cpubase.pas 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. cutils,cclasses,
  29. globtype,globals,
  30. cgbase
  31. ;
  32. {*****************************************************************************
  33. Assembler Opcodes
  34. *****************************************************************************}
  35. type
  36. {$if defined(x86_64)}
  37. TAsmOp={$i x8664op.inc}
  38. {$elseif defined(i386)}
  39. TAsmOp={$i i386op.inc}
  40. {$elseif defined(i8086)}
  41. TAsmOp={$i i8086op.inc}
  42. {$endif}
  43. { This should define the array of instructions as string }
  44. op2strtable=array[tasmop] of string[16];
  45. const
  46. { First value of opcode enumeration }
  47. firstop = low(tasmop);
  48. { Last value of opcode enumeration }
  49. lastop = high(tasmop);
  50. {*****************************************************************************
  51. Registers
  52. *****************************************************************************}
  53. const
  54. { Integer Super registers }
  55. RS_NO = $ffffffff;
  56. RS_RAX = $00; {EAX}
  57. RS_RCX = $01; {ECX}
  58. RS_RDX = $02; {EDX}
  59. RS_RBX = $03; {EBX}
  60. RS_RSI = $04; {ESI}
  61. RS_RDI = $05; {EDI}
  62. RS_RBP = $06; {EBP}
  63. RS_RSP = $07; {ESP}
  64. RS_R8 = $08; {R8}
  65. RS_R9 = $09; {R9}
  66. RS_R10 = $0a; {R10}
  67. RS_R11 = $0b; {R11}
  68. RS_R12 = $0c; {R12}
  69. RS_R13 = $0d; {R13}
  70. RS_R14 = $0e; {R14}
  71. RS_R15 = $0f; {R15}
  72. { create aliases to allow code sharing between x86-64 and i386 }
  73. RS_EAX = RS_RAX;
  74. RS_EBX = RS_RBX;
  75. RS_ECX = RS_RCX;
  76. RS_EDX = RS_RDX;
  77. RS_ESI = RS_RSI;
  78. RS_EDI = RS_RDI;
  79. RS_EBP = RS_RBP;
  80. RS_ESP = RS_RSP;
  81. { create aliases to allow code sharing between i386 and i8086 }
  82. RS_AX = RS_RAX;
  83. RS_BX = RS_RBX;
  84. RS_CX = RS_RCX;
  85. RS_DX = RS_RDX;
  86. RS_SI = RS_RSI;
  87. RS_DI = RS_RDI;
  88. RS_BP = RS_RBP;
  89. RS_SP = RS_RSP;
  90. { Number of first imaginary register }
  91. first_int_imreg = $10;
  92. { Float Super registers }
  93. RS_ST0 = $00;
  94. RS_ST1 = $01;
  95. RS_ST2 = $02;
  96. RS_ST3 = $03;
  97. RS_ST4 = $04;
  98. RS_ST5 = $05;
  99. RS_ST6 = $06;
  100. RS_ST7 = $07;
  101. { Number of first imaginary register }
  102. first_fpu_imreg = $08;
  103. { MM Super registers }
  104. RS_XMM0 = $00;
  105. RS_XMM1 = $01;
  106. RS_XMM2 = $02;
  107. RS_XMM3 = $03;
  108. RS_XMM4 = $04;
  109. RS_XMM5 = $05;
  110. RS_XMM6 = $06;
  111. RS_XMM7 = $07;
  112. RS_XMM8 = $08;
  113. RS_XMM9 = $09;
  114. RS_XMM10 = $0a;
  115. RS_XMM11 = $0b;
  116. RS_XMM12 = $0c;
  117. RS_XMM13 = $0d;
  118. RS_XMM14 = $0e;
  119. RS_XMM15 = $0f;
  120. RS_FLAGS = $07;
  121. { Number of first imaginary register }
  122. {$ifdef x86_64}
  123. first_mm_imreg = $10;
  124. {$else x86_64}
  125. first_mm_imreg = $08;
  126. {$endif x86_64}
  127. { The subregister that specifies the entire register and an address }
  128. {$if defined(x86_64)}
  129. { Hammer }
  130. R_SUBWHOLE = R_SUBQ;
  131. R_SUBADDR = R_SUBQ;
  132. {$elseif defined(i386)}
  133. { i386 }
  134. R_SUBWHOLE = R_SUBD;
  135. R_SUBADDR = R_SUBD;
  136. {$elseif defined(i8086)}
  137. { i8086 }
  138. R_SUBWHOLE = R_SUBW;
  139. R_SUBADDR = R_SUBW;
  140. {$endif}
  141. { Available Registers }
  142. {$if defined(x86_64)}
  143. {$i r8664con.inc}
  144. {$elseif defined(i386)}
  145. {$i r386con.inc}
  146. {$elseif defined(i8086)}
  147. {$i r8086con.inc}
  148. {$endif}
  149. type
  150. { Number of registers used for indexing in tables }
  151. {$if defined(x86_64)}
  152. tregisterindex=0..{$i r8664nor.inc}-1;
  153. {$elseif defined(i386)}
  154. tregisterindex=0..{$i r386nor.inc}-1;
  155. {$elseif defined(i8086)}
  156. tregisterindex=0..{$i r8086nor.inc}-1;
  157. {$endif}
  158. const
  159. { TODO: Calculate bsstart}
  160. regnumber_count_bsstart = 64;
  161. regnumber_table : array[tregisterindex] of tregister = (
  162. {$if defined(x86_64)}
  163. {$i r8664num.inc}
  164. {$elseif defined(i386)}
  165. {$i r386num.inc}
  166. {$elseif defined(i8086)}
  167. {$i r8086num.inc}
  168. {$endif}
  169. );
  170. regstabs_table : array[tregisterindex] of shortint = (
  171. {$if defined(x86_64)}
  172. {$i r8664stab.inc}
