================================================================= //============================================================================= // Types specific to the Audio Converter API //============================================================================= {! @typedef AudioConverterRef @abstract A reference to an AudioConverter object. } type AudioConverterRef = ^OpaqueAudioConverter; { an opaque type } OpaqueAudioConverter = record end; type AudioConverterPropertyID = UInt32; //============================================================================= // Standard Properties //============================================================================= {! @enum AudioConverterPropertyID @abstract The properties of an AudioConverter, accessible via AudioConverterGetProperty() and AudioConverterSetProperty(). @constant kAudioConverterPropertyMinimumInputBufferSize a UInt32 that indicates the size in bytes of the smallest buffer of input data that can be supplied via the AudioConverterInputProc or as the input to AudioConverterConvertBuffer @constant kAudioConverterPropertyMinimumOutputBufferSize a UInt32 that indicates the size in bytes of the smallest buffer of output data that can be supplied to AudioConverterFillComplexBuffer or as the output to AudioConverterConvertBuffer @constant kAudioConverterPropertyMaximumInputBufferSize DEPRECATED. The AudioConverter input proc may be passed any number of packets of data. If fewer are packets are returned than required, then the input proc will be called again. If more packets are passed than required, they will remain in the client's buffer and be consumed as needed. @constant kAudioConverterPropertyMaximumInputPacketSize a UInt32 that indicates the size in bytes of the largest single packet of data in the input format. This is mostly useful for variable bit rate compressed data (decoders). @constant kAudioConverterPropertyMaximumOutputPacketSize a UInt32 that indicates the size in bytes of the largest single packet of data in the output format. This is mostly useful for variable bit rate compressed data (encoders). @constant kAudioConverterPropertyCalculateInputBufferSize a UInt32 that on input holds a size in bytes that is desired for the output data. On output, it will hold the size in bytes of the input buffer required to generate that much output data. Note that some converters cannot do this calculation. @constant kAudioConverterPropertyCalculateOutputBufferSize a UInt32 that on input holds a size in bytes that is desired for the input data. On output, it will hold the size in bytes of the output buffer required to hold the output data that will be generated. Note that some converters cannot do this calculation. @constant kAudioConverterPropertyInputCodecParameters The value of this property varies from format to format and is considered private to the format. It is treated as a buffer of untyped data. @constant kAudioConverterPropertyOutputCodecParameters The value of this property varies from format to format and is considered private to the format. It is treated as a buffer of untyped data. @constant kAudioConverterSampleRateConverterAlgorithm DEPRECATED: please use kAudioConverterSampleRateConverterComplexity instead @constant kAudioConverterSampleRateConverterComplexity An OSType that specifies the sample rate converter algorithm to use (as defined in AudioToolbox/AudioUnitProperties.h) @constant kAudioConverterSampleRateConverterQuality A UInt32 that specifies rendering quality of the sample rate converter (see enum constants below) @constant kAudioConverterSampleRateConverterInitialPhase A Float64 with value 0.0 <= x < 1.0 giving the initial subsample position of the sample rate converter. @constant kAudioConverterCodecQuality A UInt32 that specifies rendering quality of a codec (see enum constants below) @constant kAudioConverterPrimeMethod a UInt32 specifying priming method (usually for sample-rate converter) see explanation for struct AudioConverterPrimeInfo below along with enum constants @constant kAudioConverterPrimeInfo A pointer to AudioConverterPrimeInfo (see explanation for struct AudioConverterPrimeInfo below) @constant kAudioConverterChannelMap An array of SInt32's. The size of the array is the number of output channels, and each element specifies which input channel's data is routed to that output channel (using a 0-based index of the input channels), or -1 if no input channel is to be routed to that output channel. The default behavior is as follows. I = number of input channels, O = number of output channels. When I > O, the first O inputs are routed to the first O outputs, and the remaining puts discarded. When O > I, the first I inputs are routed to the first O outputs, and the remaining outputs are zeroed. A simple example for splitting mono input to stereo output (instead of routing the input to only the first output channel):
