aasmcpu.pas 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the abstract assembler implementation for the i386
  4. * Portions of this code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. unit aasmcpu;
  21. {$i fpcdefs.inc}
  22. interface
  23. uses
  24. globtype,globals,verbose,
  25. cpubase,
  26. cgbase,cgutils,
  27. symtype,
  28. aasmbase,aasmtai,aasmdata,aasmsym,
  29. ogbase;
  30. const
  31. { "mov reg,reg" source operand number }
  32. O_MOV_SOURCE = 0;
  33. { "mov reg,reg" destination operand number }
  34. O_MOV_DEST = 1;
  35. { Operand types }
  36. OT_NONE = $00000000;
  37. OT_BITS8 = $00000001; { size, and other attributes, of the operand }
  38. OT_BITS16 = $00000002;
  39. OT_BITS32 = $00000004;
  40. OT_BITS64 = $00000008; { FPU only }
  41. OT_BITS80 = $00000010;
  42. OT_SIZE_MASK = $0000001F; { all the size attributes }
  43. OT_NON_SIZE = longint(not OT_SIZE_MASK);
  44. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  45. OT_NEAR = $00000040;
  46. OT_SHORT = $00000080;
  47. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  48. OT_TO = $00000200; { operand is followed by a colon }
  49. { reverse effect in FADD, FSUB &c }
  50. OT_COLON = $00000400;
  51. OT_REGISTER = $00001000;
  52. OT_IMMEDIATE = $00002000;
  53. OT_IMM8 = $00002001;
  54. OT_IMM16 = $00002002;
  55. OT_IMM32 = $00002004;
  56. OT_IMM64 = $00002008;
  57. OT_IMM80 = $00002010;
  58. OT_REGMEM = $00200000; { for r/m, ie EA, operands }
  59. OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
  60. OT_REG8 = $00201001;
  61. OT_REG16 = $00201002;
  62. OT_REG32 = $00201004;
  63. OT_REG64 = $00201008;
  64. OT_XMMREG = $00201010; { Katmai registers }
  65. OT_MMXREG = $00201020; { MMX registers }
  66. OT_MEMORY = $00204000; { register number in 'basereg' }
  67. OT_MEM8 = $00204001;
  68. OT_MEM16 = $00204002;
  69. OT_MEM32 = $00204004;
  70. OT_MEM64 = $00204008;
  71. OT_MEM80 = $00204010;
  72. OT_FPUREG = $01000000; { floating point stack registers }
  73. OT_FPU0 = $01000800; { FPU stack register zero }
  74. OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
  75. { a mask for the following }
  76. OT_REG_ACCUM = $00211000; { FUNCTION_RETURN_REG: AL, AX or EAX }
  77. OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
  78. OT_REG_AX = $00211002; { ditto }
  79. OT_REG_EAX = $00211004; { and again }
  80. {$ifdef x86_64}
  81. OT_REG_RAX = $00211008;
  82. {$endif x86_64}
  83. OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
  84. OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
  85. OT_REG_CX = $00221002; { ditto }
  86. OT_REG_ECX = $00221004; { another one }
  87. {$ifdef x86_64}
  88. OT_REG_RCX = $00221008;
  89. {$endif x86_64}
  90. OT_REG_DX = $00241002;
  91. OT_REG_EDX = $00241004;
  92. OT_REG_SREG = $00081002; { any segment register }
  93. OT_REG_CS = $01081002; { CS }
  94. OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
  95. OT_REG_FSGS = $04081002; { FS, GS (386 extended registers) }
  96. OT_REG_CDT = $00101004; { CRn, DRn and TRn }
  97. OT_REG_CREG = $08101004; { CRn }
  98. OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
  99. OT_REG_DREG = $10101004; { DRn }
  100. OT_REG_TREG = $20101004; { TRn }
  101. OT_MEM_OFFS = $00604000; { special type of EA }
  102. { simple [address] offset }
  103. OT_ONENESS = $00800000; { special type of immediate operand }
  104. { so UNITY == IMMEDIATE | ONENESS }
  105. OT_UNITY = $00802000; { for shift/rotate instructions }
  106. { Size of the instruction table converted by nasmconv.pas }
  107. {$ifdef x86_64}
  108. instabentries = {$i x8664nop.inc}
  109. {$else x86_64}
  110. instabentries = {$i i386nop.inc}
  111. {$endif x86_64}
  112. maxinfolen = 11;
  113. MaxInsChanges = 3; { Max things a instruction can change }
  114. type
  115. { What an instruction can change. Needed for optimizer and spilling code.
  116. Note: The order of this enumeration is should not be changed! }
  117. TInsChange = (Ch_None,
  118. {Read from a register}
  119. Ch_REAX, Ch_RECX, Ch_REDX, Ch_REBX, Ch_RESP, Ch_REBP, Ch_RESI, Ch_REDI,
  120. {write from a register}
  121. Ch_WEAX, Ch_WECX, Ch_WEDX, Ch_WEBX, Ch_WESP, Ch_WEBP, Ch_WESI, Ch_WEDI,
  122. {read and write from/to a register}
  123. Ch_RWEAX, Ch_RWECX, Ch_RWEDX, Ch_RWEBX, Ch_RWESP, Ch_RWEBP, Ch_RWESI, Ch_RWEDI,
  124. {modify the contents of a register with the purpose of using
  125. this changed content afterwards (add/sub/..., but e.g. not rep
  126. or movsd)}
  127. Ch_MEAX, Ch_MECX, Ch_MEDX, Ch_MEBX, Ch_MESP, Ch_MEBP, Ch_MESI, Ch_MEDI,
  128. Ch_CDirFlag {clear direction flag}, Ch_SDirFlag {set dir flag},
  129. Ch_RFlags, Ch_WFlags, Ch_RWFlags, Ch_FPU,
  130. Ch_Rop1, Ch_Wop1, Ch_RWop1,Ch_Mop1,
  131. Ch_Rop2, Ch_Wop2, Ch_RWop2,Ch_Mop2,
  132. Ch_Rop3, Ch_WOp3, Ch_RWOp3,Ch_Mop3,
  133. Ch_WMemEDI,
  134. Ch_All,
  135. { x86_64 registers }
  136. Ch_RRAX, Ch_RRCX, Ch_RRDX, Ch_RRBX, Ch_RRSP, Ch_RRBP, Ch_RRSI, Ch_RRDI,
  137. Ch_WRAX, Ch_WRCX, Ch_WRDX, Ch_WRBX, Ch_WRSP, Ch_WRBP, Ch_WRSI, Ch_WRDI,
  138. Ch_RWRAX, Ch_RWRCX, Ch_RWRDX, Ch_RWRBX, Ch_RWRSP, Ch_RWRBP, Ch_RWRSI, Ch_RWRDI,
  139. Ch_MRAX, Ch_MRCX, Ch_MRDX, Ch_MRBX, Ch_MRSP, Ch_MRBP, Ch_MRSI, Ch_MRDI
  140. );
  141. TInsProp = packed record
  142. Ch : Array[1..MaxInsChanges] of TInsChange;
  143. end;
  144. const
  145. InsProp : array[tasmop] of TInsProp =
  146. {$ifdef x86_64}
  147. {$i x8664pro.inc}
  148. {$else x86_64}
  149. {$i i386prop.inc}
  150. {$endif x86_64}
  151. type
  152. TOperandOrder = (op_intel,op_att);
  153. tinsentry=packed record
  154. opcode : tasmop;
  155. ops : byte;
  156. optypes : array[0..2] of longint;
  157. code : array[0..maxinfolen] of char;
  158. flags : longint;
  159. end;
  160. pinsentry=^tinsentry;
  161. { alignment for operator }
  162. tai_align = class(tai_align_abstract)
  163. reg : tregister;
  164. constructor create(b:byte);override;
  165. constructor create_op(b: byte; _op: byte);override;
  166. function calculatefillbuf(var buf : tfillbuffer):pchar;override;
  167. end;
  168. taicpu = class(tai_cpu_abstract_sym)
  169. opsize : topsize;
  170. constructor op_none(op : tasmop);
  171. constructor op_none(op : tasmop;_size : topsize);
  172. constructor op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  173. constructor op_const(op : tasmop;_size : topsize;_op1 : aint);
  174. constructor op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  175. constructor op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  176. constructor op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  177. constructor op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  178. constructor op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  179. constructor op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  180. constructor op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  181. constructor op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  182. constructor op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  183. constructor op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  184. constructor op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  185. constructor op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister; const _op3 : treference);
  186. constructor op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  187. { this is for Jmp instructions }
  188. constructor op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  189. constructor op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  190. constructor op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  191. constructor op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  192. constructor op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  193. procedure changeopsize(siz:topsize);
  194. function GetString:string;
  195. procedure CheckNonCommutativeOpcodes;
  196. private
  197. FOperandOrder : TOperandOrder;
  198. procedure init(_size : topsize); { this need to be called by all constructor }
  199. public
  200. { the next will reset all instructions that can change in pass 2 }
  201. procedure ResetPass1;override;
  202. procedure ResetPass2;override;
  203. function CheckIfValid:boolean;
  204. function Pass1(objdata:TObjData):longint;override;
  205. procedure Pass2(objdata:TObjData);override;
  206. procedure SetOperandOrder(order:TOperandOrder);
  207. function is_same_reg_move(regtype: Tregistertype):boolean;override;
  208. { register spilling code }
  209. function spilling_get_operation_type(opnr: longint): topertype;override;
  210. private
  211. { next fields are filled in pass1, so pass2 is faster }
  212. insentry : PInsEntry;
  213. insoffset : longint;
  214. LastInsOffset : longint; { need to be public to be reset }
  215. inssize : shortint;
  216. {$ifdef x86_64}
  217. rex : byte;
  218. {$endif x86_64}
  219. function InsEnd:longint;
  220. procedure create_ot(objdata:TObjData);
  221. function Matches(p:PInsEntry):boolean;
  222. function calcsize(p:PInsEntry):shortint;
  223. procedure gencode(objdata:TObjData);
  224. function NeedAddrPrefix(opidx:byte):boolean;
  225. procedure Swapoperands;
  226. function FindInsentry(objdata:TObjData):boolean;
  227. end;
