{ $Id$ This file is part of the Free Pascal run time library. Copyright (c) 2000-2001 by the Free Pascal development team. Portions Copyright (c) 2000 by Casey Duncan (casey.duncan@state.co.us) Processor dependent implementation for the system unit for PowerPC See the file COPYING.FPC, included in this distribution, for details about the copyright. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. **********************************************************************} {**************************************************************************** Move / Fill ****************************************************************************} {$define FPC_SYSTEM_HAS_MOVE} procedure Move(var source;var dest;count:longint);assembler; asm { count <= 0 ? } cmpwi cr0,r5,0 { check if we have to do the move backwards because of overlap } sub r10,r4,r3 { carry := boolean(dest-source < count) = boolean(overlap) } subc r10,r10,r5 { count < 15 ? (to decide whether we will move dwords or bytes } cmpwi cr1,r5,15 { if overlap, then r10 := -1 else r10 := 0 } subfe r10,r10,r10 { count < 39 ? (32 + max. alignment (7) } cmpwi cr7,r5,39 { if count <= 0, stop } ble cr0,LMoveDone { load the begin of the source in the data cache } dcbt 0,r3 { and the dest as well } dcbst 0,r4 { if overlap, then r0 := count else r0 := 0 } and r0,r5,r10 { if overlap, then point source and dest to the end } add r3,r3,r0 add r4,r4,r0 { if overlap, then r0 := 0, else r0 := -1 } not r0,r10 { if overlap, then r10 := -2, else r10 := 0 } slwi r10,r10,1 { if overlap, then r10 := -1, else r10 := 1 } addi r10,r10,1 { if overlap, then source/dest += -1, otherwise they stay } { After the next instruction, r3/r4 + r10 = next position } { to load/store from/to } add r3,r3,r0 add r4,r4,r0 { if count < 15, copy everything byte by byte } blt cr1,LMoveBytes { otherwise, guarantee 4 byte alignment for dest for starters } LMove4ByteAlignLoop: lbzux r0,r3,r10 stbux r0,r4,r10 { is dest now 4 aligned? } andi. r0,r4,3 subi r5,r5,1 { while not aligned, continue } bne cr0,LMove4ByteAlignLoop { check for 8 byte alignment } andi. r0,r4,7 { we are going to copy one byte again (the one at the newly } { aligned address), so increase count byte 1 } addi r5,r5,1 { count div 4 for number of dwords to copy } srwi r0,r5,2 { if 11 <= count < 39, copy using dwords } blt cr7,LMoveDWords { multiply the update count with 4 } slwi r10,r10,2 beq cr0,L8BytesAligned { count >= 39 -> align to 8 byte boundary and then use the FPU } { since we're already at 4 byte alignment, use dword store } lwzux r0,r3,r10 stwux r0,r4,r10 subi r5,r5,4 L8BytesAligned: { count div 32 ( >= 1, since count was >=39 } srwi r0,r5,5 { remainder } andi. r5,r5,31 { to decide if we will do some dword stores (instead of only } { byte stores) afterwards or not } cmpwi cr1,r5,11 mtctr r0 { r0 := count div 4, will be moved to ctr when copying dwords } srwi r0,r5,2 { adjust the update count: it will now be 8 or -8 depending on overlap } slwi r10,r10,1 { adjust source and dest pointers: because of the above loop, dest is now } { aligned to 8 bytes. So if we substract r10 we will still have an 8 bytes } { aligned address) } sub