   // this should be as large as the number of output channels:
  SInt32 channelMap[2] = ( 0, 0 );
  AudioConverterSetProperty(theConverter, kAudioConverterChannelMap, 
    sizeof(channelMap), channelMap);
@constant kAudioConverterDecompressionMagicCookie A void * pointing to memory set up by the caller. Required by some formats in order to decompress the input data. @constant kAudioConverterCompressionMagicCookie A void * pointing to memory set up by the caller. Returned by the converter so that it may be stored along with the output data. It can then be passed back to the converter for decompression at a later time. @constant kAudioConverterEncodeBitRate A UInt32 containing the number of bits per second to aim for when encoding data. Some decoders will also allow you to get this property to discover the bit rate. @constant kAudioConverterEncodeAdjustableSampleRate For encoders where the AudioConverter was created with an output sample rate of zero, and the codec can do rate conversion on its input, this provides a way to set the output sample rate. The property value is a Float64. @constant kAudioConverterInputChannelLayout The property value is an AudioChannelLayout. @constant kAudioConverterOutputChannelLayout The property value is an AudioChannelLayout. @constant kAudioConverterApplicableEncodeBitRates The property value is an array of AudioValueRange describing applicable bit rates based on current settings. @constant kAudioConverterAvailableEncodeBitRates The property value is an array of AudioValueRange describing available bit rates based on the input format. You can get all available bit rates from the AudioFormat API. @constant kAudioConverterApplicableEncodeSampleRates The property value is an array of AudioValueRange describing applicable sample rates based on current settings. @constant kAudioConverterAvailableEncodeSampleRates The property value is an array of AudioValueRange describing available sample rates based on the input format. You can get all available sample rates from the AudioFormat API. @constant kAudioConverterAvailableEncodeChannelLayoutTags The property value is an array of AudioChannelLayoutTags for the format and number of channels specified in the input format going to the encoder. @constant kAudioConverterCurrentOutputStreamDescription Returns the current completely specified output AudioStreamBasicDescription. For example when encoding to AAC, your original output stream description will not have been completely filled out. @constant kAudioConverterCurrentInputStreamDescription Returns the current completely specified input AudioStreamBasicDescription. @constant kAudioConverterPropertySettings Returns the a CFArray of property settings for converters. @constant kAudioConverterPropertyBitDepthHint An SInt32 of the source bit depth to preserve. This is a hint to some encoders like lossless about how many bits to preserve in the input. The converter usually tries to preserve as many as possible, but a lossless encoder will do poorly if more bits are supplied than are desired in the output. The bit depth is expressed as a negative number if the source was floating point, e.g. -32 for float, -64 for double. @constant kAudioConverterPropertyFormatList An array of AudioFormatListItem structs describing all the data formats produced by the encoder end of the AudioConverter. If the ioPropertyDataSize parameter indicates that outPropertyData is sizeof(AudioFormatListItem), then only the best format is returned. This property may be used for example to discover all the data formats produced by the AAC_HE2 (AAC High Efficiency vers. 2) encoder. } const kAudioConverterPropertyMinimumInputBufferSize = FourCharCode('mibs'); kAudioConverterPropertyMinimumOutputBufferSize = FourCharCode('mobs'); kAudioConverterPropertyMaximumInputBufferSize = FourCharCode('xibs'); kAudioConverterPropertyMaximumInputPacketSize = FourCharCode('xips'); kAudioConverterPropertyMaximumOutputPacketSize = FourCharCode('xops'); kAudioConverterPropertyCalculateInputBufferSize = FourCharCode('cibs'); kAudioConverterPropertyCalculateOutputBufferSize = FourCharCode('cobs'); kAudioConverterPropertyInputCodecParameters = FourCharCode('icdp'); kAudioConverterPropertyOutputCodecParameters = FourCharCode('ocdp'); kAudioConverterSampleRateConverterAlgorithm = FourCharCode('srci'); kAudioConverterSampleRateConverterComplexity = FourCharCode('srca'); kAudioConverterSampleRateConverterQuality = FourCharCode('srcq'); kAudioConverterSampleRateConverterInitialPhase = FourCharCode('srcp'); kAudioConverterCodecQuality = FourCharCode('cdqu'); kAudioConverterPrimeMethod = FourCharCode('prmm'); kAudioConverterPrimeInfo = FourCharCode('prim'); kAudioConverterChannelMap = FourCharCode('chmp'); kAudioConverterDecompressionMagicCookie = FourCharCode('dmgc'); kAudioConverterCompressionMagicCookie = FourCharCode('cmgc'); kAudioConverterEncodeBitRate = FourCharCode('brat'); kAudioConverterEncodeAdjustableSampleRate = FourCharCode('ajsr'); kAudioConverterInputChannelLayout = FourCharCode('icl '); kAudioConverterOutputChannelLayout = FourCharCode('ocl '); kAudioConverterApplicableEncodeBitRates = FourCharCode('aebr'); kAudioConverterAvailableEncodeBitRates = FourCharCode('vebr'); kAudioConverterApplicableEncodeSampleRates = FourCharCode('aesr'); kAudioConverterAvailableEncodeSampleRates = FourCharCode('vesr'); kAudioConverterAvailableEncodeChannelLayoutTags = FourCharCode('aecl'); kAudioConverterCurrentOutputStreamDescription = FourCharCode('acod'); kAudioConverterCurrentInputStreamDescription = FourCharCode('acid'); kAudioConverterPropertySettings = FourCharCode('acps'); kAudioConverterPropertyBitDepthHint = FourCharCode('acbd'); kAudioConverterPropertyFormatList = FourCharCode('flst'); //============================================================================= // //============================================================================= {! @enum Mac OS X AudioConverter Properties @constant kAudioConverterPropertyDithering A UInt32. Set to a value from the enum of dithering algorithms below. Zero means no dithering and is the default. (Mac OS X only.) @constant kAudioConverterPropertyDitherBitDepth A UInt32. Dither is applied at this bit depth. (Mac OS X only.) } const kAudioConverterPropertyDithering = FourCharCode('dith'); kAudioConverterPropertyDitherBitDepth = FourCharCode('dbit'); {! @enum Dithering algorithms @abstract Constants to be used as the value for kAudioConverterPropertyDithering. @constant kDitherAlgorithm_TPDF Dither signal is generated by a white noise source with a triangular probability density function @constant kDitherAlgorithm_NoiseShaping Use a static, perceptually weighted noise shaped dither } const kDitherAlgorithm_TPDF = 1; kDitherAlgorithm_NoiseShaping = 2; {! @enum Quality constants @abstract Constants to be used with kAudioConverterSampleRateConverterQuality. @constant kAudioConverterQuality_Max maximum quality @constant kAudioConverterQuality_High high quality @constant kAudioConverterQuality_Medium medium quality @constant kAudioConverterQuality_Low low quality @constant kAudioConverterQuality_Min minimum quality } const kAudioConverterQuality_Max = $7F; kAudioConverterQuality_High = $60; kAudioConverterQuality_Medium = $40; kAudioConverterQuality_Low = $20; kAudioConverterQuality_Min = 0; {! @enum Sample Rate Converter Complexity @constant kAudioConverterSampleRateConverterComplexity_Linear @discussion Linear interpolation. lowest quality, cheapest. InitialPhase and PrimeMethod properties are not operative with this mode. @constant kAudioConverterSampleRateConverterComplexity_Normal @discussion Normal quality sample rate conversion. @constant kAudioConverterSampleRateConverterComplexity_Mastering @discussion Mastering quality sample rate conversion. More expensive. @constant kAudioConverterSampleRateConverterComplexity_MinimumPhase @discussion Minimum phase impulse response. Stopband attenuation varies with quality setting. The InitialPhase and PrimeMethod properties are not operative with this mode. There are three levels of quality provided. kAudioConverterQuality_Low (or Min) : noise floor to -96 dB kAudioConverterQuality_Medium : noise floor to -144 dB kAudioConverterQuality_High (or Max) : noise floor to -160 dB (this uses double precision internally) Quality equivalences to the other complexity modes are very roughly as follows: MinimumPhase Low is somewhat better than Normal Medium. MinimumPhase Medium is similar to Normal Max. MinimumPhase High is similar to Mastering Low. In general, MinimumPhase performs better than Normal and Mastering for the equivalent qualities listed above. MinimumPhase High is several times faster than Mastering Low. } const kAudioConverterSampleRateConverterComplexity_Linear = FourCharCode('line'); // linear interpolation kAudioConverterSampleRateConverterComplexity_Normal = FourCharCode('norm'); // normal quality range, the default kAudioConverterSampleRateConverterComplexity_Mastering = FourCharCode('bats'); // higher quality range, more expensive kAudioConverterSampleRateConverterComplexity_MinimumPhase = FourCharCode('minp'); // minimum phase impulse response. {! @enum Prime method constants @abstract Constants to be used with kAudioConverterPrimeMethod. @constant kConverterPrimeMethod_Pre Primes with leading + trailing input frames. @constant kConverterPrimeMethod_Normal Only primes with trailing (zero latency). Leading frames are assumed to be silence. @constant kConverterPrimeMethod_None Acts in "latency" mode. Both leading and trailing frames assumed to be silence. } const kConverterPrimeMethod_Pre = 0; kConverterPrimeMethod_Normal = 1; kConverterPrimeMethod_None = 2; {! @struct AudioConverterPrimeInfo @abstract Specifies priming information. @field leadingFrames Specifies the number of leading (previous) input frames, relative to the normal/desired start input frame, required by the converter to perform a high quality conversion. If using kConverterPrimeMethod_Pre, the client should "pre-seek" the input stream provided through the input proc by leadingFrames. If no frames are available previous to the desired input start frame (because, for example, the desired start frame is at the very beginning of available audio), then provide "leadingFrames" worth of initial zero frames in the input proc. Do not "pre-seek" in the default case of kConverterPrimeMethod_Normal or when using kConverterPrimeMethod_None. @field trailingFrames Specifies the number of trailing input frames (past the normal/expected end input frame) required by the converter to perform a high quality conversion. The client should be prepared to provide this number of additional input frames except when using kConverterPrimeMethod_None. If no more frames of input are available in the input stream (because, for example, the desired end frame is at the end of an audio file), then zero (silent) trailing frames will be synthesized for the client. @discussion When using AudioConverterFillComplexBuffer() (either a single call or a series of calls), some conversions, particularly involving sample-rate conversion, ideally require a certain number of input frames previous to the normal start input frame and beyond the end of the last expected input frame in order to yield high-quality results. These are expressed in the leadingFrames and trailingFrames members of the structure. The very first call to AudioConverterFillComplexBuffer(), or first call after AudioConverterReset(), will request additional input frames beyond those normally expected in the input proc callback to fulfill this first AudioConverterFillComplexBuffer() request. The number of additional frames requested, depending on the prime method, will be approximately:
            kConverterPrimeMethod_Pre       leadingFrames + trailingFrames
            kConverterPrimeMethod_Normal    trailingFrames
            kConverterPrimeMethod_None      0
        
Thus, in effect, the first input proc callback(s) may provide not only the leading frames, but also may "read ahead" by an additional number of trailing frames depending on the prime method. kConverterPrimeMethod_None is useful in a real-time application processing live input, in which case trailingFrames (relative to input sample rate) of through latency will be seen at the beginning of the output of the AudioConverter. In other real-time applications such as DAW systems, it may be possible to provide these initial extra audio frames since they are stored on disk or in memory somewhere and kConverterPrimeMethod_Pre may be preferable. The default method is kConverterPrimeMethod_Normal, which requires no pre-seeking of the input stream and generates no latency at the output. } type AudioConverterPrimeInfo = record leadingFrames: UInt32; trailingFrames: UInt32; end; AudioConverterPrimeInfoPtr = ^AudioConverterPrimeInfo; //============================================================================= // Errors //============================================================================= const kAudioConverterErr_FormatNotSupported = FourCharCode('fmt?'); kAudioConverterErr_OperationNotSupported = $6F703F3F; // 'op??', integer used because of trigraph kAudioConverterErr_PropertyNotSupported = FourCharCode('prop'); kAudioConverterErr_InvalidInputSize = FourCharCode('insz'); kAudioConverterErr_InvalidOutputSize = FourCharCode('otsz'); // e.g. byte size is not a multiple of the frame size kAudioConverterErr_UnspecifiedError = FourCharCode('what'); kAudioConverterErr_BadPropertySizeError = FourCharCode('!siz'); kAudioConverterErr_RequiresPacketDescriptionsError = FourCharCode('!pkd'); kAudioConverterErr_InputSampleRateOutOfRange = FourCharCode('!isr'); kAudioConverterErr_OutputSampleRateOutOfRange = FourCharCode('!osr'); //============================================================================= // Routines //============================================================================= //----------------------------------------------------------------------------- {! @function AudioConverterNew @abstract