  228. function spilling_create_load(const ref:treference;r:tregister): tai;
  229. function spilling_create_store(r:tregister; const ref:treference): tai;
  230. procedure InitAsm;
  231. procedure DoneAsm;
  232. implementation
  233. uses
  234. cutils,
  235. itcpugas,
  236. symsym;
  237. {*****************************************************************************
  238. Instruction table
  239. *****************************************************************************}
  240. const
  241. {Instruction flags }
  242. IF_NONE = $00000000;
  243. IF_SM = $00000001; { size match first two operands }
  244. IF_SM2 = $00000002;
  245. IF_SB = $00000004; { unsized operands can't be non-byte }
  246. IF_SW = $00000008; { unsized operands can't be non-word }
  247. IF_SD = $00000010; { unsized operands can't be nondword }
  248. IF_SMASK = $0000001f;
  249. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  250. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  251. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  252. IF_ARMASK = $00000060; { mask for unsized argument spec }
  253. IF_PRIV = $00000100; { it's a privileged instruction }
  254. IF_SMM = $00000200; { it's only valid in SMM }
  255. IF_PROT = $00000400; { it's protected mode only }
  256. IF_NOX86_64 = $00000800; { removed instruction in x86_64 }
  257. IF_UNDOC = $00001000; { it's an undocumented instruction }
  258. IF_FPU = $00002000; { it's an FPU instruction }
  259. IF_MMX = $00004000; { it's an MMX instruction }
  260. { it's a 3DNow! instruction }
  261. IF_3DNOW = $00008000;
  262. { it's a SSE (KNI, MMX2) instruction }
  263. IF_SSE = $00010000;
  264. { SSE2 instructions }
  265. IF_SSE2 = $00020000;
  266. { SSE3 instructions }
  267. IF_SSE3 = $00040000;
  268. { SSE64 instructions }
  269. IF_SSE64 = $00080000;
  270. { the mask for processor types }
  271. {IF_PMASK = longint($FF000000);}
  272. { the mask for disassembly "prefer" }
  273. {IF_PFMASK = longint($F001FF00);}
  274. { SVM instructions }
  275. IF_SVM = $00100000;
  276. { SSE4 instructions }
  277. IF_SSE4 = $00200000;
  278. IF_8086 = $00000000; { 8086 instruction }
  279. IF_186 = $01000000; { 186+ instruction }
  280. IF_286 = $02000000; { 286+ instruction }
  281. IF_386 = $03000000; { 386+ instruction }
  282. IF_486 = $04000000; { 486+ instruction }
  283. IF_PENT = $05000000; { Pentium instruction }
  284. IF_P6 = $06000000; { P6 instruction }
  285. IF_KATMAI = $07000000; { Katmai instructions }
  286. { Willamette instructions }
  287. IF_WILLAMETTE = $08000000;
  288. { Prescott instructions }
  289. IF_PRESCOTT = $09000000;
  290. IF_X86_64 = $0a000000;
  291. IF_CYRIX = $0b000000; { Cyrix-specific instruction }
  292. IF_AMD = $0c000000; { AMD-specific instruction }
  293. IF_CENTAUR = $0d000000; { centaur-specific instruction }
  294. { added flags }
  295. IF_PRE = $40000000; { it's a prefix instruction }
  296. IF_PASS2 = longint($80000000); { if the instruction can change in a second pass }
  297. type
  298. TInsTabCache=array[TasmOp] of longint;
  299. PInsTabCache=^TInsTabCache;
  300. const
  301. {$ifdef x86_64}
  302. InsTab:array[0..instabentries-1] of TInsEntry={$i x8664tab.inc}
  303. {$else x86_64}
  304. InsTab:array[0..instabentries-1] of TInsEntry={$i i386tab.inc}
  305. {$endif x86_64}
  306. var
  307. InsTabCache : PInsTabCache;
  308. const
  309. {$ifdef x86_64}
  310. { Intel style operands ! }
  311. opsize_2_type:array[0..2,topsize] of longint=(
  312. (OT_NONE,
  313. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,OT_BITS64,OT_BITS64,OT_BITS64,
  314. OT_BITS16,OT_BITS32,OT_BITS64,
  315. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  316. OT_BITS64,
  317. OT_NEAR,OT_FAR,OT_SHORT,
  318. OT_NONE,
  319. OT_NONE
  320. ),
  321. (OT_NONE,
  322. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,OT_BITS8,OT_BITS16,OT_BITS32,
  323. OT_BITS16,OT_BITS32,OT_BITS64,
  324. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  325. OT_BITS64,
  326. OT_NEAR,OT_FAR,OT_SHORT,
  327. OT_NONE,
  328. OT_NONE
  329. ),
  330. (OT_NONE,
  331. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,OT_NONE,
  332. OT_BITS16,OT_BITS32,OT_BITS64,
  333. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  334. OT_BITS64,
  335. OT_NEAR,OT_FAR,OT_SHORT,
  336. OT_NONE,
  337. OT_NONE
  338. )
  339. );
  340. reg_ot_table : array[tregisterindex] of longint = (
  341. {$i r8664ot.inc}
  342. );
  343. {$else x86_64}
  344. { Intel style operands ! }
  345. opsize_2_type:array[0..2,topsize] of longint=(
  346. (OT_NONE,
  347. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS16,OT_BITS32,OT_BITS32,
  348. OT_BITS16,OT_BITS32,OT_BITS64,
  349. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  350. OT_BITS64,
  351. OT_NEAR,OT_FAR,OT_SHORT,
  352. OT_NONE,
  353. OT_NONE
  354. ),
  355. (OT_NONE,
  356. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_BITS8,OT_BITS8,OT_BITS16,
  357. OT_BITS16,OT_BITS32,OT_BITS64,
  358. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  359. OT_BITS64,
  360. OT_NEAR,OT_FAR,OT_SHORT,
  361. OT_NONE,
  362. OT_NONE
  363. ),
  364. (OT_NONE,
  365. OT_BITS8,OT_BITS16,OT_BITS32,OT_BITS64,OT_NONE,OT_NONE,OT_NONE,
  366. OT_BITS16,OT_BITS32,OT_BITS64,
  367. OT_BITS32,OT_BITS64,OT_BITS80,OT_BITS64,OT_NONE,
  368. OT_BITS64,
  369. OT_NEAR,OT_FAR,OT_SHORT,
  370. OT_NONE,
  371. OT_NONE
  372. )
  373. );
  374. reg_ot_table : array[tregisterindex] of longint = (
  375. {$i r386ot.inc}
  376. );
  377. {$endif x86_64}
  378. { Operation type for spilling code }
  379. type
  380. toperation_type_table=array[tasmop,0..Max_Operands] of topertype;
  381. var
  382. operation_type_table : ^toperation_type_table;
  383. {****************************************************************************
  384. TAI_ALIGN
  385. ****************************************************************************}
  386. constructor tai_align.create(b: byte);
  387. begin
  388. inherited create(b);
  389. reg:=NR_ECX;
  390. end;
  391. constructor tai_align.create_op(b: byte; _op: byte);
  392. begin
  393. inherited create_op(b,_op);
  394. reg:=NR_NO;
  395. end;
  396. function tai_align.calculatefillbuf(var buf : tfillbuffer):pchar;
  397. const
  398. {$ifdef x86_64}
  399. alignarray:array[0..3] of string[4]=(
  400. #$66#$66#$66#$90,
  401. #$66#$66#$90,
  402. #$66#$90,
  403. #$90
  404. );
  405. {$else x86_64}
  406. alignarray:array[0..5] of string[8]=(
  407. #$8D#$B4#$26#$00#$00#$00#$00,
  408. #$8D#$B6#$00#$00#$00#$00,
  409. #$8D#$74#$26#$00,
  410. #$8D#$76#$00,
  411. #$89#$F6,
  412. #$90);
  413. {$endif x86_64}
  414. var
  415. bufptr : pchar;
  416. j : longint;
  417. localsize: byte;
  418. begin
  419. inherited calculatefillbuf(buf);
  420. if not use_op then
  421. begin
  422. bufptr:=pchar(@buf);
  423. { fillsize may still be used afterwards, so don't modify }
  424. { e.g. writebytes(hp.calculatefillbuf(buf)^,hp.fillsize) }
  425. localsize:=fillsize;
  426. while (localsize>0) do
  427. begin
  428. for j:=low(alignarray) to high(alignarray) do
  429. if (localsize>=length(alignarray[j])) then
  430. break;
  431. move(alignarray[j][1],bufptr^,length(alignarray[j]));
  432. inc(bufptr,length(alignarray[j]));
  433. dec(localsize,length(alignarray[j]));
  434. end;
  435. end;
  436. calculatefillbuf:=pchar(@buf);
  437. end;
  438. {*****************************************************************************
  439. Taicpu Constructors
  440. *****************************************************************************}
  441. procedure taicpu.changeopsize(siz:topsize);
  442. begin
  443. opsize:=siz;
  444. end;
  445. procedure taicpu.init(_size : topsize);
  446. begin
  447. { default order is att }
  448. FOperandOrder:=op_att;
  449. segprefix:=NR_NO;
  450. opsize:=_size;
  451. insentry:=nil;
  452. LastInsOffset:=-1;
  453. InsOffset:=0;
  454. InsSize:=0;
  455. end;
  456. constructor taicpu.op_none(op : tasmop);
  457. begin
  458. inherited create(op);
  459. init(S_NO);
  460. end;
  461. constructor taicpu.op_none(op : tasmop;_size : topsize);
  462. begin
  463. inherited create(op);
  464. init(_size);
  465. end;
  466. constructor taicpu.op_reg(op : tasmop;_size : topsize;_op1 : tregister);
  467. begin
  468. inherited create(op);
  469. init(_size);
  470. ops:=1;
  471. loadreg(0,_op1);
  472. end;
  473. constructor taicpu.op_const(op : tasmop;_size : topsize;_op1 : aint);
  474. begin
  475. inherited create(op);
  476. init(_size);
  477. ops:=1;
  478. loadconst(0,_op1);
  479. end;
  480. constructor taicpu.op_ref(op : tasmop;_size : topsize;const _op1 : treference);
  481. begin
  482. inherited create(op);
  483. init(_size);
  484. ops:=1;
  485. loadref(0,_op1);
  486. end;
  487. constructor taicpu.op_reg_reg(op : tasmop;_size : topsize;_op1,_op2 : tregister);
  488. begin
  489. inherited create(op);
  490. init(_size);
  491. ops:=2;
  492. loadreg(0,_op1);
  493. loadreg(1,_op2);
  494. end;
  495. constructor taicpu.op_reg_const(op:tasmop; _size: topsize; _op1: tregister; _op2: aint);
  496. begin
  497. inherited create(op);
  498. init(_size);
  499. ops:=2;
  500. loadreg(0,_op1);
  501. loadconst(1,_op2);
  502. end;