r3,r3,r10 sub r4,r4,r10 LMove32ByteLoop: lfdux f13,r3,r10 lfdux f12,r3,r10 lfdux f11,r3,r10 lfdux f0,r3,r10 stfdux f13,r4,r10 stfdux f12,r4,r10 stfdux f11,r4,r10 stfdux f0,r4,r10 bdnz LMove32ByteLoop { cr0*4+eq is true if "count and 31" = 0 } beq cr0,LMoveDone { make r10 again -1 or 1, but first adjust source/dest pointers } add r3,r3,r10 add r4,r4,r10 srawi r10,r10,3 sub r3,r3,r10 sub r4,r4,r10 { cr1 contains whether count <= 11 } ble cr1,LMoveBytes add r3,r3,r10 add r4,r4,r10 LMoveDWords: mtctr r0 andi. r5,r5,3 { r10 * 4 } slwi r10,r10,2 sub r3,r3,r10 sub r4,r4,r10 LMoveDWordsLoop: lwzux r0,r3,r10 stwux r0,r4,r10 bdnz LMoveDWordsLoop beq cr0,LMoveDone { make r10 again -1 or 1 } add r3,r3,r10 add r4,r4,r10 srawi r10,r10,2 sub r3,r3,r10 sub r4,r4,r10 LMoveBytes: mtctr r5 LMoveBytesLoop: lbzux r0,r3,r10 stbux r0,r4,r10 bdnz LMoveBytesLoop LMoveDone: end ['R0','R3','R4','R5','R10','F0','F11','F12','F13','CTR','CR0','CR1','CR7']; {$define FPC_SYSTEM_HAS_FILLCHAR} Procedure FillChar(var x;count:longint;value:byte);assembler; { input: x in r3, count in r4, value in r5 } {$ifndef ABI_AIX} { in the AIX ABI, we can use te red zone for temp storage, otherwise we have } { to explicitely allocate room } var temp: record case byte of 0: (l1,l2: longint); 1: (d: double); end; {$endif ABI_AIX} asm { no bytes? } cmpwi cr6,r4,0 { less than 15 bytes? } cmpwi cr7,r4,15 { less than 63 bytes? } cmpwi cr1,r4,63 { fill r5 with ValueValueValueValue } rlwimi r5,r5,8,16,23 { setup for aligning x to multiple of 4} rlwinm r10,r3,0,31-2+1,31 rlwimi r5,r5,16,0,15 beq cr6,LFillCharDone { get the start of the data in the cache (and mark it as "will be } { modified") } dcbst 0,r3 subfic r10,r10,4 blt cr7,LFillCharVerySmall { just store 4 bytes instead of using a loop to align (there are } { plenty of other instructions now to keep the processor busy } { while it handles the (possibly unaligned) store) } stw r5,0(r3) { r3 := align(r3,4) } add r3,r3,r10 { decrease count with number of bytes already stored } sub r4,r4,r10 blt cr1,LFillCharSmall { if we have to fill with 0 (which happens a lot), we can simply use } { dcbz for the most part, which is very fast, so make a special case } { for that } cmplwi cr1,r5,0 { align to a multiple of 32 (and immediately check whether we aren't } { already 32 byte aligned) } rlwinm. r10,r3,0,31-5+1,31 { setup r3 for using update forms of store instructions } subi r3,r3,4 { get number of bytes to store } subfic r10,r10,32 { if already 32byte aligned, skip align loop } beq L32ByteAlignLoopDone { substract from the total count } sub r4,r4,r10 L32ByteAlignLoop: { we were already aligned to 4 byres, so this will count down to } { exactly 0 } subic. r10,r10,4 stwu r5,4(r3) bne L32ByteAlignLoop L32ByteAlignLoopDone: { get the amount of 32 byte blocks } srwi r10,r4,5 { and keep the rest in r4 (recording whether there is any rest) } rlwinm. r4,r4,0,31-5+2,31 { move to ctr } mtctr r10 { check how many rest there is (to decide whether we'll use } { FillCharSmall or FillCharVerySmall) } cmpl cr7,r4,11 { if filling with zero, only use dcbz } bne cr1, LFillCharNoZero { make r3 point again to the actual