  173. {$elseif defined(i386)}
  174. {$i r386stab.inc}
  175. {$elseif defined(i8086)}
  176. {$i r8086stab.inc}
  177. {$endif}
  178. );
  179. regdwarf_table : array[tregisterindex] of shortint = (
  180. {$if defined(x86_64)}
  181. {$i r8664dwrf.inc}
  182. {$elseif defined(i386)}
  183. {$i r386dwrf.inc}
  184. {$elseif defined(i8086)}
  185. {$i r8086dwrf.inc}
  186. {$endif}
  187. );
  188. RS_DEFAULTFLAGS = RS_FLAGS;
  189. NR_DEFAULTFLAGS = NR_FLAGS;
  190. type
  191. totherregisterset = set of tregisterindex;
  192. {*****************************************************************************
  193. Conditions
  194. *****************************************************************************}
  195. type
  196. TAsmCond=(C_None,
  197. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  198. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  199. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  200. );
  201. const
  202. cond2str:array[TAsmCond] of string[3]=('',
  203. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  204. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  205. 'ns','nz','o','p','pe','po','s','z'
  206. );
  207. {*****************************************************************************
  208. Flags
  209. *****************************************************************************}
  210. type
  211. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  212. F_A,F_AE,F_B,F_BE,
  213. F_S,F_NS,F_O,F_NO,
  214. { For IEEE-compliant floating-point compares,
  215. same as normal counterparts but additionally check PF }
  216. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  217. const
  218. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  219. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  220. F_E,F_NE,F_A,F_AE,F_B,F_BE
  221. );
  222. {*****************************************************************************
  223. Constants
  224. *****************************************************************************}
  225. const
  226. { declare aliases }
  227. LOC_SSEREGISTER = LOC_MMREGISTER;
  228. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  229. max_operands = 4;
  230. maxfpuregs = 8;
  231. {*****************************************************************************
  232. CPU Dependent Constants
  233. *****************************************************************************}
  234. {$i cpubase.inc}
  235. {*****************************************************************************
  236. Helpers
  237. *****************************************************************************}
  238. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  239. function reg2opsize(r:Tregister):topsize;
  240. function reg_cgsize(const reg: tregister): tcgsize;
  241. function is_calljmp(o:tasmop):boolean;
  242. procedure inverse_flags(var f: TResFlags);
  243. function flags_to_cond(const f: TResFlags) : TAsmCond;
  244. function is_segment_reg(r:tregister):boolean;
  245. function findreg_by_number(r:Tregister):tregisterindex;
  246. function std_regnum_search(const s:string):Tregister;
  247. function std_regname(r:Tregister):string;
  248. function dwarf_reg(r:tregister):shortint;
  249. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  250. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  251. { checks whether two segment registers are normally equal in the current memory model }
  252. function segment_regs_equal(r1,r2:tregister):boolean;
  253. {$ifdef i8086}
  254. { returns the next virtual register }
  255. function GetNextReg(const r : TRegister) : TRegister;
  256. { return whether we need to add an extra FWAIT instruction before the given
  257. instruction, when we're targeting the i8087. This includes almost all x87
  258. instructions, but certain ones, which always have or have not a built in
  259. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  260. function requires_fwait_on_8087(op: TAsmOp): boolean;
  261. {$endif i8086}
  262. implementation
  263. uses
  264. rgbase,verbose;
  265. const
  266. {$if defined(x86_64)}
  267. std_regname_table : TRegNameTable = (
  268. {$i r8664std.inc}
  269. );
  270. regnumber_index : array[tregisterindex] of tregisterindex = (
  271. {$i r8664rni.inc}