  503. constructor taicpu.op_reg_ref(op : tasmop;_size : topsize;_op1 : tregister;const _op2 : treference);
  504. begin
  505. inherited create(op);
  506. init(_size);
  507. ops:=2;
  508. loadreg(0,_op1);
  509. loadref(1,_op2);
  510. end;
  511. constructor taicpu.op_const_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister);
  512. begin
  513. inherited create(op);
  514. init(_size);
  515. ops:=2;
  516. loadconst(0,_op1);
  517. loadreg(1,_op2);
  518. end;
  519. constructor taicpu.op_const_const(op : tasmop;_size : topsize;_op1,_op2 : aint);
  520. begin
  521. inherited create(op);
  522. init(_size);
  523. ops:=2;
  524. loadconst(0,_op1);
  525. loadconst(1,_op2);
  526. end;
  527. constructor taicpu.op_const_ref(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference);
  528. begin
  529. inherited create(op);
  530. init(_size);
  531. ops:=2;
  532. loadconst(0,_op1);
  533. loadref(1,_op2);
  534. end;
  535. constructor taicpu.op_ref_reg(op : tasmop;_size : topsize;const _op1 : treference;_op2 : tregister);
  536. begin
  537. inherited create(op);
  538. init(_size);
  539. ops:=2;
  540. loadref(0,_op1);
  541. loadreg(1,_op2);
  542. end;
  543. constructor taicpu.op_reg_reg_reg(op : tasmop;_size : topsize;_op1,_op2,_op3 : tregister);
  544. begin
  545. inherited create(op);
  546. init(_size);
  547. ops:=3;
  548. loadreg(0,_op1);
  549. loadreg(1,_op2);
  550. loadreg(2,_op3);
  551. end;
  552. constructor taicpu.op_const_reg_reg(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;_op3 : tregister);
  553. begin
  554. inherited create(op);
  555. init(_size);
  556. ops:=3;
  557. loadconst(0,_op1);
  558. loadreg(1,_op2);
  559. loadreg(2,_op3);
  560. end;
  561. constructor taicpu.op_reg_reg_ref(op : tasmop;_size : topsize;_op1,_op2 : tregister;const _op3 : treference);
  562. begin
  563. inherited create(op);
  564. init(_size);
  565. ops:=3;
  566. loadreg(0,_op1);
  567. loadreg(1,_op2);
  568. loadref(2,_op3);
  569. end;
  570. constructor taicpu.op_const_ref_reg(op : tasmop;_size : topsize;_op1 : aint;const _op2 : treference;_op3 : tregister);
  571. begin
  572. inherited create(op);
  573. init(_size);
  574. ops:=3;
  575. loadconst(0,_op1);
  576. loadref(1,_op2);
  577. loadreg(2,_op3);
  578. end;
  579. constructor taicpu.op_const_reg_ref(op : tasmop;_size : topsize;_op1 : aint;_op2 : tregister;const _op3 : treference);
  580. begin
  581. inherited create(op);
  582. init(_size);
  583. ops:=3;
  584. loadconst(0,_op1);
  585. loadreg(1,_op2);
  586. loadref(2,_op3);
  587. end;
  588. constructor taicpu.op_cond_sym(op : tasmop;cond:TAsmCond;_size : topsize;_op1 : tasmsymbol);
  589. begin
  590. inherited create(op);
  591. init(_size);
  592. condition:=cond;
  593. ops:=1;
  594. loadsymbol(0,_op1,0);
  595. end;
  596. constructor taicpu.op_sym(op : tasmop;_size : topsize;_op1 : tasmsymbol);
  597. begin
  598. inherited create(op);
  599. init(_size);
  600. ops:=1;
  601. loadsymbol(0,_op1,0);
  602. end;
  603. constructor taicpu.op_sym_ofs(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint);
  604. begin
  605. inherited create(op);
  606. init(_size);
  607. ops:=1;
  608. loadsymbol(0,_op1,_op1ofs);
  609. end;
  610. constructor taicpu.op_sym_ofs_reg(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;_op2 : tregister);
  611. begin
  612. inherited create(op);
  613. init(_size);
  614. ops:=2;
  615. loadsymbol(0,_op1,_op1ofs);
  616. loadreg(1,_op2);
  617. end;
  618. constructor taicpu.op_sym_ofs_ref(op : tasmop;_size : topsize;_op1 : tasmsymbol;_op1ofs:longint;const _op2 : treference);
  619. begin
  620. inherited create(op);
  621. init(_size);
  622. ops:=2;
  623. loadsymbol(0,_op1,_op1ofs);
  624. loadref(1,_op2);
  625. end;
  626. function taicpu.GetString:string;
  627. var
  628. i : longint;
  629. s : string;
  630. addsize : boolean;
  631. begin
  632. s:='['+std_op2str[opcode];
  633. for i:=0 to ops-1 do
  634. begin
  635. with oper[i]^ do
  636. begin
  637. if i=0 then
  638. s:=s+' '
  639. else
  640. s:=s+',';
  641. { type }
  642. addsize:=false;
  643. if (ot and OT_XMMREG)=OT_XMMREG then
  644. s:=s+'xmmreg'
  645. else
  646. if (ot and OT_MMXREG)=OT_MMXREG then
  647. s:=s+'mmxreg'
  648. else
  649. if (ot and OT_FPUREG)=OT_FPUREG then
  650. s:=s+'fpureg'
  651. else
  652. if (ot and OT_REGISTER)=OT_REGISTER then
  653. begin
  654. s:=s+'reg';
  655. addsize:=true;
  656. end
  657. else
  658. if (ot and OT_IMMEDIATE)=OT_IMMEDIATE then
  659. begin
  660. s:=s+'imm';
  661. addsize:=true;
  662. end
  663. else
  664. if (ot and OT_MEMORY)=OT_MEMORY then
  665. begin
  666. s:=s+'mem';
  667. addsize:=true;
  668. end
  669. else
  670. s:=s+'???';
  671. { size }
  672. if addsize then
  673. begin
  674. if (ot and OT_BITS8)<>0 then
  675. s:=s+'8'
  676. else
  677. if (ot and OT_BITS16)<>0 then
  678. s:=s+'16'
  679. else
  680. if (ot and OT_BITS32)<>0 then
  681. s:=s+'32'
  682. else
  683. if (ot and OT_BITS64)<>0 then
  684. s:=s+'64'
  685. else
  686. s:=s+'??';
  687. { signed }
  688. if (ot and OT_SIGNED)<>0 then
  689. s:=s+'s';
  690. end;
  691. end;
  692. end;
  693. GetString:=s+']';
  694. end;
  695. procedure taicpu.Swapoperands;
  696. var
  697. p : POper;
  698. begin
  699. { Fix the operands which are in AT&T style and we need them in Intel style }
  700. case ops of
  701. 2 : begin
  702. { 0,1 -> 1,0 }
  703. p:=oper[0];
  704. oper[0]:=oper[1];
  705. oper[1]:=p;
  706. end;
  707. 3 : begin
  708. { 0,1,2 -> 2,1,0 }
  709. p:=oper[0];
  710. oper[0]:=oper[2];
  711. oper[2]:=p;
  712. end;
  713. end;
  714. end;
  715. procedure taicpu.SetOperandOrder(order:TOperandOrder);
  716. begin
  717. if FOperandOrder<>order then
  718. begin
  719. Swapoperands;
  720. FOperandOrder:=order;
  721. end;
  722. end;
  723. procedure taicpu.CheckNonCommutativeOpcodes;
  724. begin
  725. { we need ATT order }
  726. SetOperandOrder(op_att);
  727. if (
  728. (ops=2) and
  729. (oper[0]^.typ=top_reg) and
  730. (oper[1]^.typ=top_reg) and
  731. { if the first is ST and the second is also a register
  732. it is necessarily ST1 .. ST7 }
  733. ((oper[0]^.reg=NR_ST) or
  734. (oper[0]^.reg=NR_ST0))
  735. ) or
  736. { ((ops=1) and
  737. (oper[0]^.typ=top_reg) and
  738. (oper[0]^.reg in [R_ST1..R_ST7])) or}
  739. (ops=0) then
  740. begin
  741. if opcode=A_FSUBR then
  742. opcode:=A_FSUB
  743. else if opcode=A_FSUB then
  744. opcode:=A_FSUBR
  745. else if opcode=A_FDIVR then
  746. opcode:=A_FDIV
  747. else if opcode=A_FDIV then
  748. opcode:=A_FDIVR
  749. else if opcode=A_FSUBRP then
  750. opcode:=A_FSUBP
  751. else if opcode=A_FSUBP then
  752. opcode:=A_FSUBRP
  753. else if opcode=A_FDIVRP then
  754. opcode:=A_FDIVP
  755. else if opcode=A_FDIVP then
  756. opcode:=A_FDIVRP;
  757. end;
  758. if (
  759. (ops=1) and
  760. (oper[0]^.typ=top_reg) and
  761. (getregtype(oper[0]^.reg)=R_FPUREGISTER) and
  762. (oper[0]^.reg<>NR_ST)
  763. ) then
  764. begin
  765. if opcode=A_FSUBRP then
  766. opcode:=A_FSUBP
  767. else if opcode=A_FSUBP then
  768. opcode:=A_FSUBRP
  769. else if opcode=A_FDIVRP then
  770. opcode:=A_FDIVP
  771. else if opcode=A_FDIVP then
  772. opcode:=A_FDIVRP;
  773. end;
  774. end;
  775. {*****************************************************************************
  776. Assembler
  777. *****************************************************************************}
  778. type
  779. ea = packed record
  780. sib_present : boolean;
  781. bytes : byte;
  782. size : byte;
  783. modrm : byte;
  784. sib : byte;
  785. {$ifdef x86_64}
  786. rex_present : boolean;
  787. rex : byte;
  788. {$endif x86_64}
  789. end;
  790. procedure taicpu.create_ot(objdata:TObjData);
  791. {
  792. this function will also fix some other fields which only needs to be once
  793. }
  794. var
  795. i,l,relsize : longint;
  796. currsym : TObjSymbol;
  797. begin
  798. if ops=0 then
  799. exit;
  800. { update oper[].ot field }
  801. for i:=0 to ops-1 do
  802. with oper[i]^ do
  803. begin
  804. case typ of
  805. top_reg :
  806. begin
  807. ot:=reg_ot_table[findreg_by_number(reg)];
  808. end;
  809. top_ref :
  810. begin
  811. if (ref^.refaddr=addr_no)
  812. {$ifdef x86_64}
  813. or (
  814. (ref^.refaddr=addr_pic) and
  815. (ref^.base<>NR_NO)
  816. )
  817. {$endif x86_64}
  818. then
  819. begin
  820. { create ot field }
  821. if (ot and OT_SIZE_MASK)=0 then
  822. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  823. else
  824. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  825. if (ref^.base=NR_NO) and (ref^.index=NR_NO) then
  826. ot:=ot or OT_MEM_OFFS;
  827. { fix scalefactor }
  828. if (ref^.index=NR_NO) then
  829. ref^.scalefactor:=0
  830. else
  831. if (ref^.scalefactor=0) then
  832. ref^.scalefactor:=1;
  833. end
  834. else
  835. begin
  836. if assigned(objdata) then
  837. begin
  838. currsym:=objdata.symbolref(ref^.symbol);
  839. l:=ref^.offset;
  840. if assigned(currsym) then
  841. inc(l,currsym.address);
  842. { when it is a forward jump we need to compensate the
  843. offset of the instruction since the previous time,
  844. because the symbol address is then still using the
  845. 'old-style' addressing.
