{****************************************************************************** $Id$ Copyright (c) 1998-2000 by Florian Klaempfl and Peter Vreman Contains the base types for the Scalable Processor ARChitecture (SPARC) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ****************************************************************************} unit cpuBase; {$INCLUDE fpcdefs.inc} interface uses globals,cutils,cclasses,aasmbase,cpuinfo,cginfo; const {Size of the instruction table converted by nasmconv.pas} maxinfolen=8; {Defines the default address size for a processor} OS_ADDR=OS_32; {the natural int size for a processor} OS_INT=OS_32; {the maximum float size for a processor} OS_FLOAT=OS_F64; {the size of a vector register for a processor} OS_VECTOR=OS_M64; {Operand types} OT_NONE = $00000000; OT_BITS8 = $00000001; { size, and other attributes, of the operand } OT_BITS16 = $00000002; OT_BITS32 = $00000004; OT_BITS64 = $00000008; { FPU only } OT_BITS80 = $00000010; OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP } OT_NEAR = $00000040; OT_SHORT = $00000080; OT_SIZE_MASK = $000000FF; { all the size attributes } OT_NON_SIZE = LongInt(not OT_SIZE_MASK); OT_SIGNED = $00000100; { the operand need to be signed -128-127 } OT_TO = $00000200; { operand is followed by a colon } { reverse effect in FADD, FSUB &c } OT_COLON = $00000400; OT_REGISTER = $00001000; OT_IMMEDIATE = $00002000; OT_IMM8 = $00002001; OT_IMM16 = $00002002; OT_IMM32 = $00002004; OT_IMM64 = $00002008; OT_IMM80 = $00002010; OT_REGMEM = $00200000; { for r/m, ie EA, operands } OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA } OT_REG8 = $00201001; OT_REG16 = $00201002; OT_REG32 = $00201004; OT_MMXREG = $00201008; { MMX registers } OT_XMMREG = $00201010; { Katmai registers } OT_MEMORY = $00204000; { register number in 'basereg' } OT_MEM8 = $00204001; OT_MEM16 = $00204002; OT_MEM32 = $00204004; OT_MEM64 = $00204008; OT_MEM80 = $00204010; OT_FPUREG = $01000000; { floating point stack registers } OT_FPU0 = $01000800; { FPU stack register zero } OT_REG_SMASK = $00070000; { special register operands: these may be treated differently } { a mask for the following } OT_REG_ACCUM = $00211000; { accumulator: AL, AX or EAX } OT_REG_AL = $00211001; { REG_ACCUM | BITSxx } OT_REG_AX = $00211002; { ditto } OT_REG_EAX = $00211004; { and again } OT_REG_COUNT = $00221000; { counter: CL, CX or ECX } OT_REG_CL = $00221001; { REG_COUNT | BITSxx } OT_REG_CX = $00221002; { ditto } OT_REG_ECX = $00221004; { another one } OT_REG_DX = $00241002; OT_REG_SREG = $00081002; { any segment register } OT_REG_CS = $01081002; { CS } OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) } OT_REG_FSGS = $04081002; { FS, GS (386 extENDed registers) } OT_REG_CDT = $00101004; { CRn, DRn and TRn } OT_REG_CREG = $08101004; { CRn } OT_REG_CR4 = $08101404; { CR4 (Pentium only) } OT_REG_DREG = $10101004; { DRn } OT_REG_TREG = $20101004; { TRn } OT_MEM_OFFS = $00604000; { special type of EA } { simple [address] offset } OT_ONENESS = $00800000; { special type of immediate operand } { so UNITY == IMMEDIATE | ONENESS } OT_UNITY = $00802000; { for shift/rotate instructions } {Instruction flags } IF_NONE = $00000000; IF_SM = $00000001; { size match first two operands } IF_SM2 = $00000002; IF_SB = $00000004; { unsized operands can't be non-byte } IF_SW = $00000008; { unsized operands can't be non-word } IF_SD = $00000010; { unsized operands can't be nondword } IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 } IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 } IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 } IF_ARMASK = $00000060; { mask for unsized argument spec } IF_PRIV = $00000100; { it's a privileged instruction } IF_SMM = $00000200; { it's only valid in SMM } IF_PROT = $00000400; { it's protected mode only } IF_UNDOC = $00001000; { it's an undocumented instruction } IF_FPU = $00002000; { it's an FPU instruction } IF_MMX = $00004000; { it's an MMX instruction } IF_3DNOW = $00008000; { it's a 3DNow! instruction } IF_SSE = $00010000; { it's a SSE (KNI, MMX2) instruction } IF_PMASK = LongInt($FF000000); { the mask for processor types } IF_PFMASK = LongInt($F001FF00); { the mask for disassembly "prefer" } IF_V7 = $00000000; { SPARC V7 instruction only (not supported)} IF_V8 = $01000000; { SPARC V8 instruction (the default)} IF_V9 = $02000000; { SPARC V9 instruction (not yet supported)} { added flags } IF_PRE = $40000000; { it's a prefix instruction } IF_PASS2 = LongInt($80000000);{instruction can change in a second pass?} TYPE {$WARNING CPU32 opcodes do not fully include the Ultra SPRAC instruction set.} { don't change the order of these opcodes! } TAsmOp=({$INCLUDE opcode.inc}); op2strtable=ARRAY[TAsmOp]OF STRING[11]; CONST FirstOp=Low(TAsmOp); LastOp=High(TAsmOp); std_op2str:op2strtable=({$INCLUDE strinst.inc}); {***************************************************************************** Operand Sizes *****************************************************************************} TYPE TOpSize=(S_NO, S_B,{Byte} S_H,{Half word} S_W,{Word} S_L:=S_W, S_D,{Double Word} S_Q,{Quad word} S_IQ:=S_Q, S_SB,{Signed byte} S_SH,{Signed half word} S_SW,{Signed word} S_SD,{Signed double word} S_SQ,{Signed quad word} S_FS,{Float single word} S_FX:=S_FS, S_FD,{Float double word} S_FQ,{Float quad word} S_NEAR, S_FAR, S_SHORT); {*****************************************************************************} { Conditions } {*****************************************************************************} TYPE TAsmCond=(C_None, C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE, C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP, C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z ); CONST cond2str:ARRAY[TAsmCond] of string[3]=('', 'a','ae','b','be','c','e','g','ge','l','le','na','nae', 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np', 'ns','nz','o','p','pe','po','s','z' ); inverse_cond:ARRAY[TAsmCond] of TAsmCond=(C_None, C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE, C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P, C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ ); CONST CondAsmOps=3; CondAsmOp:ARRAY[0..CondAsmOps-1] of TAsmOp=(A_FCMPd, A_JMPL, A_FCMPs); CondAsmOpStr:ARRAY[0..CondAsmOps-1] of string[7]=('FCMPd','JMPL','FCMPs'); {*****************************************************************************} { Registers } {*****************************************************************************} TYPE { enumeration for registers, don't change the order } { it's used by the register size conversions } ToldRegister=({$INCLUDE registers.inc}); Tnewregister=word; Tsuperregister=byte; Tsubregister=byte; Tregister=record enum:Toldregister; number:Tnewregister; end; TRegister64=PACKED RECORD {A type to store register locations for 64 Bit values.} RegLo,RegHi:TRegister; END; treg64=tregister64;{alias for compact code} TRegisterSet=SET OF ToldRegister; Tsupregset=set of Tsuperregister; CONST R_NO=R_NONE; firstreg = Succ(R_NONE); lastreg = Pred(R_INTREGISTER); {General registers.