  272. );
  273. std_regname_index : array[tregisterindex] of tregisterindex = (
  274. {$i r8664sri.inc}
  275. );
  276. {$elseif defined(i386)}
  277. std_regname_table : TRegNameTable = (
  278. {$i r386std.inc}
  279. );
  280. regnumber_index : array[tregisterindex] of tregisterindex = (
  281. {$i r386rni.inc}
  282. );
  283. std_regname_index : array[tregisterindex] of tregisterindex = (
  284. {$i r386sri.inc}
  285. );
  286. {$elseif defined(i8086)}
  287. std_regname_table : TRegNameTable = (
  288. {$i r8086std.inc}
  289. );
  290. regnumber_index : array[tregisterindex] of tregisterindex = (
  291. {$i r8086rni.inc}
  292. );
  293. std_regname_index : array[tregisterindex] of tregisterindex = (
  294. {$i r8086sri.inc}
  295. );
  296. {$endif}
  297. {*****************************************************************************
  298. Helpers
  299. *****************************************************************************}
  300. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  301. begin
  302. case s of
  303. OS_8,OS_S8:
  304. cgsize2subreg:=R_SUBL;
  305. OS_16,OS_S16:
  306. cgsize2subreg:=R_SUBW;
  307. OS_32,OS_S32:
  308. cgsize2subreg:=R_SUBD;
  309. OS_64,OS_S64:
  310. cgsize2subreg:=R_SUBQ;
  311. OS_M64:
  312. cgsize2subreg:=R_SUBNONE;
  313. OS_F32,OS_F64,OS_C64:
  314. case regtype of
  315. R_FPUREGISTER:
  316. cgsize2subreg:=R_SUBWHOLE;
  317. R_MMREGISTER:
  318. case s of
  319. OS_F32:
  320. cgsize2subreg:=R_SUBMMS;
  321. OS_F64:
  322. cgsize2subreg:=R_SUBMMD;
  323. else
  324. internalerror(2009071901);
  325. end;
  326. else
  327. internalerror(2009071902);
  328. end;
  329. OS_M128,OS_MS128:
  330. cgsize2subreg:=R_SUBMMX;
  331. OS_M256,OS_MS256:
  332. cgsize2subreg:=R_SUBMMY;
  333. else
  334. internalerror(200301231);
  335. end;
  336. end;
  337. function reg_cgsize(const reg: tregister): tcgsize;
  338. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  339. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256);
  340. begin
  341. case getregtype(reg) of
  342. R_INTREGISTER :
  343. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  344. R_FPUREGISTER :
  345. reg_cgsize:=OS_F80;
  346. R_MMXREGISTER:
  347. reg_cgsize:=OS_M64;
  348. R_MMREGISTER:
  349. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  350. R_SPECIALREGISTER :
  351. case reg of
  352. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  353. reg_cgsize:=OS_16;
  354. {$ifdef x86_64}
  355. NR_DR0..NR_TR7:
  356. reg_cgsize:=OS_64;
  357. {$endif x86_64}
  358. else
  359. reg_cgsize:=OS_32
  360. end
  361. else
  362. internalerror(2003031801);
  363. end;
  364. end;
  365. function reg2opsize(r:Tregister):topsize;
  366. const
  367. subreg2opsize : array[tsubregister] of topsize =
  368. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  369. begin
  370. reg2opsize:=S_L;
  371. case getregtype(r) of
  372. R_INTREGISTER :
  373. reg2opsize:=subreg2opsize[getsubreg(r)];
  374. R_FPUREGISTER :
  375. reg2opsize:=S_FL;
  376. R_MMXREGISTER,
  377. R_MMREGISTER :
  378. reg2opsize:=S_MD;
  379. R_SPECIALREGISTER :
  380. begin
  381. case r of
  382. NR_CS,NR_DS,NR_ES,
  383. NR_SS,NR_FS,NR_GS :
  384. reg2opsize:=S_W;
  385. end;
  386. end;
  387. else
  388. internalerror(200303181);
  389. end;
  390. end;
  391. function is_calljmp(o:tasmop):boolean;
  392. begin
  393. case o of
  394. A_CALL,
  395. {$if defined(i386) or defined(i8086)}
  396. A_JCXZ,
  397. {$endif defined(i386) or defined(i8086)}
  398. A_JECXZ,
  399. {$ifdef x86_64}
  400. A_JRCXZ,
  401. {$endif x86_64}
  402. A_JMP,
  403. A_LOOP,
  404. A_LOOPE,
  405. A_LOOPNE,
  406. A_LOOPNZ,
  407. A_LOOPZ,
  408. A_LCALL,
  409. A_LJMP,
  410. A_Jcc :
  411. is_calljmp:=true;
  412. else
  413. is_calljmp:=false;
  414. end;
  415. end;
  416. procedure inverse_flags(var f: TResFlags);
  417. const
  418. inv_flags: array[TResFlags] of TResFlags =
  419. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  420. F_BE,F_B,F_AE,F_A,
  421. F_NS,F_S,F_NO,F_O,
  422. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  423. begin
  424. f:=inv_flags[f];
  425. end;
  426. function flags_to_cond(const f: TResFlags) : TAsmCond;
  427. const
  428. flags_2_cond : array[TResFlags] of TAsmCond =