  846. For backwards jumps this is not required because the
  847. address of the symbol is already adjusted to the
  848. new offset }
  849. if (l>InsOffset) and (LastInsOffset<>-1) then
  850. inc(l,InsOffset-LastInsOffset);
  851. { instruction size will then always become 2 (PFV) }
  852. relsize:=(InsOffset+2)-l;
  853. if (relsize>=-128) and (relsize<=127) and
  854. (
  855. not assigned(currsym) or
  856. (currsym.objsection=objdata.currobjsec)
  857. ) then
  858. ot:=OT_IMM8 or OT_SHORT
  859. else
  860. ot:=OT_IMM32 or OT_NEAR;
  861. end
  862. else
  863. ot:=OT_IMM32 or OT_NEAR;
  864. end;
  865. end;
  866. top_local :
  867. begin
  868. if (ot and OT_SIZE_MASK)=0 then
  869. ot:=OT_MEMORY or opsize_2_type[i,opsize]
  870. else
  871. ot:=OT_MEMORY or (ot and OT_SIZE_MASK);
  872. end;
  873. top_const :
  874. begin
  875. { allow 2nd or 3rd operand being a constant and expect no size for shuf* etc. }
  876. if (opsize=S_NO) and not(i in [1,2]) then
  877. message(asmr_e_invalid_opcode_and_operand);
  878. if (opsize<>S_W) and (longint(val)>=-128) and (val<=127) then
  879. ot:=OT_IMM8 or OT_SIGNED
  880. else
  881. ot:=OT_IMMEDIATE or opsize_2_type[i,opsize];
  882. end;
  883. top_none :
  884. begin
  885. { generated when there was an error in the
  886. assembler reader. It never happends when generating
  887. assembler }
  888. end;
  889. else
  890. internalerror(200402261);
  891. end;
  892. end;
  893. end;
  894. function taicpu.InsEnd:longint;
  895. begin
  896. InsEnd:=InsOffset+InsSize;
  897. end;
  898. function taicpu.Matches(p:PInsEntry):boolean;
  899. { * IF_SM stands for Size Match: any operand whose size is not
  900. * explicitly specified by the template is `really' intended to be
  901. * the same size as the first size-specified operand.
  902. * Non-specification is tolerated in the input instruction, but
  903. * _wrong_ specification is not.
  904. *
  905. * IF_SM2 invokes Size Match on only the first _two_ operands, for
  906. * three-operand instructions such as SHLD: it implies that the
  907. * first two operands must match in size, but that the third is
  908. * required to be _unspecified_.
  909. *
  910. * IF_SB invokes Size Byte: operands with unspecified size in the
  911. * template are really bytes, and so no non-byte specification in
  912. * the input instruction will be tolerated. IF_SW similarly invokes
  913. * Size Word, and IF_SD invokes Size Doubleword.
  914. *
  915. * (The default state if neither IF_SM nor IF_SM2 is specified is
  916. * that any operand with unspecified size in the template is
  917. * required to have unspecified size in the instruction too...)
  918. }
  919. var
  920. insot,
  921. insflags,
  922. currot,
  923. i,j,asize,oprs : longint;
  924. siz : array[0..2] of longint;
  925. begin
  926. result:=false;
  927. { Check the opcode and operands }
  928. if (p^.opcode<>opcode) or (p^.ops<>ops) then
  929. exit;
  930. for i:=0 to p^.ops-1 do
  931. begin
  932. insot:=p^.optypes[i];
  933. currot:=oper[i]^.ot;
  934. { Check the operand flags }
  935. if (insot and (not currot) and OT_NON_SIZE)<>0 then
  936. exit;
  937. { Check if the passed operand size matches with one of
  938. the supported operand sizes }
  939. if ((insot and OT_SIZE_MASK)<>0) and
  940. ((insot and currot and OT_SIZE_MASK)<>(currot and OT_SIZE_MASK)) then
  941. exit;
  942. end;
  943. { Check operand sizes }
  944. insflags:=p^.flags;
  945. if insflags and IF_SMASK<>0 then
  946. begin
  947. { as default an untyped size can get all the sizes, this is different
  948. from nasm, but else we need to do a lot checking which opcodes want
  949. size or not with the automatic size generation }
  950. asize:=-1;
  951. if (insflags and IF_SB)<>0 then
  952. asize:=OT_BITS8
  953. else if (insflags and IF_SW)<>0 then
  954. asize:=OT_BITS16
  955. else if (insflags and IF_SD)<>0 then
  956. asize:=OT_BITS32;
  957. if (insflags and IF_ARMASK)<>0 then
  958. begin
  959. siz[0]:=0;
  960. siz[1]:=0;
  961. siz[2]:=0;
  962. if (insflags and IF_AR0)<>0 then
  963. siz[0]:=asize
  964. else if (insflags and IF_AR1)<>0 then
  965. siz[1]:=asize
  966. else if (insflags and IF_AR2)<>0 then
  967. siz[2]:=asize;
  968. end
  969. else
  970. begin
  971. siz[0]:=asize;
  972. siz[1]:=asize;
  973. siz[2]:=asize;
  974. end;
  975. if (insflags and (IF_SM or IF_SM2))<>0 then
  976. begin
  977. if (insflags and IF_SM2)<>0 then
  978. oprs:=2
  979. else
  980. oprs:=p^.ops;
  981. for i:=0 to oprs-1 do
  982. if ((p^.optypes[i] and OT_SIZE_MASK) <> 0) then
  983. begin
  984. for j:=0 to oprs-1 do
  985. siz[j]:=p^.optypes[i] and OT_SIZE_MASK;
  986. break;
  987. end;
  988. end
  989. else
  990. oprs:=2;
  991. { Check operand sizes }
  992. for i:=0 to p^.ops-1 do
  993. begin
  994. insot:=p^.optypes[i];
  995. currot:=oper[i]^.ot;
  996. if ((insot and OT_SIZE_MASK)=0) and
  997. ((currot and OT_SIZE_MASK and (not siz[i]))<>0) and
  998. { Immediates can always include smaller size }
  999. ((currot and OT_IMMEDIATE)=0) and
  1000. (((insot and OT_SIZE_MASK) or siz[i])<(currot and OT_SIZE_MASK)) then
  1001. exit;
  1002. end;
  1003. end;
  1004. result:=true;
  1005. end;
  1006. procedure taicpu.ResetPass1;
  1007. begin
  1008. { we need to reset everything here, because the choosen insentry
  1009. can be invalid for a new situation where the previously optimized
  1010. insentry is not correct }
  1011. InsEntry:=nil;
  1012. InsSize:=0;
  1013. LastInsOffset:=-1;
  1014. end;
  1015. procedure taicpu.ResetPass2;
  1016. begin
  1017. { we are here in a second pass, check if the instruction can be optimized }
  1018. if assigned(InsEntry) and
  1019. ((InsEntry^.flags and IF_PASS2)<>0) then
  1020. begin
  1021. InsEntry:=nil;
  1022. InsSize:=0;
  1023. end;
  1024. LastInsOffset:=-1;
  1025. end;
  1026. function taicpu.CheckIfValid:boolean;
  1027. begin
  1028. result:=FindInsEntry(nil);
  1029. end;
  1030. function taicpu.FindInsentry(objdata:TObjData):boolean;
  1031. var
  1032. i : longint;
  1033. begin
  1034. result:=false;
  1035. { Things which may only be done once, not when a second pass is done to
  1036. optimize }
  1037. if (Insentry=nil) or ((InsEntry^.flags and IF_PASS2)<>0) then
  1038. begin
  1039. { We need intel style operands }
  1040. SetOperandOrder(op_intel);
  1041. { create the .ot fields }
  1042. create_ot(objdata);
  1043. { set the file postion }
  1044. current_filepos:=fileinfo;
  1045. end
  1046. else
  1047. begin
  1048. { we've already an insentry so it's valid }
  1049. result:=true;
  1050. exit;
  1051. end;
  1052. { Lookup opcode in the table }
  1053. InsSize:=-1;
  1054. i:=instabcache^[opcode];
  1055. if i=-1 then
  1056. begin
  1057. Message1(asmw_e_opcode_not_in_table,gas_op2str[opcode]);
  1058. exit;
  1059. end;
  1060. insentry:=@instab[i];
  1061. while (insentry^.opcode=opcode) do
  1062. begin
  1063. if matches(insentry) then
  1064. begin
  1065. result:=true;
  1066. exit;
  1067. end;
  1068. inc(insentry);
  1069. end;
  1070. Message1(asmw_e_invalid_opcode_and_operands,GetString);
  1071. { No instruction found, set insentry to nil and inssize to -1 }
  1072. insentry:=nil;
  1073. inssize:=-1;
  1074. end;
  1075. function taicpu.Pass1(objdata:TObjData):longint;
  1076. begin
  1077. Pass1:=0;
  1078. { Save the old offset and set the new offset }
  1079. InsOffset:=ObjData.CurrObjSec.Size;
  1080. { Error? }
  1081. if (Insentry=nil) and (InsSize=-1) then
  1082. exit;
  1083. { set the file postion }
  1084. current_filepos:=fileinfo;
  1085. { Get InsEntry }
  1086. if FindInsEntry(ObjData) then
  1087. begin
  1088. { Calculate instruction size }
  1089. InsSize:=calcsize(insentry);
  1090. if segprefix<>NR_NO then
  1091. inc(InsSize);
  1092. { Fix opsize if size if forced }
  1093. if (insentry^.flags and (IF_SB or IF_SW or IF_SD))<>0 then
  1094. begin
  1095. if (insentry^.flags and IF_ARMASK)=0 then
  1096. begin
  1097. if (insentry^.flags and IF_SB)<>0 then
  1098. begin
  1099. if opsize=S_NO then
  1100. opsize:=S_B;
  1101. end
  1102. else if (insentry^.flags and IF_SW)<>0 then
  1103. begin
  1104. if opsize=S_NO then
  1105. opsize:=S_W;
  1106. end
  1107. else if (insentry^.flags and IF_SD)<>0 then
  1108. begin
  1109. if opsize=S_NO then
  1110. opsize:=S_L;
  1111. end;
  1112. end;
  1113. end;
  1114. LastInsOffset:=InsOffset;
  1115. Pass1:=InsSize;
  1116. exit;
  1117. end;