} const NR_NO=$0000; NR_G0=$0001; NR_G1=$0002; NR_G2=$0003; NR_G3=$0004; NR_G4=$0005; NR_G5=$0006; NR_G6=$0007; NR_G7=$0008; NR_O0=$0100; NR_O1=$0200; NR_O2=$0300; NR_O3=$0400; NR_O4=$0500; NR_O5=$0600; NR_O6=$0700; NR_O7=$0800; NR_L0=$0900; NR_L1=$0A00; NR_L2=$0B00; NR_L3=$0C00; NR_L4=$0D00; NR_L5=$0E00; NR_L6=$0F00; NR_L7=$1000; NR_I0=$1100; NR_I1=$1200; NR_I2=$1300; NR_I3=$1400; NR_I4=$1500; NR_I5=$1600; NR_I6=$1700; NR_I7=$1800; {Superregisters.} const RS_O0=$01; RS_O1=$02; RS_O2=$03; RS_O3=$04; RS_O4=$05; RS_O5=$06; RS_O6=$07; RS_O7=$08; RS_L0=$09; RS_L1=$0A; RS_L2=$0B; RS_L3=$0C; RS_L4=$0D; RS_L5=$0E; RS_L6=$0F; RS_L7=$10; RS_I0=$11; RS_I1=$12; RS_I2=$13; RS_I3=$14; RS_I4=$15; RS_I5=$16; RS_I6=$17; RS_I7=$18; first_supreg = $01; last_supreg = $18; first_imreg = $19; last_imreg = $ff; {Subregisters; nothing known about.} R_SUBWHOLE=$00; R_SUBL=$00; type reg2strtable=ARRAY[TOldRegister] OF STRING[7]; const std_reg2str:reg2strtable=({$INCLUDE strregs.inc}); {***************************************************************************** Flags *****************************************************************************} TYPE TResFlags=( F_E, {Equal} F_NE, {Not Equal} F_G, {Greater} F_L, {Less} F_GE, {Greater or Equal} F_LE, {Less or Equal} F_C, {Carry} F_NC, {Not Carry} F_A, {Above} F_AE, {Above or Equal} F_B, {Below} F_BE {Below or Equal} ); {***************************************************************************** Reference *****************************************************************************} TYPE trefoptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup); { immediate/reference record } poperreference = ^treference; Preference=^Treference; treference = packed record segment, base, index : tregister; scalefactor : byte; offset : LongInt; symbol : tasmsymbol; offsetfixup : LongInt; options : trefoptions; alignment : byte; END; { reference record } PParaReference=^TParaReference; TParaReference=PACKED RECORD Index:TRegister; Offset:longint; END; {***************************************************************************** Operands *****************************************************************************} { Types of operand } toptype=(top_none,top_reg,top_ref,top_const,top_symbol,top_raddr,top_caddr); toper=record ot:LongInt; case typ:toptype of top_none:(); top_reg:(reg:tregister); top_ref:(ref:poperreference); top_const:(val:aword); top_symbol:(sym:tasmsymbol;symofs:LongInt); top_raddr:(reg1,reg2:TRegister); top_caddr:(regb:TRegister;const13:Integer); end; {***************************************************************************** Argument Classification *****************************************************************************} TYPE TArgClass = ( { the following classes should be defined by all processor implemnations } AC_NOCLASS, AC_MEMORY, AC_INTEGER, AC_FPU, { the following argument classes are i386 specific } AC_FPUUP, AC_SSE, AC_SSEUP); {***************************************************************************** Generic Location *****************************************************************************} TYPE {tparamlocation describes where a parameter for a procedure is stored. References are given from the caller's point of view. The usual TLocation isn't used, because contains a lot of unnessary fields.