store position } addi r3,r3,4 LFillCharDCBZLoop: dcbz 0,r3 add r3,r3,32 bdnz LFillCharDCBZLoop { if there was no rest, we're finished } beq LFillCharDone b LFillCharSmall LFillCharNoZero: {$ifdef ABI_AIX} stw r5,0(sp) stw r5,4(sp) lfd f0,0(sp) {$else ABI_AIX} stw r5,temp.l1 stw r5,temp.l2 lfd f0,temp.d {$endif ABI_AIX} { make r3 point to address-8, so we're able to use fp double stores } { with update (it's already -4 now) } subi r3,r3,4 { load r10 with 8, so that dcbz uses the correct address } LFillChar32ByteLoop: dcbz r3,r10 stfdu f0,8(r3) stfdu f0,8(r3) stfdu f0,8(r3) stfdu f0,8(r3) bdnz LFillChar32ByteLoop { if there was no rest, we're finished } beq LFillCharDone LFillCharSmall: { when we arrive here, we're already 4 byte aligned } { get count div 4 to store dwords } srwi r10,r4,2 { get ready for use of update stores } subi r3,r3,4 mtctr r10 rlwinm. r4,r4,0,31-2+1,31 LFillCharSmallLoop: stwu r5,4(r3) bdnz LFillCharSmallLoop { if nothing left, stop } beq LFillCharDone { get ready to store bytes } addi r3,r3,4 LFillCharVerySmall: mtctr r4 subi r3,r3,1 LFillCharVerySmallLoop: stbu r5,1(r3) bdnz LFillCharVerySmallLoop LFillCharDone: end; {$define FPC_SYSTEM_HAS_FILLWORD} procedure fillword(var x;count : longint;value : word); begin { registers: r3 x r4 count r5 value r13 value.value r14 ptr to dest word r15 increment 1 r16 increment 2 r17 scratch r18 scratch f1 value.value.value.value } asm cmpwi cr0,r3,0 andi r17,r4,$3 srwi r18,r4,1 //r18:=count div 2 mr r13,r3 li r14,4 ble .FillWordEnd //if count<=0 Then Exit .FillWordLoop: stwux r5,r13,r14 bdnz .FillWordLoop .FillWordEnd: end [r13,r14,ctr] end; {$define FPC_SYSTEM_HAS_INDEXBYTE} function IndexByte(var buf;len:longint;b:byte):longint; assembler; { input: r3 = buf, r4 = len, r5 = b } { output: r3 = position of b in buf (-1 if not found) } asm { load the begin of the buffer in the data cache } dcbt 0,r3 cmplwi r4,0 mtctr r4 subi r10,r3,1 mr r0,r3 { assume not found } li r3,-1 beq LIndexByteDone LIndexByteLoop: lbzu r9,1(r10) cmplw r9,r5 bdnzf cr0*4+eq,LIndexByteLoop { r3 still contains -1 here } bne LIndexByteDone sub r3,r10,r0 LIndexByteDone: end ['r0','r3','r9','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_INDEXWORD} function IndexWord(var buf;len:longint;b:word):longint; assembler; { input: r3 = buf, r4 = len, r5 = b } { output: r3 = position of b in buf (-1 if not found) } asm { load the begin of the buffer in the data cache } dcbt 0,r3 cmplwi r4,0 mtctr r4 subi r10,r3,2 mr r0,r3 { assume not found } li r3,-1 beq LIndexWordDone LIndexWordLoop: lhzu r9,2(r10) cmplw r9,r5 bdnzf cr0*4+eq,LIndexWordLoop { r3 still contains -1 here } bne LIndexWordDone sub r3,r10,r0 LIndexWordDone: end ['r0','r3','r9','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_INDEXDWORD} function IndexDWord(var buf;len:longint;b:DWord):longint; assembler; { input: r3 = buf, r4 = len, r5 = b } { output: r3 = position of b in buf (-1 if not found) } asm { load the begin of the buffer in the data cache } dcbt 0,r3 cmplwi r4,0 mtctr r4 subi r10,r3,4 mr r0,r3 { assume not found } li r3,-1 beq LIndexDWordDone LIndexDWordLoop: lwzu r9,4(r30) cmplw r9,r5 bdnzf