  1118. LastInsOffset:=-1;
  1119. end;
  1120. procedure taicpu.Pass2(objdata:TObjData);
  1121. var
  1122. c : longint;
  1123. begin
  1124. { error in pass1 ? }
  1125. if insentry=nil then
  1126. exit;
  1127. current_filepos:=fileinfo;
  1128. { Segment override }
  1129. if (segprefix<>NR_NO) then
  1130. begin
  1131. case segprefix of
  1132. NR_CS : c:=$2e;
  1133. NR_DS : c:=$3e;
  1134. NR_ES : c:=$26;
  1135. NR_FS : c:=$64;
  1136. NR_GS : c:=$65;
  1137. NR_SS : c:=$36;
  1138. end;
  1139. objdata.writebytes(c,1);
  1140. { fix the offset for GenNode }
  1141. inc(InsOffset);
  1142. end;
  1143. { Generate the instruction }
  1144. GenCode(objdata);
  1145. end;
  1146. function taicpu.needaddrprefix(opidx:byte):boolean;
  1147. begin
  1148. result:=(oper[opidx]^.typ=top_ref) and
  1149. (oper[opidx]^.ref^.refaddr=addr_no) and
  1150. (
  1151. (
  1152. (oper[opidx]^.ref^.index<>NR_NO) and
  1153. (getsubreg(oper[opidx]^.ref^.index)<>R_SUBADDR)
  1154. ) or
  1155. (
  1156. (oper[opidx]^.ref^.base<>NR_NO) and
  1157. (getsubreg(oper[opidx]^.ref^.base)<>R_SUBADDR)
  1158. )
  1159. );
  1160. end;
  1161. function regval(r:Tregister):byte;
  1162. const
  1163. {$ifdef x86_64}
  1164. opcode_table:array[tregisterindex] of tregisterindex = (
  1165. {$i r8664op.inc}
  1166. );
  1167. {$else x86_64}
  1168. opcode_table:array[tregisterindex] of tregisterindex = (
  1169. {$i r386op.inc}
  1170. );
  1171. {$endif x86_64}
  1172. var
  1173. regidx : tregisterindex;
  1174. begin
  1175. regidx:=findreg_by_number(r);
  1176. if regidx<>0 then
  1177. result:=opcode_table[regidx]
  1178. else
  1179. begin
  1180. Message1(asmw_e_invalid_register,generic_regname(r));
  1181. result:=0;
  1182. end;
  1183. end;
  1184. {$ifdef x86_64}
  1185. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1186. var
  1187. sym : tasmsymbol;
  1188. md,s,rv : byte;
  1189. base,index,scalefactor,
  1190. o : longint;
  1191. ir,br : Tregister;
  1192. isub,bsub : tsubregister;
  1193. begin
  1194. process_ea:=false;
  1195. fillchar(output,sizeof(output),0);
  1196. {Register ?}
  1197. if (input.typ=top_reg) then
  1198. begin
  1199. rv:=regval(input.reg);
  1200. output.modrm:=$c0 or (rfield shl 3) or rv;
  1201. output.size:=1;
  1202. if ((getregtype(input.reg)=R_INTREGISTER) and
  1203. (getsupreg(input.reg)>=RS_R8)) or
  1204. ((getregtype(input.reg)=R_MMREGISTER) and
  1205. (getsupreg(input.reg)>=RS_XMM8)) then
  1206. begin
  1207. output.rex_present:=true;
  1208. output.rex:=output.rex or $41;
  1209. inc(output.size,1);
  1210. end
  1211. else if (getregtype(input.reg)=R_INTREGISTER) and
  1212. (getsubreg(input.reg)=R_SUBL) and
  1213. (getsupreg(input.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1214. begin
  1215. output.rex_present:=true;
  1216. output.rex:=output.rex or $40;
  1217. inc(output.size,1);
  1218. end;
  1219. process_ea:=true;
  1220. exit;
  1221. end;
  1222. {No register, so memory reference.}
  1223. if input.typ<>top_ref then
  1224. internalerror(200409263);
  1225. ir:=input.ref^.index;
  1226. br:=input.ref^.base;
  1227. isub:=getsubreg(ir);
  1228. bsub:=getsubreg(br);
  1229. s:=input.ref^.scalefactor;
  1230. o:=input.ref^.offset;
  1231. sym:=input.ref^.symbol;
  1232. if ((ir<>NR_NO) and (getregtype(ir)<>R_INTREGISTER)) or
  1233. ((br<>NR_NO) and (br<>NR_RIP) and (getregtype(br)<>R_INTREGISTER)) then
  1234. internalerror(200301081);
  1235. { it's direct address }
  1236. if (br=NR_NO) and (ir=NR_NO) then
  1237. begin
  1238. output.sib_present:=true;
  1239. output.bytes:=4;
  1240. output.modrm:=4 or (rfield shl 3);
  1241. output.sib:=$25;
  1242. end
  1243. else if (br=NR_RIP) and (ir=NR_NO) then
  1244. begin
  1245. { rip based }
  1246. output.sib_present:=false;
  1247. output.bytes:=4;
  1248. output.modrm:=5 or (rfield shl 3);
  1249. end
  1250. else
  1251. { it's an indirection }
  1252. begin
  1253. { 16 bit or 32 bit address? }
  1254. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1255. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1256. message(asmw_e_16bit_32bit_not_supported);
  1257. { wrong, for various reasons }
  1258. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1259. exit;
  1260. if ((getregtype(br)=R_INTREGISTER) and
  1261. (getsupreg(br)>=RS_R8)) or
  1262. ((getregtype(br)=R_MMREGISTER) and
  1263. (getsupreg(br)>=RS_XMM8)) then
  1264. begin
  1265. output.rex_present:=true;
  1266. output.rex:=output.rex or $41;
  1267. end;
  1268. if ((getregtype(ir)=R_INTREGISTER) and
  1269. (getsupreg(ir)>=RS_R8)) or
  1270. ((getregtype(ir)=R_MMREGISTER) and
  1271. (getsupreg(ir)>=RS_XMM8)) then
  1272. begin
  1273. output.rex_present:=true;
  1274. output.rex:=output.rex or $42;
  1275. end;
  1276. process_ea:=true;
  1277. { base }
  1278. case br of
  1279. NR_R8,
  1280. NR_RAX : base:=0;
  1281. NR_R9,
  1282. NR_RCX : base:=1;
  1283. NR_R10,
  1284. NR_RDX : base:=2;
  1285. NR_R11,
  1286. NR_RBX : base:=3;
  1287. NR_R12,
  1288. NR_RSP : base:=4;
  1289. NR_R13,
  1290. NR_NO,
  1291. NR_RBP : base:=5;
  1292. NR_R14,
  1293. NR_RSI : base:=6;
  1294. NR_R15,
  1295. NR_RDI : base:=7;
  1296. else
  1297. exit;
  1298. end;
  1299. { index }
  1300. case ir of
  1301. NR_R8,
  1302. NR_RAX : index:=0;
  1303. NR_R9,
  1304. NR_RCX : index:=1;
  1305. NR_R10,
  1306. NR_RDX : index:=2;
  1307. NR_R11,
  1308. NR_RBX : index:=3;
  1309. NR_R12,
  1310. NR_NO : index:=4;
  1311. NR_R13,
  1312. NR_RBP : index:=5;
  1313. NR_R14,
  1314. NR_RSI : index:=6;
  1315. NR_R15,
  1316. NR_RDI : index:=7;
  1317. else
  1318. exit;
  1319. end;
  1320. case s of
  1321. 0,
  1322. 1 : scalefactor:=0;
  1323. 2 : scalefactor:=1;
  1324. 4 : scalefactor:=2;
  1325. 8 : scalefactor:=3;
  1326. else
  1327. exit;
  1328. end;
  1329. { If rbp or r13 is used we must always include an offset }
  1330. if (br=NR_NO) or
  1331. ((br<>NR_RBP) and (br<>NR_R13) and (o=0) and (sym=nil)) then
  1332. md:=0
  1333. else
  1334. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1335. md:=1
  1336. else
  1337. md:=2;
  1338. if (br=NR_NO) or (md=2) then
  1339. output.bytes:=4
  1340. else
  1341. output.bytes:=md;
  1342. { SIB needed ? }
  1343. if (ir=NR_NO) and (br<>NR_RSP) and (br<>NR_R12) then
  1344. begin
  1345. output.sib_present:=false;
  1346. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1347. end
  1348. else
  1349. begin
  1350. output.sib_present:=true;
  1351. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1352. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1353. end;
  1354. end;
  1355. output.size:=1+ord(output.sib_present)+ord(output.rex_present)+output.bytes;
  1356. process_ea:=true;
  1357. end;
  1358. {$else x86_64}
  1359. function process_ea(const input:toper;out output:ea;rfield:longint):boolean;
  1360. var
  1361. sym : tasmsymbol;
  1362. md,s,rv : byte;
  1363. base,index,scalefactor,
  1364. o : longint;
  1365. ir,br : Tregister;
  1366. isub,bsub : tsubregister;
  1367. begin
  1368. process_ea:=false;
  1369. fillchar(output,sizeof(output),0);
  1370. {Register ?}
  1371. if (input.typ=top_reg) then
  1372. begin
  1373. rv:=regval(input.reg);
  1374. output.modrm:=$c0 or (rfield shl 3) or rv;
  1375. output.size:=1;
  1376. process_ea:=true;
  1377. exit;
  1378. end;
  1379. {No register, so memory reference.}
  1380. if (input.typ<>top_ref) then
  1381. internalerror(200409262);
  1382. if ((input.ref^.index<>NR_NO) and (getregtype(input.ref^.index)<>R_INTREGISTER)) or
  1383. ((input.ref^.base<>NR_NO) and (getregtype(input.ref^.base)<>R_INTREGISTER)) then
  1384. internalerror(200301081);
  1385. ir:=input.ref^.index;
  1386. br:=input.ref^.base;
  1387. isub:=getsubreg(ir);
  1388. bsub:=getsubreg(br);
  1389. s:=input.ref^.scalefactor;
  1390. o:=input.ref^.offset;
  1391. sym:=input.ref^.symbol;
  1392. { it's direct address }
  1393. if (br=NR_NO) and (ir=NR_NO) then
  1394. begin
  1395. { it's a pure offset }
  1396. output.sib_present:=false;
  1397. output.bytes:=4;
  1398. output.modrm:=5 or (rfield shl 3);
  1399. end
  1400. else
  1401. { it's an indirection }
  1402. begin
  1403. { 16 bit address? }
  1404. if ((ir<>NR_NO) and (isub<>R_SUBADDR)) or
  1405. ((br<>NR_NO) and (bsub<>R_SUBADDR)) then
  1406. message(asmw_e_16bit_not_supported);
  1407. {$ifdef OPTEA}
  1408. { make single reg base }
  1409. if (br=NR_NO) and (s=1) then
  1410. begin
  1411. br:=ir;
  1412. ir:=NR_NO;