  429. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  430. C_None,C_None,C_None,C_None,C_None,C_None);
  431. begin
  432. result := flags_2_cond[f];
  433. if (result=C_None) then
  434. InternalError(2014041301);
  435. end;
  436. function is_segment_reg(r:tregister):boolean;
  437. begin
  438. result:=false;
  439. case r of
  440. NR_CS,NR_DS,NR_ES,
  441. NR_SS,NR_FS,NR_GS :
  442. result:=true;
  443. end;
  444. end;
  445. function findreg_by_number(r:Tregister):tregisterindex;
  446. var
  447. hr : tregister;
  448. begin
  449. { for the name the sub reg doesn't matter }
  450. hr:=r;
  451. if (getregtype(hr)=R_MMREGISTER) and
  452. (getsubreg(hr)<>R_SUBMMY) then
  453. setsubreg(hr,R_SUBMMX);
  454. result:=findreg_by_number_table(hr,regnumber_index);
  455. end;
  456. function std_regnum_search(const s:string):Tregister;
  457. begin
  458. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  459. end;
  460. function std_regname(r:Tregister):string;
  461. var
  462. p : tregisterindex;
  463. begin
  464. if getregtype(r) in [R_MMREGISTER,R_MMXREGISTER] then
  465. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  466. p:=findreg_by_number(r);
  467. if p<>0 then
  468. result:=std_regname_table[p]
  469. else
  470. result:=generic_regname(r);
  471. end;
  472. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  473. const
  474. inverse: array[TAsmCond] of TAsmCond=(C_None,
  475. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  476. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  477. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  478. );
  479. begin
  480. result := inverse[c];
  481. end;
  482. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  483. begin
  484. result := c1 = c2;
  485. end;
  486. function dwarf_reg(r:tregister):shortint;
  487. begin
  488. result:=regdwarf_table[findreg_by_number(r)];
  489. if result=-1 then
  490. internalerror(200603251);
  491. end;
  492. function segment_regs_equal(r1, r2: tregister): boolean;
  493. begin
  494. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  495. internalerror(2013062301);
  496. { every segment register is equal to itself }
  497. if r1=r2 then
  498. exit(true);
  499. {$if defined(i8086)}
  500. case current_settings.x86memorymodel of
  501. mm_tiny:
  502. begin
  503. { CS=DS=SS }
  504. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  505. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  506. exit(true);
  507. { the remaining are distinct from each other }
  508. exit(false);
  509. end;
  510. mm_small,mm_medium:
  511. begin
  512. { DS=SS }
  513. if ((r1=NR_DS) or (r1=NR_SS)) and
  514. ((r2=NR_DS) or (r2=NR_SS)) then
  515. exit(true);
  516. { the remaining are distinct from each other }
  517. exit(false);
  518. end;
  519. mm_compact,mm_large,mm_huge:
  520. { all segment registers are different in these models }
  521. exit(false);
  522. else
  523. internalerror(2013062302);
  524. end;
  525. {$elseif defined(i386) or defined(x86_64)}
  526. { DS=SS=ES }
  527. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  528. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  529. exit(true);
  530. { the remaining are distinct from each other }
  531. exit(false);
  532. {$endif}
  533. end;
  534. {$ifdef i8086}
  535. function GetNextReg(const r: TRegister): TRegister;
  536. begin
  537. if getsupreg(r)<first_int_imreg then
  538. internalerror(2013051401);
  539. result:=TRegister(longint(r)+1);
  540. end;
  541. function requires_fwait_on_8087(op: TAsmOp): boolean;
  542. begin
  543. case op of
  544. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  545. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  546. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  547. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  548. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  549. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  550. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  551. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  552. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  553. result:=true;
  554. else
  555. result:=false;
  556. end;
  557. end;
  558. {$endif i8086}
  559. end.