cr0*4+eq, LIndexDWordLoop { r3 still contains -1 here } bne LIndexDWordDone sub r3,r10,r0 LIndexDWordDone: end ['r0','r3','r9','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_COMPAREBYTE} function CompareByte(var buf1,buf2;len:longint):longint; assembler; { input: r3 = buf1, r4 = buf2, r5 = len } { output: r3 = 0 if equal, < 0 if buf1 < str2, > 0 if buf1 > str2 } { note: almost direct copy of strlcomp() from strings.inc } asm { load the begin of the first buffer in the data cache } dcbt 0,r3 { use r0 instead of r3 for buf1 since r3 contains result } cmplwi r5,0 mtctr r5 subi r0,r3,1 subi r4,r4,1 li r3,0 beq LCompByteDone LCompByteLoop: { load next chars } lbzu r9,1(r0) lbzu r10,1(r4) { calculate difference } sub. r3,r9,r10 { if chars not equal or at the end, we're ready } bdnzt cr0*4+eq, LCompByteLoop LCompByteDone: end ['r0','r3','r4','r9','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_COMPAREWORD} function CompareWord(var buf1,buf2;len:longint):longint; assembler; { input: r3 = buf1, r4 = buf2, r5 = len } { output: r3 = 0 if equal, < 0 if buf1 < str2, > 0 if buf1 > str2 } { note: almost direct copy of strlcomp() from strings.inc } asm { load the begin of the first buffer in the data cache } dcbt 0,r3 { use r0 instead of r3 for buf1 since r3 contains result } cmplwi r5,0 mtctr r5 subi r0,r3,2 subi r4,r4,2 li r3,0 beq LCompWordDone LCompWordLoop: { load next chars } lhzu r9,2(r0) lhzu r10,2(r4) { calculate difference } sub. r3,r9,r10 { if chars not equal or at the end, we're ready } bdnzt cr0*4+eq, LCompWordLoop LCompWordDone: end ['r0','r3','r4','r9','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_COMPAREDWORD} function CompareDWord(var buf1,buf2;len:longint):longint; assembler; { input: r3 = buf1, r4 = buf2, r5 = len } { output: r3 = 0 if equal, < 0 if buf1 < str2, > 0 if buf1 > str2 } { note: almost direct copy of strlcomp() from strings.inc } asm { load the begin of the first buffer in the data cache } dcbt 0,r3 { use r0 instead of r3 for buf1 since r3 contains result } cmplwi r5,0 mtctr r5 subi r0,r3,4 subi r4,r4,4 li r3,0 beq LCompDWordDone LCompDWordLoop: { load next chars } lwzu r9,4(r0) lwzu r10,4(r4) { calculate difference } sub. r3,r9,r10 { if chars not equal or at the end, we're ready } bdnzt cr0*4+eq, LCompDWordLoop LCompDWordDone: end ['r0','r3','r4','r9','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_INDEXCHAR0} function IndexChar0(var buf;len:longint;b:Char):longint; assembler; { input: r3 = buf, r4 = len, r5 = b } { output: r3 = position of found position (-1 if not found) } asm { load the begin of the buffer in the data cache } dcbt 0,r3 { length = 0? } cmplwi r4,0 mtctr r4 subi r9,r3,1 mr r0,r9 { assume not found } li r3,-1 { if yes, do nothing } beq LIndexChar0Done subi r3,r3,1 LIndexChar0Loop: lbzu r10,1(r9) cmplwi cr1,r10,0 cmplw r10,r5 beq cr1,LIndexChar0Done bdnzf cr0*4+eq, LIndexChar0Loop bne LIndexChar0Done sub r3,r9,r0 LIndexChar0Done: end ['r0','r3','r4','r9','r10','cr0','ctr']; {**************************************************************************** Object Helpers ****************************************************************************} {define