  1413. end;
  1414. { convert [3,5,9]*EAX to EAX+[2,4,8]*EAX }
  1415. if (br=NR_NO) and
  1416. (((s=2) and (ir<>NR_ESP)) or
  1417. (s=3) or (s=5) or (s=9)) then
  1418. begin
  1419. br:=ir;
  1420. dec(s);
  1421. end;
  1422. { swap ESP into base if scalefactor is 1 }
  1423. if (s=1) and (ir=NR_ESP) then
  1424. begin
  1425. ir:=br;
  1426. br:=NR_ESP;
  1427. end;
  1428. {$endif OPTEA}
  1429. { wrong, for various reasons }
  1430. if (ir=NR_ESP) or ((s<>1) and (s<>2) and (s<>4) and (s<>8) and (ir<>NR_NO)) then
  1431. exit;
  1432. { base }
  1433. case br of
  1434. NR_EAX : base:=0;
  1435. NR_ECX : base:=1;
  1436. NR_EDX : base:=2;
  1437. NR_EBX : base:=3;
  1438. NR_ESP : base:=4;
  1439. NR_NO,
  1440. NR_EBP : base:=5;
  1441. NR_ESI : base:=6;
  1442. NR_EDI : base:=7;
  1443. else
  1444. exit;
  1445. end;
  1446. { index }
  1447. case ir of
  1448. NR_EAX : index:=0;
  1449. NR_ECX : index:=1;
  1450. NR_EDX : index:=2;
  1451. NR_EBX : index:=3;
  1452. NR_NO : index:=4;
  1453. NR_EBP : index:=5;
  1454. NR_ESI : index:=6;
  1455. NR_EDI : index:=7;
  1456. else
  1457. exit;
  1458. end;
  1459. case s of
  1460. 0,
  1461. 1 : scalefactor:=0;
  1462. 2 : scalefactor:=1;
  1463. 4 : scalefactor:=2;
  1464. 8 : scalefactor:=3;
  1465. else
  1466. exit;
  1467. end;
  1468. if (br=NR_NO) or
  1469. ((br<>NR_EBP) and (o=0) and (sym=nil)) then
  1470. md:=0
  1471. else
  1472. if ((o>=-128) and (o<=127) and (sym=nil)) then
  1473. md:=1
  1474. else
  1475. md:=2;
  1476. if (br=NR_NO) or (md=2) then
  1477. output.bytes:=4
  1478. else
  1479. output.bytes:=md;
  1480. { SIB needed ? }
  1481. if (ir=NR_NO) and (br<>NR_ESP) then
  1482. begin
  1483. output.sib_present:=false;
  1484. output.modrm:=(md shl 6) or (rfield shl 3) or base;
  1485. end
  1486. else
  1487. begin
  1488. output.sib_present:=true;
  1489. output.modrm:=(md shl 6) or (rfield shl 3) or 4;
  1490. output.sib:=(scalefactor shl 6) or (index shl 3) or base;
  1491. end;
  1492. end;
  1493. if output.sib_present then
  1494. output.size:=2+output.bytes
  1495. else
  1496. output.size:=1+output.bytes;
  1497. process_ea:=true;
  1498. end;
  1499. {$endif x86_64}
  1500. function taicpu.calcsize(p:PInsEntry):shortint;
  1501. var
  1502. codes : pchar;
  1503. c : byte;
  1504. len : shortint;
  1505. ea_data : ea;
  1506. begin
  1507. len:=0;
  1508. codes:=@p^.code[0];
  1509. {$ifdef x86_64}
  1510. rex:=0;
  1511. {$endif x86_64}
  1512. repeat
  1513. c:=ord(codes^);
  1514. inc(codes);
  1515. case c of
  1516. 0 :
  1517. break;
  1518. 1,2,3 :
  1519. begin
  1520. inc(codes,c);
  1521. inc(len,c);
  1522. end;
  1523. 8,9,10 :
  1524. begin
  1525. {$ifdef x86_64}
  1526. if ((getregtype(oper[c-8]^.reg)=R_INTREGISTER) and
  1527. (getsupreg(oper[c-8]^.reg)>=RS_R8)) or
  1528. ((getregtype(oper[c-8]^.reg)=R_MMREGISTER) and
  1529. (getsupreg(oper[c-8]^.reg)>=RS_XMM8)) then
  1530. begin
  1531. if rex=0 then
  1532. inc(len);
  1533. rex:=rex or $41;
  1534. end
  1535. else if (getregtype(oper[c-8]^.reg)=R_INTREGISTER) and
  1536. (getsubreg(oper[c-8]^.reg)=R_SUBL) and
  1537. (getsupreg(oper[c-8]^.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1538. begin
  1539. if rex=0 then
  1540. inc(len);
  1541. rex:=rex or $40;
  1542. end;
  1543. {$endif x86_64}
  1544. inc(codes);
  1545. inc(len);
  1546. end;
  1547. 11 :
  1548. begin
  1549. inc(codes);
  1550. inc(len);
  1551. end;
  1552. 4,5,6,7 :
  1553. begin
  1554. if opsize=S_W then
  1555. inc(len,2)
  1556. else
  1557. inc(len);
  1558. end;
  1559. 15,
  1560. 12,13,14,
  1561. 16,17,18,
  1562. 20,21,22,
  1563. 40,41,42 :
  1564. inc(len);
  1565. 24,25,26,
  1566. 31,
  1567. 48,49,50 :
  1568. inc(len,2);
  1569. 28,29,30:
  1570. begin
  1571. if opsize=S_Q then
  1572. inc(len,8)
  1573. else
  1574. inc(len,4);
  1575. end;
  1576. 32,33,34,
  1577. 52,53,54,
  1578. 56,57,58 :
  1579. inc(len,4);
  1580. 192,193,194 :
  1581. if NeedAddrPrefix(c-192) then
  1582. inc(len);
  1583. 208,209,210 :
  1584. begin
  1585. case (oper[c-208]^.ot and OT_SIZE_MASK) of
  1586. OT_BITS16:
  1587. inc(len);
  1588. {$ifdef x86_64}
  1589. OT_BITS64:
  1590. begin
  1591. if rex=0 then
  1592. inc(len);
  1593. rex:=rex or $48;
  1594. end;
  1595. {$endif x86_64}
  1596. end;
  1597. end;
  1598. 200,
  1599. 212 :
  1600. inc(len);
  1601. 214 :
  1602. begin
  1603. {$ifdef x86_64}
  1604. if rex=0 then
  1605. inc(len);
  1606. rex:=rex or $48;
  1607. {$endif x86_64}
  1608. end;
  1609. 201,
  1610. 202,
  1611. 211,
  1612. 213,
  1613. 215,
  1614. 217,218: ;
  1615. 219,220 :
  1616. inc(len);
  1617. 221:
  1618. {$ifdef x86_64}
  1619. { remove rex competely? }
  1620. if rex=$48 then
  1621. begin
  1622. rex:=0;
  1623. dec(len);
  1624. end
  1625. else
  1626. rex:=rex and $f7
  1627. {$endif x86_64}
  1628. ;
  1629. 64..191 :
  1630. begin
  1631. {$ifdef x86_64}
  1632. if (c<127) then
  1633. begin
  1634. if (oper[c and 7]^.typ=top_reg) then
  1635. begin
  1636. if ((getregtype(oper[c and 7]^.reg)=R_INTREGISTER) and
  1637. (getsupreg(oper[c and 7]^.reg)>=RS_R8)) or
  1638. ((getregtype(oper[c and 7]^.reg)=R_MMREGISTER) and
  1639. (getsupreg(oper[c and 7]^.reg)>=RS_XMM8)) then
  1640. begin
  1641. if rex=0 then
  1642. inc(len);
  1643. rex:=rex or $44;
  1644. end
  1645. else if (getregtype(oper[c and 7]^.reg)=R_INTREGISTER) and
  1646. (getsubreg(oper[c and 7]^.reg)=R_SUBL) and
  1647. (getsupreg(oper[c and 7]^.reg) in [RS_RDI,RS_RSI,RS_RBP,RS_RSP]) then
  1648. begin
  1649. if rex=0 then
  1650. inc(len);
  1651. rex:=rex or $40;
  1652. end;
  1653. end;
  1654. end;
  1655. {$endif x86_64}
  1656. if not process_ea(oper[(c shr 3) and 7]^, ea_data, 0) then
  1657. Message(asmw_e_invalid_effective_address)
  1658. else
  1659. inc(len,ea_data.size);
  1660. {$ifdef x86_64}
  1661. { did we already create include a rex into the length calculation? }
  1662. if (rex<>0) and (ea_data.rex<>0) then
  1663. dec(len);
  1664. rex:=rex or ea_data.rex;
  1665. {$endif x86_64}
  1666. end;
  1667. else
  1668. InternalError(200603141);
  1669. end;
  1670. until false;
  1671. calcsize:=len;
  1672. end;
  1673. procedure taicpu.GenCode(objdata:TObjData);
  1674. {
  1675. * the actual codes (C syntax, i.e. octal):
  1676. * \0 - terminates the code. (Unless it's a literal of course.)
  1677. * \1, \2, \3 - that many literal bytes follow in the code stream
  1678. * \4, \6 - the POP/PUSH (respectively) codes for CS, DS, ES, SS
  1679. * (POP is never used for CS) depending on operand 0
  1680. * \5, \7 - the second byte of POP/PUSH codes for FS, GS, depending
  1681. * on operand 0
  1682. * \10, \11, \12 - a literal byte follows in the code stream, to be added
  1683. * to the register value of operand 0, 1 or 2
  1684. * \13 - a literal byte follows in the code stream, to be added
  1685. * to the condition code value of the instruction.
  1686. * \17 - encodes the literal byte 0. (Some compilers don't take
  1687. * kindly to a zero byte in the _middle_ of a compile time
  1688. * string constant, so I had to put this hack in.)
  1689. * \14, \15, \16 - a signed byte immediate operand, from operand 0, 1 or 2
  1690. * \20, \21, \22 - a byte immediate operand, from operand 0, 1 or 2
  1691. * \24, \25, \26 - an unsigned byte immediate operand, from operand 0, 1 or 2
  1692. * \30, \31, \32 - a word immediate operand, from operand 0, 1 or 2
  1693. * \34, \35, \36 - select between \3[012] and \4[012] depending on 16/32 bit
  1694. * assembly mode or the address-size override on the operand
  1695. * \37 - a word constant, from the _segment_ part of operand 0
  1696. * \40, \41, \42 - a long immediate operand, from operand 0, 1 or 2
  1697. * \50, \51, \52 - a byte relative operand, from operand 0, 1 or 2
  1698. * \60, \61, \62 - a word relative operand, from operand 0, 1 or 2
  1699. * \64, \65, \66 - select between \6[012] and \7[012] depending on 16/32 bit
  1700. * assembly mode or the address-size override on the operand
  1701. * \70, \71, \72 - a long relative operand, from operand 0, 1 or 2
  1702. * \1ab - a ModRM, calculated on EA in operand a, with the spare
  1703. * field the register value of operand b.
  1704. * \2ab - a ModRM, calculated on EA in operand a, with the spare
  1705. * field equal to digit b.
  1706. * \300,\301,\302 - might be an 0x67 or 0x48 byte, depending on the address size of
  1707. * the memory reference in operand x.