Create a new AudioConverter. @param inSourceFormat The format of the source audio to be converted. @param inDestinationFormat The destination format to which the audio is to be converted. @param outAudioConverter On successful return, points to a new AudioConverter instance. @result An OSStatus result code. @discussion For a pair of linear PCM formats, the following conversions are supported: Also, encoding and decoding between linear PCM and compressed formats is supported. Functions in AudioToolbox/AudioFormat.h return information about the supported formats. When using a codec, you can use any supported PCM format (as above); the converter will perform any necessary additional conversion between your PCM format and the one created or consumed by the codec. } function AudioConverterNew( const (*var*) inSourceFormat: AudioStreamBasicDescription; const (*var*) inDestinationFormat: AudioStreamBasicDescription; var outAudioConverter: AudioConverterRef {__nullable * __nonnull} ): OSStatus; external name '_AudioConverterNew'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterNewSpecific @abstract Create a new AudioConverter using specific codecs. @param inSourceFormat The format of the source audio to be converted. @param inDestinationFormat The destination format to which the audio is to be converted. @param inNumberClassDescriptions The number of class descriptions. @param inClassDescriptions AudioClassDescriptions specifiying the codec to instantiate. @param outAudioConverter On successful return, points to a new AudioConverter instance. @result An OSStatus result code. @discussion This function is identical to AudioConverterNew(), except that the client may explicitly choose which codec to instantiate if there is more than one choice. } function AudioConverterNewSpecific( const (*var*) inSourceFormat: AudioStreamBasicDescription; const (*var*) inDestinationFormat: AudioStreamBasicDescription; inNumberClassDescriptions: UInt32; const (*var*) inClassDescriptions: AudioClassDescription; var outAudioConverter: AudioConverterRef {__nullable * __nonnull} ): OSStatus; external name '_AudioConverterNewSpecific'; (* API_AVAILABLE(macos(10.4), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterDispose @abstract Destroy an AudioConverter. @param inAudioConverter The AudioConverter to dispose. @result An OSStatus result code. } function AudioConverterDispose( inAudioConverter: AudioConverterRef ): OSStatus; external name '_AudioConverterDispose'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterReset @abstract Reset an AudioConverter @param inAudioConverter The AudioConverter to reset. @result An OSStatus result code. @discussion Should be called whenever there is a discontinuity in the source audio stream being provided to the converter. This will flush any internal buffers in the converter. } function AudioConverterReset( inAudioConverter: AudioConverterRef ): OSStatus; external name '_AudioConverterReset'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterGetPropertyInfo @abstract Returns information about an AudioConverter property. @param inAudioConverter The AudioConverter to query. @param inPropertyID The property to query. @param outSize If non-null, on exit, the maximum size of the property value in bytes. @param outWritable If non-null, on exit, indicates whether the property value is writable. @result An OSStatus result code. } function AudioConverterGetPropertyInfo( inAudioConverter: AudioConverterRef; inPropertyID: AudioConverterPropertyID; outSize: UInt32Ptr {* __nullable}; outWritable: BooleanPtr {* __nullable} ): OSStatus; external name '_AudioConverterGetPropertyInfo'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterGetProperty @abstract Returns an AudioConverter property value. @param inAudioConverter The AudioConverter to query. @param inPropertyID The property to fetch. @param ioPropertyDataSize On entry, the size of the memory pointed to by outPropertyData. On successful exit, the size of the property value. @param outPropertyData On exit, the property value. @result An OSStatus result code. } function AudioConverterGetProperty( inAudioConverter: AudioConverterRef; inPropertyID: AudioConverterPropertyID; var ioPropertyDataSize: UInt32; outPropertyData: UnivPtr ): OSStatus; external name '_AudioConverterGetProperty'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterSetProperty @abstract Sets an AudioConverter property value. @param inAudioConverter The AudioConverter to modify. @param inPropertyID The property to set. @param inPropertyDataSize The size in bytes of the property value. @param inPropertyData Points to the new property value. @result An OSStatus result code. } function AudioConverterSetProperty( inAudioConverter: AudioConverterRef; inPropertyID: AudioConverterPropertyID; inPropertyDataSize: UInt32; inPropertyData: {const} UnivPtr ): OSStatus; external name '_AudioConverterSetProperty'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @typedef AudioConverterInputDataProc @abstract Callback function for supplying input data to AudioConverterFillBuffer. @param inAudioConverter The AudioConverter requesting input. @param ioDataSize On entry, the minimum number of bytes of audio data the converter would like in order to fulfill its current FillBuffer request. On exit, the number of bytes of audio data actually being provided for input, or 0 if there is no more input. @param outData On exit, *outData should point to the audio data being provided for input. @param inUserData The inInputDataProcUserData parameter passed to AudioConverterFillBuffer(). @result An OSStatus result code. @discussion NOTE: This API is now deprecated, use AudioConverterFillComplexBuffer instead. This callback function supplies input to AudioConverterFillBuffer. The AudioConverter requests a minimum amount of data (*ioDataSize). The callback may return any amount of data. If it is less than than the minimum, the callback will simply be called again in the near future. The callback supplies a pointer to a buffer of audio data. The callback is responsible for not freeing or altering this buffer until it is called again. If the callback returns an error, it must return zero bytes of data. AudioConverterFillBuffer will stop producing output and return whatever output has already been produced to its caller, along with the error code. This mechanism can be used when an input proc has temporarily run out of data, but has not yet reached end of stream. } type AudioConverterInputDataProc = function( inAudioConverter: AudioConverterRef; var ioDataSize: UInt32; var outData: UnivPtr {__nonnull * __nonnull}; inUserData: UnivPtr {__nullable} ): OSStatus; //----------------------------------------------------------------------------- (* {! @function AudioConverterFillBuffer @abstract Converts data supplied by an input callback function. @param inAudioConverter The AudioConverter to use. @param inInputDataProc A callback function which supplies the input data. @param inInputDataProcUserData A value for the use of the callback function. @param ioOutputDataSize On entry, the size of the buffer pointed to by outOutputData. On exit, the number of bytes written to outOutputData @param outOutputData The buffer into which the converted data is written. @result An OSStatus result code. @discussion NOTE: This API is now deprecated, use AudioConverterFillComplexBuffer instead. Produces a buffer of output data from an AudioConverter. The supplied input callback function is called whenever necessary. } extern OSStatus AudioConverterFillBuffer( AudioConverterRef inAudioConverter, AudioConverterInputDataProc inInputDataProc, void * __nullable inInputDataProcUserData, UInt32 * ioOutputDataSize, void * outOutputData) API_DEPRECATED("no longer supported", macos(10.1, 10.5)) API_UNAVAILABLE(ios, watchos, tvos); *) //----------------------------------------------------------------------------- {! @function AudioConverterConvertBuffer @abstract Converts data from an input buffer to an output buffer. @param inAudioConverter The AudioConverter to use. @param inInputDataSize The size of the buffer inInputData. @param inInputData The input audio data buffer. @param ioOutputDataSize On entry, the size of the buffer outOutputData. On exit, the number of bytes written to outOutputData. @param outOutputData The output data buffer. @result Produces a buffer of output data from an AudioConverter, using the supplied input buffer. @discussion WARNING: this function will fail for any conversion where there is a variable relationship between the input and output data buffer sizes. This includes sample rate conversions and most compressed formats. In these cases, use AudioConverterFillComplexBuffer. Generally this function is only appropriate for PCM-to-PCM conversions where there is no sample rate conversion. } function AudioConverterConvertBuffer( inAudioConverter: AudioConverterRef; inInputDataSize: UInt32; inInputData: {const} UnivPtr; var ioOutputDataSize: UInt32; outOutputData: UnivPtr ): OSStatus; external name '_AudioConverterConvertBuffer'; (* API_AVAILABLE(macos(10.1), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @typedef AudioConverterComplexInputDataProc @abstract Callback function for supplying input data to AudioConverterFillComplexBuffer. @param inAudioConverter The AudioConverter requesting input. @param ioNumberDataPackets On entry, the minimum number of packets of input audio data the converter would like in order to fulfill