} TParaLocation=PACKED RECORD Size:TCGSize; Loc:TCGLoc; sp_fixup:LongInt; CASE TCGLoc OF LOC_REFERENCE:(reference:tparareference); { segment in reference at the same place as in loc_register } LOC_REGISTER,LOC_CREGISTER : ( CASE LongInt OF 1 : (register,registerhigh : tregister); { overlay a registerlow } 2 : (registerlow : tregister); { overlay a 64 Bit register type } 3 : (reg64 : tregister64); 4 : (register64 : tregister64); ); { it's only for better handling } LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister); END; TLocation=PACKED RECORD loc : TCGLoc; size : TCGSize; case TCGLoc of LOC_FLAGS : (resflags : tresflags); LOC_CONSTANT : ( case longint of 1 : (value : AWord); 2 : (valuelow, valuehigh:AWord); { overlay a complete 64 Bit value } 3 : (valueqword : qword); ); LOC_CREFERENCE, LOC_REFERENCE : (reference : treference); { segment in reference at the same place as in loc_register } LOC_REGISTER,LOC_CREGISTER : ( case longint of 1 : (register,registerhigh,segment : tregister); { overlay a registerlow } 2 : (registerlow : tregister); { overlay a 64 Bit register type } 3 : (reg64 : tregister64); 4 : (register64 : tregister64); ); { it's only for better handling } LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister); end; {***************************************************************************** Constants *****************************************************************************} const general_registers = [R_G0..R_I7]; general_superregisters = [RS_O0..RS_I7]; { legend: } { xxxregs = set of all possibly used registers of that type in the code } { generator } { usableregsxxx = set of all 32bit components of registers that can be } { possible allocated to a regvar or using getregisterxxx (this } { excludes registers which can be only used for parameter } { passing on ABI's that define this) } { c_countusableregsxxx = amount of registers in the usableregsxxx set } IntRegs=[R_G0..R_I7]; usableregsint=[RS_O0..RS_I7]; c_countusableregsint = 24; fpuregs=[R_F0..R_F31]; usableregsfpu=[R_F0..R_F31]; c_countusableregsfpu=32; mmregs=[]; usableregsmm=[]; c_countusableregsmm=0; { no distinction on this platform } maxaddrregs = 0; addrregs = []; usableregsaddr = []; c_countusableregsaddr = 0; firstsaveintreg = RS_O0; lastsaveintreg = RS_I7; firstsavefpureg = R_F0; lastsavefpureg = R_F31; firstsavemmreg = R_NONE; lastsavemmreg = R_NONE; lowsavereg = R_G0; highsavereg = R_I7; ALL_REGISTERS = [lowsavereg..highsavereg]; ALL_INTREGISTERS = [1..255]; lvaluelocations = [LOC_REFERENCE,LOC_CFPUREGISTER, LOC_CREGISTER,LOC_MMXREGISTER,LOC_CMMXREGISTER]; {***************************************************************************** GDB Information *****************************************************************************} {# Register indexes for stabs information, when some parameters or variables are stored in registers. Taken from rs6000.h (DBX_REGISTER_NUMBER) from GCC 3.x source code.} stab_regindex:ARRAY[TOldRegister]OF ShortInt=({$INCLUDE stabregi.inc}); {*************************** generic register names **************************} stack_pointer_reg = R_O6; NR_STACK_POINTER_REG = NR_O6; RS_STACK_POINTER_REG = RS_O6; frame_pointer_reg = R_I6; NR_FRAME_POINTER_REG = NR_I6; RS_FRAME_POINTER_REG = RS_I6; {the return_result_reg, is used inside the called function to store its return value when that is a scalar value otherwise a pointer to the address of the result is placed inside it} return_result_reg = R_I0; NR_RETURN_RESULT_REG = NR_I0; RS_RETURN_RESULT_REG = RS_I0; {the function_result_reg contains the function result after a call to a scalar function othewise it contains a pointer to the returned