cpubase.pas 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. cutils,cclasses,
  29. globtype,globals,
  30. cgbase
  31. ;
  32. {*****************************************************************************
  33. Assembler Opcodes
  34. *****************************************************************************}
  35. type
  36. {$if defined(x86_64)}
  37. TAsmOp={$i x8664op.inc}
  38. {$elseif defined(i386)}
  39. TAsmOp={$i i386op.inc}
  40. {$elseif defined(i8086)}
  41. TAsmOp={$i i8086op.inc}
  42. {$endif}
  43. { This should define the array of instructions as string }
  44. op2strtable=array[tasmop] of string[16];
  45. const
  46. { First value of opcode enumeration }
  47. firstop = low(tasmop);
  48. { Last value of opcode enumeration }
  49. lastop = high(tasmop);
  50. {*****************************************************************************
  51. Registers
  52. *****************************************************************************}
  53. const
  54. { Integer Super registers }
  55. RS_NO = $ffffffff;
  56. RS_RAX = $00; {EAX}
  57. RS_RCX = $01; {ECX}
  58. RS_RDX = $02; {EDX}
  59. RS_RBX = $03; {EBX}
  60. RS_RSI = $04; {ESI}
  61. RS_RDI = $05; {EDI}
  62. RS_RBP = $06; {EBP}
  63. RS_RSP = $07; {ESP}
  64. RS_R8 = $08; {R8}
  65. RS_R9 = $09; {R9}
  66. RS_R10 = $0a; {R10}
  67. RS_R11 = $0b; {R11}
  68. RS_R12 = $0c; {R12}
  69. RS_R13 = $0d; {R13}
  70. RS_R14 = $0e; {R14}
  71. RS_R15 = $0f; {R15}
  72. { create aliases to allow code sharing between x86-64 and i386 }
  73. RS_EAX = RS_RAX;
  74. RS_ECX = RS_RCX;
  75. RS_EDX = RS_RDX;
  76. RS_EBX = RS_RBX;
  77. RS_ESI = RS_RSI;
  78. RS_EDI = RS_RDI;
  79. RS_EBP = RS_RBP;
  80. RS_ESP = RS_RSP;
  81. { create aliases to allow code sharing between i386 and i8086 }
  82. RS_AX = RS_RAX;
  83. RS_CX = RS_RCX;
  84. RS_DX = RS_RDX;
  85. RS_BX = RS_RBX;
  86. RS_SI = RS_RSI;
  87. RS_DI = RS_RDI;
  88. RS_BP = RS_RBP;
  89. RS_SP = RS_RSP;
  90. { 8-bit aliases }
  91. RS_AL = RS_RAX;
  92. RS_AH = RS_RAX;
  93. RS_CL = RS_RCX;
  94. RS_CH = RS_RCX;
  95. RS_DL = RS_RDX;
  96. RS_DH = RS_RDX;
  97. RS_BL = RS_RBX;
  98. RS_BH = RS_RBX;
  99. RS_SIL = RS_RSI;
  100. RS_DIL = RS_RDI;
  101. RS_BPL = RS_RBP;
  102. RS_SPL = RS_RSP;
  103. { Number of first imaginary register }
  104. first_int_imreg = $10;
  105. { Float Super registers }
  106. RS_ST0 = $00;
  107. RS_ST1 = $01;
  108. RS_ST2 = $02;
  109. RS_ST3 = $03;
  110. RS_ST4 = $04;
  111. RS_ST5 = $05;
  112. RS_ST6 = $06;
  113. RS_ST7 = $07;
  114. { Number of first imaginary register }
  115. first_fpu_imreg = $08;
  116. { MM Super registers }
  117. RS_XMM0 = $00;
  118. RS_XMM1 = $01;
  119. RS_XMM2 = $02;
  120. RS_XMM3 = $03;
  121. RS_XMM4 = $04;
  122. RS_XMM5 = $05;
  123. RS_XMM6 = $06;
  124. RS_XMM7 = $07;
  125. RS_XMM8 = $08;
  126. RS_XMM9 = $09;
  127. RS_XMM10 = $0a;
  128. RS_XMM11 = $0b;
  129. RS_XMM12 = $0c;
  130. RS_XMM13 = $0d;
  131. RS_XMM14 = $0e;
  132. RS_XMM15 = $0f;
  133. RS_FLAGS = $07;
  134. { Number of first imaginary register }
  135. {$ifdef x86_64}
  136. first_mm_imreg = $10;
  137. {$else x86_64}
  138. first_mm_imreg = $08;
  139. {$endif x86_64}
  140. { The subregister that specifies the entire register and an address }
  141. {$if defined(x86_64)}
  142. { Hammer }
  143. R_SUBWHOLE = R_SUBQ;
  144. R_SUBADDR = R_SUBQ;
  145. {$elseif defined(i386)}
  146. { i386 }
  147. R_SUBWHOLE = R_SUBD;
  148. R_SUBADDR = R_SUBD;
  149. {$elseif defined(i8086)}
  150. { i8086 }
  151. R_SUBWHOLE = R_SUBW;
  152. R_SUBADDR = R_SUBW;
  153. {$endif}
  154. { Available Registers }
  155. {$if defined(x86_64)}
  156. {$i r8664con.inc}
  157. {$elseif defined(i386)}
  158. {$i r386con.inc}
  159. {$elseif defined(i8086)}
  160. {$i r8086con.inc}
  161. {$endif}
  162. type
  163. { Number of registers used for indexing in tables }
  164. {$if defined(x86_64)}
  165. tregisterindex=0..{$i r8664nor.inc}-1;
  166. {$elseif defined(i386)}
  167. tregisterindex=0..{$i r386nor.inc}-1;
  168. {$elseif defined(i8086)}
  169. tregisterindex=0..{$i r8086nor.inc}-1;
  170. {$endif}
  171. const
  172. { TODO: Calculate bsstart}
  173. regnumber_count_bsstart = 64;
  174. regnumber_table : array[tregisterindex] of tregister = (
  175. {$if defined(x86_64)}
  176. {$i r8664num.inc}
  177. {$elseif defined(i386)}