  1708. * \310 - indicates fixed 16-bit address size, i.e. optional 0x67.
  1709. * \311 - indicates fixed 32-bit address size, i.e. optional 0x67.
  1710. * \312 - indicates fixed 64-bit address size, i.e. optional 0x48.
  1711. * \320,\321,\322 - might be an 0x66 or 0x48 byte, depending on the operand
  1712. * size of operand x.
  1713. * \323 - insert x86_64 REX at this position.
  1714. * \324 - indicates fixed 16-bit operand size, i.e. optional 0x66.
  1715. * \325 - indicates fixed 32-bit operand size, i.e. optional 0x66.
  1716. * \326 - indicates fixed 64-bit operand size, i.e. optional 0x48.
  1717. * \327 - indicates that this instruction is only valid when the
  1718. * operand size is the default (instruction to disassembler,
  1719. * generates no code in the assembler)
  1720. * \331 - instruction not valid with REP prefix. Hint for
  1721. * disassembler only; for SSE instructions.
  1722. * \332 - disassemble a rep (0xF3 byte) prefix as repe not rep.
  1723. * \333 - REP prefix (0xF3 byte); for SSE instructions. Not encoded
  1724. * \335 - removes rex size prefix, i.e. rex.w must be the last opcode
  1725. }
  1726. var
  1727. currval : aint;
  1728. currsym : tobjsymbol;
  1729. currrelreloc,
  1730. currabsreloc,
  1731. currabsreloc32 : TObjRelocationType;
  1732. {$ifdef x86_64}
  1733. rexwritten : boolean;
  1734. {$endif x86_64}
  1735. procedure getvalsym(opidx:longint);
  1736. begin
  1737. case oper[opidx]^.typ of
  1738. top_ref :
  1739. begin
  1740. currval:=oper[opidx]^.ref^.offset;
  1741. currsym:=ObjData.symbolref(oper[opidx]^.ref^.symbol);
  1742. {$ifdef x86_64}
  1743. if oper[opidx]^.ref^.refaddr=addr_pic then
  1744. begin
  1745. currrelreloc:=RELOC_PLT32;
  1746. currabsreloc:=RELOC_GOTPCREL;
  1747. currabsreloc32:=RELOC_GOTPCREL;
  1748. end
  1749. else
  1750. {$endif x86_64}
  1751. begin
  1752. currrelreloc:=RELOC_RELATIVE;
  1753. currabsreloc:=RELOC_ABSOLUTE;
  1754. currabsreloc32:=RELOC_ABSOLUTE32;
  1755. end;
  1756. end;
  1757. top_const :
  1758. begin
  1759. currval:=aint(oper[opidx]^.val);
  1760. currsym:=nil;
  1761. currabsreloc:=RELOC_ABSOLUTE;
  1762. currabsreloc32:=RELOC_ABSOLUTE32;
  1763. end;
  1764. else
  1765. Message(asmw_e_immediate_or_reference_expected);
  1766. end;
  1767. end;
  1768. {$ifdef x86_64}
  1769. procedure maybewriterex;
  1770. begin
  1771. if (rex<>0) and not(rexwritten) then
  1772. begin
  1773. rexwritten:=true;
  1774. objdata.writebytes(rex,1);
  1775. end;
  1776. end;
  1777. {$endif x86_64}
  1778. const
  1779. CondVal:array[TAsmCond] of byte=($0,
  1780. $7, $3, $2, $6, $2, $4, $F, $D, $C, $E, $6, $2,
  1781. $3, $7, $3, $5, $E, $C, $D, $F, $1, $B, $9, $5,
  1782. $0, $A, $A, $B, $8, $4);
  1783. var
  1784. c : byte;
  1785. pb : pbyte;
  1786. codes : pchar;
  1787. bytes : array[0..3] of byte;
  1788. rfield,
  1789. data,s,opidx : longint;
  1790. ea_data : ea;
  1791. begin
  1792. { safety check }
  1793. if objdata.currobjsec.size<>insoffset then
  1794. internalerror(200130121);
  1795. { load data to write }
  1796. codes:=insentry^.code;
  1797. {$ifdef x86_64}
  1798. rexwritten:=false;
  1799. {$endif x86_64}
  1800. { Force word push/pop for registers }
  1801. if (opsize=S_W) and ((codes[0]=#4) or (codes[0]=#6) or
  1802. ((codes[0]=#1) and ((codes[2]=#5) or (codes[2]=#7)))) then
  1803. begin
  1804. bytes[0]:=$66;
  1805. objdata.writebytes(bytes,1);
  1806. end;
  1807. repeat
  1808. c:=ord(codes^);
  1809. inc(codes);
  1810. case c of
  1811. 0 :
  1812. break;
  1813. 1,2,3 :
  1814. begin
  1815. objdata.writebytes(codes^,c);
  1816. inc(codes,c);
  1817. end;
  1818. 4,6 :
  1819. begin
  1820. case oper[0]^.reg of
  1821. NR_CS:
  1822. bytes[0]:=$e;
  1823. NR_NO,
  1824. NR_DS:
  1825. bytes[0]:=$1e;
  1826. NR_ES:
  1827. bytes[0]:=$6;
  1828. NR_SS:
  1829. bytes[0]:=$16;
  1830. else
  1831. internalerror(777004);
  1832. end;
  1833. if c=4 then
  1834. inc(bytes[0]);
  1835. objdata.writebytes(bytes,1);
  1836. end;
  1837. 5,7 :
  1838. begin
  1839. case oper[0]^.reg of
  1840. NR_FS:
  1841. bytes[0]:=$a0;
  1842. NR_GS:
  1843. bytes[0]:=$a8;
  1844. else
  1845. internalerror(777005);
  1846. end;
  1847. if c=5 then
  1848. inc(bytes[0]);
  1849. objdata.writebytes(bytes,1);
  1850. end;
  1851. 8,9,10 :
  1852. begin
  1853. bytes[0]:=ord(codes^)+regval(oper[c-8]^.reg);
  1854. inc(codes);
  1855. objdata.writebytes(bytes,1);
  1856. end;
  1857. 11 :
  1858. begin
  1859. bytes[0]:=ord(codes^)+condval[condition];
  1860. inc(codes);
  1861. objdata.writebytes(bytes,1);
  1862. end;
  1863. 15 :
  1864. begin
  1865. bytes[0]:=0;
  1866. objdata.writebytes(bytes,1);
  1867. end;
  1868. 12,13,14 :
  1869. begin
  1870. getvalsym(c-12);
  1871. if (currval<-128) or (currval>127) then
  1872. Message2(asmw_e_value_exceeds_bounds,'signed byte',tostr(currval));
  1873. if assigned(currsym) then
  1874. objdata.writereloc(currval,1,currsym,currabsreloc)
  1875. else
  1876. objdata.writebytes(currval,1);
  1877. end;
  1878. 16,17,18 :
  1879. begin
  1880. getvalsym(c-16);
  1881. if (currval<-256) or (currval>255) then
  1882. Message2(asmw_e_value_exceeds_bounds,'byte',tostr(currval));
  1883. if assigned(currsym) then
  1884. objdata.writereloc(currval,1,currsym,currabsreloc)
  1885. else
  1886. objdata.writebytes(currval,1);
  1887. end;
  1888. 20,21,22 :
  1889. begin
  1890. getvalsym(c-20);
  1891. if (currval<0) or (currval>255) then
  1892. Message2(asmw_e_value_exceeds_bounds,'unsigned byte',tostr(currval));
  1893. if assigned(currsym) then
  1894. objdata.writereloc(currval,1,currsym,currabsreloc)
  1895. else
  1896. objdata.writebytes(currval,1);
  1897. end;
  1898. 24,25,26 :
  1899. begin
  1900. getvalsym(c-24);
  1901. if (currval<-65536) or (currval>65535) then
  1902. Message2(asmw_e_value_exceeds_bounds,'word',tostr(currval));
  1903. if assigned(currsym) then
  1904. objdata.writereloc(currval,2,currsym,currabsreloc)
  1905. else
  1906. objdata.writebytes(currval,2);
  1907. end;
  1908. 28,29,30 :
  1909. begin
  1910. getvalsym(c-28);
  1911. if opsize=S_Q then
  1912. begin
  1913. if assigned(currsym) then
  1914. objdata.writereloc(currval,8,currsym,currabsreloc)
  1915. else
  1916. objdata.writebytes(currval,8);
  1917. end
  1918. else
  1919. begin
  1920. if assigned(currsym) then
  1921. objdata.writereloc(currval,4,currsym,currabsreloc32)
  1922. else
  1923. objdata.writebytes(currval,4);
  1924. end
  1925. end;
  1926. 32,33,34 :
  1927. begin
  1928. getvalsym(c-32);
  1929. if assigned(currsym) then
  1930. objdata.writereloc(currval,4,currsym,currabsreloc32)
  1931. else
  1932. objdata.writebytes(currval,4);
  1933. end;
  1934. 40,41,42 :
  1935. begin
  1936. getvalsym(c-40);
  1937. data:=currval-insend;
  1938. if assigned(currsym) then
  1939. inc(data,currsym.address);
  1940. if (data>127) or (data<-128) then
  1941. Message1(asmw_e_short_jmp_out_of_range,tostr(data));
  1942. objdata.writebytes(data,1);
  1943. end;
  1944. 52,53,54 :
  1945. begin
  1946. getvalsym(c-52);
  1947. if assigned(currsym) then
  1948. objdata.writereloc(currval,4,currsym,currrelreloc)
  1949. else
  1950. objdata.writereloc(currval-insend,4,nil,currabsreloc32)
  1951. end;
  1952. 56,57,58 :
  1953. begin
  1954. getvalsym(c-56);
  1955. if assigned(currsym) then
  1956. objdata.writereloc(currval,4,currsym,currrelreloc)
  1957. else
  1958. objdata.writereloc(currval-insend,4,nil,currabsreloc32)
  1959. end;
  1960. 192,193,194 :
  1961. begin
  1962. if NeedAddrPrefix(c-192) then
  1963. begin
  1964. bytes[0]:=$67;
  1965. objdata.writebytes(bytes,1);
  1966. end;
  1967. end;
  1968. 200 :
  1969. begin
  1970. bytes[0]:=$67;
  1971. objdata.writebytes(bytes,1);
  1972. end;
  1973. 208,209,210 :
  1974. begin
  1975. case oper[c-208]^.ot and OT_SIZE_MASK of
  1976. OT_BITS16 :
  1977. begin
  1978. bytes[0]:=$66;
  1979. objdata.writebytes(bytes,1);
  1980. end;
  1981. {$ifndef x86_64}
  1982. OT_BITS64 :
  1983. Message(asmw_e_64bit_not_supported);
  1984. {$endif x86_64}
  1985. end;
  1986. {$ifdef x86_64}