result} function_result_reg = R_O0; NR_FUNCTION_RESULT_REG = NR_O0; RS_FUNCTION_RESULT_REG = RS_O0; self_pointer_reg =R_G5; NR_SELF_POINTER_REG = NR_G5; { RS_SELF_POINTER_REG = RS_G5;} {There is no accumulator in the SPARC architecture. There are just families of registers. All registers belonging to the same family are identical except in the "global registers" family where GO is different from the others : G0 gives always 0 when it is red and thows away any value written to it. Nevertheless, scalar routine results are returned onto R_O0.} accumulator = R_O0; NR_ACCUMULATOR = NR_O0; RS_ACCUMULATOR = RS_O1; accumulatorhigh = R_O1; NR_ACCUMULATORHIGH = NR_O1; RS_ACCUMULATORHIGH = RS_O1; fpu_result_reg =R_F0; mmresultreg =R_G0; {*****************************************************************************} { GCC /ABI linking information } {*****************************************************************************} {# Registers which must be saved when calling a routine declared as cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones as defined in the target ABI and / or GCC. This value can be deduced from the CALLED_USED_REGISTERS array in the GCC source.} std_saved_registers=[RS_O6]; {# Required parameter alignment when calling a routine declared as stdcall and cdecl. The alignment value should be the one defined by GCC or the target ABI. The value of this constant is equal to the constant PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.} std_param_align=4; {# Registers which are defined as scratch and no need to save across routine calls or in assembler blocks.} ScratchRegsCount=8; scratch_regs:ARRAY[1..ScratchRegsCount] OF Tsuperregister=(RS_L0,RS_L1,RS_L2,RS_L3,RS_L4,RS_L5,RS_L6,RS_L7); { low and high of the available maximum width integer general purpose } { registers } LoGPReg = R_G0; HiGPReg = R_I7; { low and high of every possible width general purpose register (same as } { above on most architctures apart from the 80x86) } LoReg = R_G0; HiReg = R_I7; cpuflags = []; { sizes } pointersize = 4; extENDed_size = 8;{SPARC architecture uses IEEE floating point numbers} mmreg_size = 8; SizePostfix_pointer = S_SW; {***************************************************************************** Instruction table *****************************************************************************} {$ifndef NOAG386BIN} TYPE tinsentry=packed record opcode : tasmop; ops : byte; optypes : ARRAY[0..2] of LongInt; code : ARRAY[0..maxinfolen] of char; flags : LongInt; END; pinsentry=^tinsentry; TInsTabCache=ARRAY[TasmOp] of LongInt; PInsTabCache=^TInsTabCache; VAR InsTabCache : PInsTabCache; {$ENDif NOAG386BIN} {***************************************************************************** Helpers *****************************************************************************} const maxvarregs=30; VarRegs:ARRAY[1..maxvarregs]OF ToldRegister=( R_G0,R_G1,R_G2,R_G3,R_G4,R_G5,R_G6,R_G7, R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,{R_R14=R_SP}R_O7, R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7, R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,{R_R30=R_FP}R_I7 ); maxfpuvarregs = 8; max_operands = 3; maxintregs = maxvarregs; maxfpuregs = maxfpuvarregs; max_scratch_regs=8; FUNCTION is_calljmp(o:tasmop):boolean; FUNCTION flags_to_cond(CONST f:TResFlags):TAsmCond; procedure convert_register_to_enum(var r:Tregister); function cgsize2subreg(s:Tcgsize):Tsubregister; IMPLEMENTATION uses verbose; const CallJmpOp=[A_JMPL..A_CBccc]; function