  178. {$i r386num.inc}
  179. {$elseif defined(i8086)}
  180. {$i r8086num.inc}
  181. {$endif}
  182. );
  183. regstabs_table : array[tregisterindex] of shortint = (
  184. {$if defined(x86_64)}
  185. {$i r8664stab.inc}
  186. {$elseif defined(i386)}
  187. {$i r386stab.inc}
  188. {$elseif defined(i8086)}
  189. {$i r8086stab.inc}
  190. {$endif}
  191. );
  192. regdwarf_table : array[tregisterindex] of shortint = (
  193. {$if defined(x86_64)}
  194. {$i r8664dwrf.inc}
  195. {$elseif defined(i386)}
  196. {$i r386dwrf.inc}
  197. {$elseif defined(i8086)}
  198. {$i r8086dwrf.inc}
  199. {$endif}
  200. );
  201. RS_DEFAULTFLAGS = RS_FLAGS;
  202. NR_DEFAULTFLAGS = NR_FLAGS;
  203. type
  204. totherregisterset = set of tregisterindex;
  205. {*****************************************************************************
  206. Conditions
  207. *****************************************************************************}
  208. type
  209. TAsmCond=(C_None,
  210. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  211. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  212. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  213. );
  214. const
  215. cond2str:array[TAsmCond] of string[3]=('',
  216. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  217. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  218. 'ns','nz','o','p','pe','po','s','z'
  219. );
  220. {*****************************************************************************
  221. Flags
  222. *****************************************************************************}
  223. type
  224. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  225. F_A,F_AE,F_B,F_BE,
  226. F_S,F_NS,F_O,F_NO,
  227. { For IEEE-compliant floating-point compares,
  228. same as normal counterparts but additionally check PF }
  229. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  230. const
  231. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  232. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  233. F_E,F_NE,F_A,F_AE,F_B,F_BE
  234. );
  235. {*****************************************************************************
  236. Constants
  237. *****************************************************************************}
  238. const
  239. { declare aliases }
  240. LOC_SSEREGISTER = LOC_MMREGISTER;
  241. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  242. max_operands = 4;
  243. maxfpuregs = 8;
  244. {*****************************************************************************
  245. CPU Dependent Constants
  246. *****************************************************************************}
  247. {$i cpubase.inc}
  248. {*****************************************************************************
  249. Helpers
  250. *****************************************************************************}
  251. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  252. function reg2opsize(r:Tregister):topsize;
  253. function reg_cgsize(const reg: tregister): tcgsize;
  254. function is_calljmp(o:tasmop):boolean;
  255. procedure inverse_flags(var f: TResFlags);
  256. function flags_to_cond(const f: TResFlags) : TAsmCond;
  257. function is_segment_reg(r:tregister):boolean;
  258. function findreg_by_number(r:Tregister):tregisterindex;
  259. function std_regnum_search(const s:string):Tregister;
  260. function std_regname(r:Tregister):string;
  261. function dwarf_reg(r:tregister):shortint;
  262. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  263. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  264. { checks whether two segment registers are normally equal in the current memory model }
  265. function segment_regs_equal(r1,r2:tregister):boolean;
  266. {$ifdef i8086}
  267. { returns the next virtual register }
  268. function GetNextReg(const r : TRegister) : TRegister;
  269. { return whether we need to add an extra FWAIT instruction before the given
  270. instruction, when we're targeting the i8087. This includes almost all x87
  271. instructions, but certain ones, which always have or have not a built in
  272. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  273. function requires_fwait_on_8087(op: TAsmOp): boolean;
  274. {$endif i8086}
  275. implementation
  276. uses
  277. rgbase,verbose;
  278. const
  279. {$if defined(x86_64)}