its current FillBuffer request. On exit, the number of packets of audio data actually being provided for input, or 0 if there is no more input. @param ioData On exit, the members of ioData should be set to point to the audio data being provided for input. @param outDataPacketDescription If non-null, on exit, the callback is expected to fill this in with an AudioStreamPacketDescription for each packet of input data being provided. @param inUserData The inInputDataProcUserData parameter passed to AudioConverterFillComplexBuffer(). @result An OSStatus result code. @discussion This callback function supplies input to AudioConverterFillComplexBuffer. The AudioConverter requests a minimum number of packets (*ioNumberDataPackets). The callback may return one or more packets. If this is less than the minimum, the callback will simply be called again in the near future. The callback manipulates the members of ioData to point to one or more buffers of audio data (multiple buffers are used with non-interleaved PCM data). The callback is responsible for not freeing or altering this buffer until it is called again. If the callback returns an error, it must return zero packets of data. AudioConverterFillComplexBuffer will stop producing output and return whatever output has already been produced to its caller, along with the error code. This mechanism can be used when an input proc has temporarily run out of data, but has not yet reached end of stream. } type AudioConverterComplexInputDataProc = function( inAudioConverter: AudioConverterRef; var ioNumberDataPackets: UInt32; var ioData: AudioBufferList; outDataPacketDescription: AudioStreamPacketDescriptionPtrPtr {* __nullable * __nullable}; inUserData: UnivPtr {__nullable} ): OSStatus; //----------------------------------------------------------------------------- {! @function AudioConverterFillComplexBuffer @abstract Converts data supplied by an input callback function, supporting non-interleaved and packetized formats. @param inAudioConverter The AudioConverter to use. @param inInputDataProc A callback function which supplies the input data. @param inInputDataProcUserData A value for the use of the callback function. @param ioOutputDataPacketSize On entry, the capacity of outOutputData expressed in packets in the converter's output format. On exit, the number of packets of converted data that were written to outOutputData. @param outOutputData The converted output data is written to this buffer. @param outPacketDescription If non-null, and the converter's output uses packet descriptions, then packet descriptions are written to this array. It must point to a memory block capable of holding *ioOutputDataPacketSize packet descriptions. (See AudioFormat.h for ways to determine whether an audio format uses packet descriptions). @result An OSStatus result code. @discussion Produces a buffer list of output data from an AudioConverter. The supplied input callback function is called whenever necessary. } function AudioConverterFillComplexBuffer( inAudioConverter: AudioConverterRef; inInputDataProc: AudioConverterComplexInputDataProc; inInputDataProcUserData: UnivPtr {__nullable}; var ioOutputDataPacketSize: UInt32; var outOutputData: AudioBufferList; outPacketDescription: AudioStreamPacketDescriptionPtr {* __nullable} ): OSStatus; external name '_AudioConverterFillComplexBuffer'; (* API_AVAILABLE(macos(10.2), ios(2.0), watchos(2.0), tvos(9.0)) *) //----------------------------------------------------------------------------- {! @function AudioConverterConvertComplexBuffer @abstract Converts PCM data from an input buffer list to an output buffer list. @param inAudioConverter The AudioConverter to use. @param inNumberPCMFrames The number of PCM frames to convert. @param inInputData The source audio buffer list. @param outOutputData The converted output data is written to this buffer list. @result An OSStatus result code. @discussion WARNING: this function will fail for any conversion where there is a variable relationship between the input and output data buffer sizes. This includes sample rate conversions and most compressed formats. In these cases, use AudioConverterFillComplexBuffer. Generally this function is only appropriate for PCM-to-PCM conversions where there is no sample rate conversion. } function AudioConverterConvertComplexBuffer( inAudioConverter: AudioConverterRef; inNumberPCMFrames: UInt32; const (*var*) inInputData: AudioBufferList; var outOutputData: AudioBufferList ): OSStatus; external name '_AudioConverterConvertComplexBuffer'; (* API_AVAILABLE(macos(10.7), ios(5.0), watchos(2.0), tvos(9.0)) *) //CF_ASSUME_NONNULL_END {$ifc not defined MACOSALLINCLUDE or not MACOSALLINCLUDE} end. {$endc} {not MACOSALLINCLUDE}