FPC_SYSTEM_HAS_FPC_HELP_CONSTRUCTOR} (* use generic implementation for now procedure fpc_help_constructor; assembler; [public,alias:'FPC_HELP_CONSTRUCTOR']; {$ifdef hascompilerproc} compilerproc; {$endif} *) {$define FPC_SYSTEM_HAS_FPC_HELP_FAIL} procedure fpc_help_fail;assembler;[public,alias:'FPC_HELP_FAIL']; {$ifdef hascompilerproc} compilerproc; {$endif} assembler asm !!!!!!!!!!! end; {$define FPC_SYSTEM_HAS_FPC_HELP_DESTRUCTOR} (* use generic implementation for now procedure fpc_help_destructor;assembler;[public,alias:'FPC_HELP_DESTRUCTOR']; {$ifdef hascompilerproc} compilerproc; {$endif} *) {$define FPC_SYSTEM_HAS_FPC_NEW_CLASS} procedure fpc_new_class;assembler;[public,alias:'FPC_NEW_CLASS']; {$ifdef hascompilerproc} compilerproc; {$endif} assembler; asm !!!!!!!!!!! end; {$define FPC_SYSTEM_HAS_FPC_DISPOSE_CLASS} procedure fpc_dispose_class;assembler;[public,alias:'FPC_DISPOSE_CLASS']; {$ifdef hascompilerproc} compilerproc; {$endif} assembler; asm !!!!!!!!!!! end; {$define FPC_SYSTEM_HAS_FPC_HELP_FAIL_CLASS} procedure fpc_help_fail_class;assembler;[public,alias:'FPC_HELP_FAIL_CLASS']; {$ifdef hascompilerproc} compilerproc; {$endif} { a non zero class must allways be disposed VMT is allways at pos 0 } assembler; asm !!!!!!!!!!! end; {define FPC_SYSTEM_HAS_FPC_CHECK_OBJECT} { we want the stack for debugging !! PM } (* use generic implementation for now procedure fpc_check_object(obj : pointer);[public,alias:'FPC_CHECK_OBJECT']; {$ifdef hascompilerproc} compilerproc; {$endif} *) {define FPC_SYSTEM_HAS_FPC_CHECK_OBJECT_EXT} (* use generic implementation for now procedure fpc_check_object_ext;assembler;[public,alias:'FPC_CHECK_OBJECT_EXT']; {$ifdef hascompilerproc} compilerproc; {$endif} *) {**************************************************************************** String ****************************************************************************} {$define FPC_SYSTEM_HAS_FPC_SHORTSTR_COPY} function fpc_shortstr_to_shortstr(len:longint; const sstr: shortstring): shortstring; [public,alias: 'FPC_SHORTSTR_TO_SHORTSTR']; compilerproc; assembler; { input: r3: pointer to result, r4: len, r5: sstr } asm { load length source } lbz r10,0(r5) { load the begin of the dest buffer in the data cache } dcbtst r0,r3 { put min(length(sstr),len) in r3 } subc r0,r4,r10 { r0 := r3 - r10 } subme r4,r4,r4 { if r3 >= r4 then r3' := 0 else r3' := -1 } and r4,r0,r4 { if r3 >= r4 then r3' := 0 else r3' := r3-r10 } add r4,r4,r10 { if r3 >= r4 then r3' := r10 else r3' := r3 } cmplwi r4,0 { put length in ctr } mtctr r4 stb r4,0(r3) beq LShortStrCopyDone LShortStrCopyLoop: lbzu r0,1(r5) stbu r0,1(r3) bdnz LShortStrCopyLoop end ['r0','r3','r4','r5','r10','cr0','ctr']; {$define FPC_SYSTEM_HAS_FPC_SHORTSTR_COPY} procedure fpc_shortstr_copy(len:longint;sstr,dstr:pointer);[public,alias:'FPC_SHORTSTR_COPY']; assembler; { input: r3: len, r4: sstr, r5: dstr } asm { load length source } lbz r10,0(r4) { load the begin of the dest buffer in the data cache } dcbtst r0,r5 { put min(length(sstr),len) in r3 } subc r0,r3,r10 { r0 := r3 - r10 } subme r3,r3,r3 { if r3 >= r4 then r3' := 0 else r3' := -1 } and r3,r0,r3 { if r3 >= r4 