is_calljmp(o:tasmop):boolean; begin if o in CallJmpOp then is_calljmp:=true else is_calljmp:=false; end; function flags_to_cond(const f:TResFlags):TAsmCond; CONST flags_2_cond:ARRAY[TResFlags]OF TAsmCond= (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE); BEGIN result:=flags_2_cond[f]; END; procedure convert_register_to_enum(var r:Tregister); begin if r.enum=R_INTREGISTER then case r.number of NR_NO: r.enum:= R_NO; NR_G0: r.enum:= R_G0; NR_G1: r.enum:= R_G1; NR_G2: r.enum:= R_G2; NR_G3: r.enum:= R_G3; NR_G4: r.enum:= R_G4; NR_G5: r.enum:= R_G5; NR_G6: r.enum:= R_G6; NR_G7: r.enum:= R_G7; NR_O0: r.enum:= R_O0; NR_O1: r.enum:= R_O1; NR_O2: r.enum:= R_O2; NR_O3: r.enum:= R_O3; NR_O4: r.enum:= R_O4; NR_O5: r.enum:= R_O5; NR_O6: r.enum:= R_O6; NR_O7: r.enum:= R_O7; NR_L0: r.enum:= R_L0; NR_L1: r.enum:= R_L1; NR_L2: r.enum:= R_L2; NR_L3: r.enum:= R_L3; NR_L4: r.enum:= R_L4; NR_L5: r.enum:= R_L5; NR_L6: r.enum:= R_L6; NR_L7: r.enum:= R_L7; NR_I0: r.enum:= R_I0; NR_I1: r.enum:= R_I1; NR_I2: r.enum:= R_I2; NR_I3: r.enum:= R_I3; NR_I4: r.enum:= R_I4; NR_I5: r.enum:= R_I5; NR_I6: r.enum:= R_I6; NR_I7: r.enum:= R_I7; else internalerror(200301082); end; end; function cgsize2subreg(s:Tcgsize):Tsubregister; begin cgsize2subreg:=R_SUBWHOLE; end; END. { $Log$ Revision 1.28 2003-04-28 09:46:30 mazen + max_scratch_regs variable added because requested by common compiler code Revision 1.27 2003/04/23 13:35:39 peter * fix sparc compile Revision 1.26 2003/04/23 12:35:35 florian * fixed several issues with powerpc + applied a patch from Jonas for nested function calls (PowerPC only) * ... Revision 1.25 2003/03/10 21:59:54 mazen * fixing index overflow in handling new registers arrays. Revision 1.24 2003/02/26 22:06:27 mazen * FirstReg <-- R_G0 instead of Low(TOldRegister)=R_NONE * LastReg <-- R_L7 instead of High(R_ASR31)=High(TOldRegister) * FirstReg..LastReg rplaced by TOldRegister in several arrays declarions Revision 1.23 2003/02/19 22:00:17 daniel * Code generator converted to new register notation - Horribily outdated todo.txt removed Revision 1.22 2003/02/02 19:25:54 carl * Several bugfixes for m68k target (register alloc., opcode emission) + VIS target + Generic add more complete (still not verified) Revision 1.21 2003/01/20 22:21:36 mazen * many stuff related to RTL fixed Revision 1.20 2003/01/09 20:41:00 daniel * Converted some code in cgx86.pas to new register numbering Revision 1.19 2003/01/09 15:49:56 daniel * Added register conversion Revision 1.18 2003/01/08 18:43:58 daniel * Tregister changed into a record Revision 1.17 2003/01/05 20:39:53 mazen * warnings about FreeTemp already free fixed with appropriate registers handling Revision 1.16 2002/10/28 20:59:17 mazen * TOpSize values changed S_L --> S_SW Revision 1.15 2002/10/28 20:37:44 mazen * TOpSize values changed S_L --> S_SW Revision 1.14 2002/10/20 19:01:38 mazen + op_raddr_reg and op_caddr_reg added to fix functions prologue Revision 1.13 2002/10/19 20:35:07 mazen * carl's patch applied Revision 1.12 2002/10/11 13:35:14 mazen *** empty log message *** Revision 1.11 2002/10/10 19:57:51 mazen * Just to update repsitory Revision 1.10 2002/10/02 22:20:28 mazen + out registers allocator for the first 6 scalar parameters which must be passed into %o0..%o5 Revision 1.9 2002/10/01 21:06:29 mazen attinst.inc --> strinst.inc Revision 1.8 2002/09/30 19:12:14 mazen * function prologue fixed Revision 1.7 2002/09/27 04:30:53 mazen * cleanup made Revision 1.6 2002/09/24 03:57:53 mazen * some cleanup was made }