  1987. maybewriterex;
  1988. {$endif x86_64}
  1989. end;
  1990. 211,
  1991. 213 :
  1992. begin
  1993. {$ifdef x86_64}
  1994. maybewriterex;
  1995. {$endif x86_64}
  1996. end;
  1997. 212 :
  1998. begin
  1999. bytes[0]:=$66;
  2000. objdata.writebytes(bytes,1);
  2001. {$ifdef x86_64}
  2002. maybewriterex;
  2003. {$endif x86_64}
  2004. end;
  2005. 214 :
  2006. begin
  2007. {$ifdef x86_64}
  2008. maybewriterex;
  2009. {$else x86_64}
  2010. Message(asmw_e_64bit_not_supported);
  2011. {$endif x86_64}
  2012. end;
  2013. 219 :
  2014. begin
  2015. bytes[0]:=$f3;
  2016. objdata.writebytes(bytes,1);
  2017. {$ifdef x86_64}
  2018. maybewriterex;
  2019. {$endif x86_64}
  2020. end;
  2021. 220 :
  2022. begin
  2023. bytes[0]:=$f2;
  2024. objdata.writebytes(bytes,1);
  2025. end;
  2026. 221:
  2027. ;
  2028. 201,
  2029. 202,
  2030. 215,
  2031. 217,218 :
  2032. begin
  2033. { these are dissambler hints or 32 bit prefixes which
  2034. are not needed
  2035. It's usefull to write rex :) (FK) }
  2036. {$ifdef x86_64}
  2037. maybewriterex;
  2038. {$endif x86_64}
  2039. end;
  2040. 31,
  2041. 48,49,50 :
  2042. begin
  2043. InternalError(777006);
  2044. end
  2045. else
  2046. begin
  2047. { rex should be written at this point }
  2048. {$ifdef x86_64}
  2049. if (rex<>0) and not(rexwritten) then
  2050. internalerror(200603191);
  2051. {$endif x86_64}
  2052. if (c>=64) and (c<=191) then
  2053. begin
  2054. if (c<127) then
  2055. begin
  2056. if (oper[c and 7]^.typ=top_reg) then
  2057. rfield:=regval(oper[c and 7]^.reg)
  2058. else
  2059. rfield:=regval(oper[c and 7]^.ref^.base);
  2060. end
  2061. else
  2062. rfield:=c and 7;
  2063. opidx:=(c shr 3) and 7;
  2064. if not process_ea(oper[opidx]^,ea_data,rfield) then
  2065. Message(asmw_e_invalid_effective_address);
  2066. pb:=@bytes[0];
  2067. pb^:=ea_data.modrm;
  2068. inc(pb);
  2069. if ea_data.sib_present then
  2070. begin
  2071. pb^:=ea_data.sib;
  2072. inc(pb);
  2073. end;
  2074. s:=pb-@bytes[0];
  2075. objdata.writebytes(bytes,s);
  2076. case ea_data.bytes of
  2077. 0 : ;
  2078. 1 :
  2079. begin
  2080. if (oper[opidx]^.ot and OT_MEMORY)=OT_MEMORY then
  2081. begin
  2082. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2083. {$ifdef x86_64}
  2084. if oper[opidx]^.ref^.refaddr=addr_pic then
  2085. currabsreloc:=RELOC_GOTPCREL
  2086. else
  2087. {$endif x86_64}
  2088. currabsreloc:=RELOC_ABSOLUTE;
  2089. objdata.writereloc(oper[opidx]^.ref^.offset,1,currsym,currabsreloc);
  2090. end
  2091. else
  2092. begin
  2093. bytes[0]:=oper[opidx]^.ref^.offset;
  2094. objdata.writebytes(bytes,1);
  2095. end;
  2096. inc(s);
  2097. end;
  2098. 2,4 :
  2099. begin
  2100. currsym:=objdata.symbolref(oper[opidx]^.ref^.symbol);
  2101. {$ifdef x86_64}
  2102. if oper[opidx]^.ref^.refaddr=addr_pic then
  2103. currabsreloc:=RELOC_GOTPCREL
  2104. else
  2105. {$endif x86_64}
  2106. currabsreloc:=RELOC_ABSOLUTE32;
  2107. objdata.writereloc(oper[opidx]^.ref^.offset,ea_data.bytes,currsym,currabsreloc);
  2108. inc(s,ea_data.bytes);
  2109. end;
  2110. end;
  2111. end
  2112. else
  2113. InternalError(777007);
  2114. end;
  2115. end;
  2116. until false;
  2117. end;
  2118. function taicpu.is_same_reg_move(regtype: Tregistertype):boolean;
  2119. begin
  2120. result:=(((opcode=A_MOV) or (opcode=A_XCHG)) and
  2121. (regtype = R_INTREGISTER) and
  2122. (ops=2) and
  2123. (oper[0]^.typ=top_reg) and
  2124. (oper[1]^.typ=top_reg) and
  2125. (oper[0]^.reg=oper[1]^.reg)
  2126. ) or
  2127. (((opcode=A_MOVSS) or (opcode=A_MOVSD) or (opcode=A_MOVQ) or
  2128. (opcode=A_MOVAPS) or (OPCODE=A_MOVAPD)) and
  2129. (regtype = R_MMREGISTER) and
  2130. (ops=2) and
  2131. (oper[0]^.typ=top_reg) and
  2132. (oper[1]^.typ=top_reg) and
  2133. (oper[0]^.reg=oper[1]^.reg)
  2134. );
  2135. end;
  2136. procedure build_spilling_operation_type_table;
  2137. var
  2138. opcode : tasmop;
  2139. i : integer;
  2140. begin
  2141. new(operation_type_table);
  2142. fillchar(operation_type_table^,sizeof(toperation_type_table),byte(operand_read));
  2143. for opcode:=low(tasmop) to high(tasmop) do
  2144. begin
  2145. for i:=1 to MaxInsChanges do
  2146. begin
  2147. case InsProp[opcode].Ch[i] of
  2148. Ch_Rop1 :
  2149. operation_type_table^[opcode,0]:=operand_read;
  2150. Ch_Wop1 :
  2151. operation_type_table^[opcode,0]:=operand_write;
  2152. Ch_RWop1,
  2153. Ch_Mop1 :
  2154. operation_type_table^[opcode,0]:=operand_readwrite;
  2155. Ch_Rop2 :
  2156. operation_type_table^[opcode,1]:=operand_read;
  2157. Ch_Wop2 :
  2158. operation_type_table^[opcode,1]:=operand_write;
  2159. Ch_RWop2,
  2160. Ch_Mop2 :
  2161. operation_type_table^[opcode,1]:=operand_readwrite;
  2162. Ch_Rop3 :
  2163. operation_type_table^[opcode,2]:=operand_read;
  2164. Ch_Wop3 :
  2165. operation_type_table^[opcode,2]:=operand_write;
  2166. Ch_RWop3,
  2167. Ch_Mop3 :
  2168. operation_type_table^[opcode,2]:=operand_readwrite;
  2169. end;
  2170. end;
  2171. end;
  2172. { Special cases that can't be decoded from the InsChanges flags }
  2173. operation_type_table^[A_IMUL,1]:=operand_readwrite;
  2174. end;
  2175. function taicpu.spilling_get_operation_type(opnr: longint): topertype;
  2176. begin
  2177. { the information in the instruction table is made for the string copy
  2178. operation MOVSD so hack here (FK)
  2179. }
  2180. if (opcode=A_MOVSD) and (ops=2) then
  2181. begin
  2182. case opnr of
  2183. 0:
  2184. result:=operand_read;
  2185. 1:
  2186. result:=operand_write;
  2187. else
  2188. internalerror(200506055);
  2189. end
  2190. end
  2191. else
  2192. result:=operation_type_table^[opcode,opnr];
  2193. end;
  2194. function spilling_create_load(const ref:treference;r:tregister): tai;
  2195. begin
  2196. case getregtype(r) of
  2197. R_INTREGISTER :
  2198. result:=taicpu.op_ref_reg(A_MOV,reg2opsize(r),ref,r);
  2199. R_MMREGISTER :
  2200. case getsubreg(r) of
  2201. R_SUBMMD:
  2202. result:=taicpu.op_ref_reg(A_MOVSD,reg2opsize(r),ref,r);
  2203. R_SUBMMS:
  2204. result:=taicpu.op_ref_reg(A_MOVSS,reg2opsize(r),ref,r);
  2205. R_SUBMMWHOLE:
  2206. result:=taicpu.op_ref_reg(A_MOVQ,S_NO,ref,r);
  2207. else
  2208. internalerror(200506043);
  2209. end;
  2210. else
  2211. internalerror(200401041);
  2212. end;
  2213. end;
  2214. function spilling_create_store(r:tregister; const ref:treference): tai;
  2215. begin
  2216. case getregtype(r) of
  2217. R_INTREGISTER :
  2218. result:=taicpu.op_reg_ref(A_MOV,reg2opsize(r),r,ref);
  2219. R_MMREGISTER :
  2220. case getsubreg(r) of
  2221. R_SUBMMD:
  2222. result:=taicpu.op_reg_ref(A_MOVSD,reg2opsize(r),r,ref);
  2223. R_SUBMMS:
  2224. result:=taicpu.op_reg_ref(A_MOVSS,reg2opsize(r),r,ref);
  2225. R_SUBMMWHOLE:
  2226. result:=taicpu.op_reg_ref(A_MOVQ,S_NO,r,ref);
  2227. else
  2228. internalerror(200506042);
  2229. end;
  2230. else
  2231. internalerror(200401041);
  2232. end;
  2233. end;
  2234. {*****************************************************************************
  2235. Instruction table
  2236. *****************************************************************************}
  2237. procedure BuildInsTabCache;
  2238. var
  2239. i : longint;
  2240. begin
  2241. new(instabcache);
  2242. FillChar(instabcache^,sizeof(tinstabcache),$ff);
  2243. i:=0;
  2244. while (i<InsTabEntries) do
  2245. begin
  2246. if InsTabCache^[InsTab[i].OPcode]=-1 then
  2247. InsTabCache^[InsTab[i].OPcode]:=i;
  2248. inc(i);
  2249. end;
  2250. end;
  2251. procedure InitAsm;
  2252. begin
  2253. build_spilling_operation_type_table;
  2254. if not assigned(instabcache) then
  2255. BuildInsTabCache;
  2256. end;
  2257. procedure DoneAsm;
  2258. begin
  2259. if assigned(operation_type_table) then
  2260. begin
  2261. dispose(operation_type_table);
  2262. operation_type_table:=nil;
  2263. end;
  2264. if assigned(instabcache) then
  2265. begin
  2266. dispose(instabcache);
  2267. instabcache:=nil;
  2268. end;
  2269. end;
  2270. begin
  2271. cai_align:=tai_align;
  2272. cai_cpu:=taicpu;
  2273. end.