  280. std_regname_table : TRegNameTable = (
  281. {$i r8664std.inc}
  282. );
  283. regnumber_index : array[tregisterindex] of tregisterindex = (
  284. {$i r8664rni.inc}
  285. );
  286. std_regname_index : array[tregisterindex] of tregisterindex = (
  287. {$i r8664sri.inc}
  288. );
  289. {$elseif defined(i386)}
  290. std_regname_table : TRegNameTable = (
  291. {$i r386std.inc}
  292. );
  293. regnumber_index : array[tregisterindex] of tregisterindex = (
  294. {$i r386rni.inc}
  295. );
  296. std_regname_index : array[tregisterindex] of tregisterindex = (
  297. {$i r386sri.inc}
  298. );
  299. {$elseif defined(i8086)}
  300. std_regname_table : TRegNameTable = (
  301. {$i r8086std.inc}
  302. );
  303. regnumber_index : array[tregisterindex] of tregisterindex = (
  304. {$i r8086rni.inc}
  305. );
  306. std_regname_index : array[tregisterindex] of tregisterindex = (
  307. {$i r8086sri.inc}
  308. );
  309. {$endif}
  310. {*****************************************************************************
  311. Helpers
  312. *****************************************************************************}
  313. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  314. begin
  315. case s of
  316. OS_8,OS_S8:
  317. cgsize2subreg:=R_SUBL;
  318. OS_16,OS_S16:
  319. cgsize2subreg:=R_SUBW;
  320. OS_32,OS_S32:
  321. cgsize2subreg:=R_SUBD;
  322. OS_64,OS_S64:
  323. cgsize2subreg:=R_SUBQ;
  324. OS_M64:
  325. cgsize2subreg:=R_SUBNONE;
  326. OS_F32,OS_F64,OS_C64:
  327. case regtype of
  328. R_FPUREGISTER:
  329. cgsize2subreg:=R_SUBWHOLE;
  330. R_MMREGISTER:
  331. case s of
  332. OS_F32:
  333. cgsize2subreg:=R_SUBMMS;
  334. OS_F64:
  335. cgsize2subreg:=R_SUBMMD;
  336. else
  337. internalerror(2009071901);
  338. end;
  339. else
  340. internalerror(2009071902);
  341. end;
  342. OS_M128,OS_MS128:
  343. cgsize2subreg:=R_SUBMMX;
  344. OS_M256,OS_MS256:
  345. cgsize2subreg:=R_SUBMMY;
  346. else
  347. internalerror(200301231);
  348. end;
  349. end;
  350. function reg_cgsize(const reg: tregister): tcgsize;
  351. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  352. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256);
  353. begin
  354. case getregtype(reg) of
  355. R_INTREGISTER :
  356. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  357. R_FPUREGISTER :
  358. reg_cgsize:=OS_F80;
  359. R_MMXREGISTER:
  360. reg_cgsize:=OS_M64;
  361. R_MMREGISTER:
  362. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  363. R_SPECIALREGISTER :
  364. case reg of
  365. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  366. reg_cgsize:=OS_16;
  367. {$ifdef x86_64}
  368. NR_DR0..NR_TR7:
  369. reg_cgsize:=OS_64;
  370. {$endif x86_64}
  371. else
  372. reg_cgsize:=OS_32
  373. end
  374. else
  375. internalerror(2003031801);
  376. end;
  377. end;
  378. function reg2opsize(r:Tregister):topsize;
  379. const
  380. subreg2opsize : array[tsubregister] of topsize =
  381. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  382. begin
  383. reg2opsize:=S_L;
  384. case getregtype(r) of
  385. R_INTREGISTER :
  386. reg2opsize:=subreg2opsize[getsubreg(r)];
  387. R_FPUREGISTER :
  388. reg2opsize:=S_FL;
  389. R_MMXREGISTER,
  390. R_MMREGISTER :
  391. reg2opsize:=S_MD;
  392. R_SPECIALREGISTER :
  393. begin
  394. case r of
  395. NR_CS,NR_DS,NR_ES,
  396. NR_SS,NR_FS,NR_GS :
  397. reg2opsize:=S_W;
  398. end;
  399. end;
  400. else
  401. internalerror(200303181);
  402. end;
  403. end;
  404. function is_calljmp(o:tasmop):boolean;
  405. begin
  406. case o of
  407. A_CALL,
  408. {$if defined(i386) or defined(i8086)}
  409. A_JCXZ,
  410. {$endif defined(i386) or defined(i8086)}
  411. A_JECXZ,
  412. {$ifdef x86_64}
  413. A_JRCXZ,
  414. {$endif x86_64}
  415. A_JMP,
  416. A_LOOP,
  417. A_LOOPE,
  418. A_LOOPNE,
  419. A_LOOPNZ,
  420. A_LOOPZ,
  421. A_LCALL,
  422. A_LJMP,
  423. A_Jcc :
  424. is_calljmp:=true;
  425. else
  426. is_calljmp:=false;
  427. end;
  428. end;
  429. procedure inverse_flags(var f: TResFlags);
  430. const
  431. inv_flags: array[TResFlags] of TResFlags =
  432. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  433. F_BE,F_B,F_AE,F_A,
  434. F_NS,F_S,F_NO,F_O,
  435. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  436. begin
  437. f:=inv_flags[f];
  438. end;
  439. function flags_to_cond(const f: TResFlags) : TAsmCond;