then r3' := 0 else r3' := r3-r10 } add r3,r3,r10 { if r3 >= r4 then r3' := r10 else r3' := r3 } cmplwi r3,0 { put length in ctr } mtctr r3 stb r3,0(r5) beq LShortStrCopyDone LShortStrCopyLoop: lbzu r0,1(r4) stbu r0,1(r5) bdnz LShortStrCopyLoop end ['r0','r3','r4','r5','r10','cr0','ctr']; function fpc_shortstr_concat(const s1: shortstring): shortstring; compilerproc; { expects that results (r3) contains a pointer to the current string and s1 } { (r4) a pointer to the one that has to be concatenated } assembler; asm { load length s1 } lbz r9, 0(r4) { load length result } lbz r10, 0(r3) { go to last current character of result } add r4,r9,r4 { calculate min(length(s1),255-length(result)) } subfic r9,r9,255 subc r8,r9,r10 { r8 := r9 - r10 } subme r9,r9,r9 { if r9 >= r10 then r9' := 0 else r9' := -1 } and r9,r8,r9 { if r9 >= r10 then r9' := 0 else r9' := r9-r8 } add r9,r9,r10 { if r9 >= r10 then r9' := r10 else r9' := r9 } { and concatenate } mtctr r9 LShortStrConcatLoop: lbzu r10,1(r4) stbu r10,1(r3) bdnz LShortStrConcatLoop end ['r3','r4','r8','r9','r10','ctr']; {$define FPC_SYSTEM_HAS_FPC_SHORTSTR_COMPARE} function fpc_shortstr_compare(const dstr,sstr:shortstring): longint; [public,alias:'FPC_SHORTSTR_COMPARE']; compilerproc; assembler; asm { load length sstr } lbz r9,0(r4) { load length dstr } lbz r10,0(r3) { save their difference for later and } { calculate min(length(sstr),length(dstr)) } subc r0,r9,r10 { r0 := r9 - r10 } subme r9,r9,r9 { if r9 >= r10 then r9' := 0 else r9' := -1 } and r9,r0,r9 { if r9 >= r10 then r9' := 0 else r9' := r9-r8 } add r9,r9,r10 { if r9 >= r10 then r9' := r10 else r9' := r9 } { first compare dwords (length/4) } srwi. r8,r9,2 { keep length mod 4 for the ends } rlwinm r9,r9,0,30,31 { already check whether length mod 4 = 0 } cmplwi cr1,r9,0 { length div 4 in ctr for loop } mtctr r8 { if length < 3, goto byte comparing } beq LShortStrCompare1 { setup for use of update forms of load/store with dwords } subi r4,r4,3 subi r8,r3,3 LShortStrCompare4Loop: lwzu r3,4(r4) lwzu r10,4(r8) sub. r3,r3,r10 bdnzt cr0+eq,LShortStrCompare4Loop { r3 contains result if we stopped because of "ne" flag } bne LShortStrCompareDone { setup for use of update forms of load/store with bytes } addi r4,r4,3 addi r8,r8,3 LShortStrCompare1: { if comparelen mod 4 = 0, skip this and return the difference in } { lengths } beq cr1,LShortStrCompareLen LShortStrCompare1Loop: lbzu r3,1(r4) lbzu r10,1(r8) sub. r3,r3,r10 bdnzt cr0+eq,LShortStrCompare4Loop bne LShortStrCompareDone LShortStrCompareLen: { also return result in flags, maybe we can use this in the CG } mr. r3,r0 LShortStrCompareDone: end ['r0','r3','r4','r8','r9','r10','cr0','cr1','ctr']; {$define FPC_SYSTEM_HAS_FPC_PCHAR_TO_SHORTSTR} function fpc_pchar_to_shortstr(p:pchar):shortstring;[public,alias:'FPC_PCHAR_TO_SHORTSTR']; compilerproc; assembler; {$include strpas.inc} {$define FPC_SYSTEM_HAS_STRLEN} function strlen(p:pchar):longint;assembler; {$include strlen.inc} {$define FPC_SYSTEM_HAS_GET_FRAME} function get_frame:longint;assembler; asm !!!!!!! depends on ABI !!!!!!!! end ['r3']; {$define FPC_SYSTEM_HAS_GET_CALLER_ADDR} function