  440. const
  441. flags_2_cond : array[TResFlags] of TAsmCond =
  442. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  443. C_None,C_None,C_None,C_None,C_None,C_None);
  444. begin
  445. result := flags_2_cond[f];
  446. if (result=C_None) then
  447. InternalError(2014041301);
  448. end;
  449. function is_segment_reg(r:tregister):boolean;
  450. begin
  451. result:=false;
  452. case r of
  453. NR_CS,NR_DS,NR_ES,
  454. NR_SS,NR_FS,NR_GS :
  455. result:=true;
  456. end;
  457. end;
  458. function findreg_by_number(r:Tregister):tregisterindex;
  459. var
  460. hr : tregister;
  461. begin
  462. { for the name the sub reg doesn't matter }
  463. hr:=r;
  464. if (getregtype(hr)=R_MMREGISTER) and
  465. (getsubreg(hr)<>R_SUBMMY) then
  466. setsubreg(hr,R_SUBMMX);
  467. result:=findreg_by_number_table(hr,regnumber_index);
  468. end;
  469. function std_regnum_search(const s:string):Tregister;
  470. begin
  471. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  472. end;
  473. function std_regname(r:Tregister):string;
  474. var
  475. p : tregisterindex;
  476. begin
  477. if getregtype(r) in [R_MMREGISTER,R_MMXREGISTER] then
  478. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  479. p:=findreg_by_number(r);
  480. if p<>0 then
  481. result:=std_regname_table[p]
  482. else
  483. result:=generic_regname(r);
  484. end;
  485. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  486. const
  487. inverse: array[TAsmCond] of TAsmCond=(C_None,
  488. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  489. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  490. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  491. );
  492. begin
  493. result := inverse[c];
  494. end;
  495. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  496. begin
  497. result := c1 = c2;
  498. end;
  499. function dwarf_reg(r:tregister):shortint;
  500. begin
  501. result:=regdwarf_table[findreg_by_number(r)];
  502. if result=-1 then
  503. internalerror(200603251);
  504. end;
  505. function segment_regs_equal(r1, r2: tregister): boolean;
  506. begin
  507. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  508. internalerror(2013062301);
  509. { every segment register is equal to itself }
  510. if r1=r2 then
  511. exit(true);
  512. {$if defined(i8086)}
  513. case current_settings.x86memorymodel of
  514. mm_tiny:
  515. begin
  516. { CS=DS=SS }
  517. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  518. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  519. exit(true);
  520. { the remaining are distinct from each other }
  521. exit(false);
  522. end;
  523. mm_small,mm_medium:
  524. begin
  525. { DS=SS }
  526. if ((r1=NR_DS) or (r1=NR_SS)) and
  527. ((r2=NR_DS) or (r2=NR_SS)) then
  528. exit(true);
  529. { the remaining are distinct from each other }
  530. exit(false);
  531. end;
  532. mm_compact,mm_large,mm_huge:
  533. { all segment registers are different in these models }
  534. exit(false);
  535. else
  536. internalerror(2013062302);
  537. end;
  538. {$elseif defined(i386) or defined(x86_64)}
  539. { DS=SS=ES }
  540. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  541. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  542. exit(true);
  543. { the remaining are distinct from each other }
  544. exit(false);
  545. {$endif}
  546. end;
  547. {$ifdef i8086}
  548. function GetNextReg(const r: TRegister): TRegister;
  549. begin
  550. if getsupreg(r)<first_int_imreg then
  551. internalerror(2013051401);
  552. result:=TRegister(longint(r)+1);
  553. end;
  554. function requires_fwait_on_8087(op: TAsmOp): boolean;
  555. begin
  556. case op of
  557. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  558. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  559. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  560. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  561. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  562. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  563. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  564. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  565. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  566. result:=true;
  567. else
  568. result:=false;
  569. end;
  570. end;
  571. {$endif i8086}
  572. end.