get_caller_addr(framebp:longint):longint;assembler; asm !!!!!!! depends on ABI !!!!!!!! end ['r3']; {$define FPC_SYSTEM_HAS_GET_CALLER_FRAME} function get_caller_frame(framebp:longint):longint;assembler; asm !!!!!!! depends on ABI !!!!!!!! end ['r3']; {$define FPC_SYSTEM_HAS_ABS_LONGINT} function abs(l:longint):longint; assembler;[internconst:in_const_abs]; asm srawi r0,r3,31 add r3,r0,r3 xor r3,r3,r0 end ['r0','r3']; {**************************************************************************** Math ****************************************************************************} {$define FPC_SYSTEM_HAS_ODD_LONGINT} function odd(l:longint):boolean;assembler;[internconst:in_const_odd]; asm rlwinm r3,r3,0,31,31 end ['r3']; {$define FPC_SYSTEM_HAS_SQR_LONGINT} function sqr(l:longint):longint;assembler;[internconst:in_const_sqr]; asm mullw r3,r3,r3 end ['r3']; {$define FPC_SYSTEM_HAS_SPTR} Function Sptr : Longint;assembler; asm mr r3,sp end ['r3']; {**************************************************************************** Str() ****************************************************************************} { int_str: generic implementation is used for now } {**************************************************************************** Multithreading ****************************************************************************} { do a thread save inc/dec } function declocked(var l : longint) : boolean;assembler; { input: address of l in r3 } { output: boolean indicating whether l is zero after decrementing } asm LDecLockedLoop: {$ifdef MTRTL} lwarx r10,0,r3 subi r10,r10,1 stwcx. r10,0,r3 bne- LDecLockedLoop {$else MTRTL} lwzx r10,0,r3 subi r10,r10,1 stw r10,0,r3 {$endif MTRTL} mr. r3,r10 end ['r3','r10']; procedure inclocked(var l : longint);assembler; LIncLockedLoop: {$ifdef MTRTL} lwarx r10,0,r3 addi r10,r10,1 stwcx. r10,0,r3 bne- LDecLockedLoop {$else MTRTL} lwzx r10,0,r3 addi r10,r10,1 stw r10,0,r3 {$endif MTRTL} end ['r3','r10']; { $Log$ Revision 1.7 2001-09-28 13:28:49 jonas * small changes to move (different count values trigger the selection of moving bytes instead dwords/doubles and move dcbt instruction) + implemented fillchar (untested) Revision 1.6 2001/09/27 15:30:29 jonas * conversion to compilerproc and to structure used by i386 rtl * some bugfixes * powerpc.inc is almost complete (only fillchar/word/dword, get_frame etc and the class helpers are still needed - removed unnecessary register saving in set.inc (thanks to compilerproc) * use registers reserved for parameters as much as possible instead of those reserved for local vars (since those have to be saved by the called anyway, while the ones for local vars have to be saved by the callee) Revision 1.5 2001/07/07 12:46:12 jonas * some small bugfixes and cache optimizations Revision 1.4 2001/03/03 13:53:36 jonas * fixed small bug in move Revision 1.3 2001/03/02 13:24:10 jonas + new, complete implementation of move procedure (including support for overlapping regions) Revision 1.2 2001/02/11 17:59:46 jonas * implemented several more procedures Revision 1.1 2000/07/27 07:32:12 jonas + initial version by Casey Duncan (not yet thoroughly debugged or complete) }