123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440 |
- Unit JIDctInt;
- {$Q+}
- { This file contains a slow-but-accurate integer implementation of the
- inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- must also perform dequantization of the input coefficients.
- A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- on each row (or vice versa, but it's more convenient to emit a row at
- a time). Direct algorithms are also available, but they are much more
- complex and seem not to be any faster when reduced to code.
- This implementation is based on an algorithm described in
- C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- The primary algorithm described there uses 11 multiplies and 29 adds.
- We use their alternate method with 12 multiplies and 32 adds.
- The advantage of this method is that no data path contains more than one
- multiplication; this allows a very simple and accurate implementation in
- scaled fixed-point arithmetic, with a minimal number of shifts. }
- { Original : jidctint.c ; Copyright (C) 1991-1998, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { The poop on this scaling stuff is as follows:
- Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- larger than the true IDCT outputs. The final outputs are therefore
- a factor of N larger than desired; since N=8 this can be cured by
- a simple right shift at the end of the algorithm. The advantage of
- this arrangement is that we save two multiplications per 1-D IDCT,
- because the y0 and y4 inputs need not be divided by sqrt(N).
- We have to do addition and subtraction of the integer inputs, which
- is no problem, and multiplication by fractional constants, which is
- a problem to do in integer arithmetic. We multiply all the constants
- by CONST_SCALE and convert them to integer constants (thus retaining
- CONST_BITS bits of precision in the constants). After doing a
- multiplication we have to divide the product by CONST_SCALE, with proper
- rounding, to produce the correct output. This division can be done
- cheaply as a right shift of CONST_BITS bits. We postpone shifting
- as long as possible so that partial sums can be added together with
- full fractional precision.
- The outputs of the first pass are scaled up by PASS1_BITS bits so that
- they are represented to better-than-integral precision. These outputs
- require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- with the recommended scaling. (To scale up 12-bit sample data further, an
- intermediate INT32 array would be needed.)
- To avoid overflow of the 32-bit intermediate results in pass 2, we must
- have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- shows that the values given below are the most effective. }
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- const
- CONST_BITS = 13;
- PASS1_BITS = 2;
- {$else}
- const
- CONST_BITS = 13;
- PASS1_BITS = 1; { lose a little precision to avoid overflow }
- {$endif}
- const
- CONST_SCALE = (INT32(1) shl CONST_BITS);
- const
- FIX_0_298631336 = INT32(Round(CONST_SCALE * 0.298631336)); {2446}
- FIX_0_390180644 = INT32(Round(CONST_SCALE * 0.390180644)); {3196}
- FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {4433}
- FIX_0_765366865 = INT32(Round(CONST_SCALE * 0.765366865)); {6270}
- FIX_0_899976223 = INT32(Round(CONST_SCALE * 0.899976223)); {7373}
- FIX_1_175875602 = INT32(Round(CONST_SCALE * 1.175875602)); {9633}
- FIX_1_501321110 = INT32(Round(CONST_SCALE * 1.501321110)); {12299}
- FIX_1_847759065 = INT32(Round(CONST_SCALE * 1.847759065)); {15137}
- FIX_1_961570560 = INT32(Round(CONST_SCALE * 1.961570560)); {16069}
- FIX_2_053119869 = INT32(Round(CONST_SCALE * 2.053119869)); {16819}
- FIX_2_562915447 = INT32(Round(CONST_SCALE * 2.562915447)); {20995}
- FIX_3_072711026 = INT32(Round(CONST_SCALE * 3.072711026)); {25172}
- { Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- For 8-bit samples with the recommended scaling, all the variable
- and constant values involved are no more than 16 bits wide, so a
- 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- For 12-bit samples, a full 32-bit multiplication will be needed. }
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- {$IFDEF BASM16}
- {$IFNDEF WIN32}
- {MULTIPLY16C16(var,const)}
- function Multiply(X, Y: Integer): integer; assembler;
- asm
- mov ax, X
- imul Y
- mov al, ah
- mov ah, dl
- end;
- {$ENDIF}
- {$ENDIF}
- function Multiply(X, Y: INT32): INT32;
- begin
- Multiply := INT32(X) * INT32(Y);
- end;
- {$else}
- {#define MULTIPLY(var,const) ((var) * (const))}
- function Multiply(X, Y: INT32): INT32;
- begin
- Multiply := INT32(X) * INT32(Y);
- end;
- {$endif}
- { Dequantize a coefficient by multiplying it by the multiplier-table
- entry; produce an int result. In this module, both inputs and result
- are 16 bits or less, so either int or short multiply will work. }
- function DEQUANTIZE(coef,quantval : int) : int;
- begin
- Dequantize := ( ISLOW_MULT_TYPE(coef) * quantval);
- end;
- { Descale and correctly round an INT32 value that's scaled by N bits.
- We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- the fudge factor is correct for either sign of X. }
- function DESCALE(x : INT32; n : int) : INT32;
- var
- shift_temp : INT32;
- begin
- {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
- shift_temp := x + (INT32(1) shl (n-1));
- if shift_temp < 0 then
- Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
- else
- Descale := (shift_temp shr n);
- {$else}
- Descale := (x + (INT32(1) shl (n-1)) shr n;
- {$endif}
- end;
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = coef_bits_field; { buffers data between passes }
- var
- tmp0, tmp1, tmp2, tmp3 : INT32;
- tmp10, tmp11, tmp12, tmp13 : INT32;
- z1, z2, z3, z4, z5 : INT32;
- inptr : JCOEFPTR;
- quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
- wsptr : PWorkspace;
- outptr : JSAMPROW;
- range_limit : JSAMPROW;
- ctr : int;
- workspace : TWorkspace;
- {SHIFT_TEMPS}
- var
- dcval : int;
- var
- dcval_ : JSAMPLE;
- begin
- { Each IDCT routine is responsible for range-limiting its results and
- converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- be quite far out of range if the input data is corrupt, so a bulletproof
- range-limiting step is required. We use a mask-and-table-lookup method
- to do the combined operations quickly. See the comments with
- prepare_range_limit_table (in jdmaster.c) for more info. }
- range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
- { Pass 1: process columns from input, store into work array. }
- { Note results are scaled up by sqrt(8) compared to a true IDCT; }
- { furthermore, we scale the results by 2**PASS1_BITS. }
- inptr := coef_block;
- quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
- wsptr := PWorkspace(@workspace);
- for ctr := pred(DCTSIZE) downto 0 do
- begin
- { Due to quantization, we will usually find that many of the input
- coefficients are zero, especially the AC terms. We can exploit this
- by short-circuiting the IDCT calculation for any column in which all
- the AC terms are zero. In that case each output is equal to the
- DC coefficient (with scale factor as needed).
- With typical images and quantization tables, half or more of the
- column DCT calculations can be simplified this way. }
- if ((inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*2]=0) and
- (inptr^[DCTSIZE*3]=0) and (inptr^[DCTSIZE*4]=0) and
- (inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*6]=0) and
- (inptr^[DCTSIZE*7]=0)) then
- begin
- { AC terms all zero }
- dcval := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]) shl PASS1_BITS;
- wsptr^[DCTSIZE*0] := dcval;
- wsptr^[DCTSIZE*1] := dcval;
- wsptr^[DCTSIZE*2] := dcval;
- wsptr^[DCTSIZE*3] := dcval;
- wsptr^[DCTSIZE*4] := dcval;
- wsptr^[DCTSIZE*5] := dcval;
- wsptr^[DCTSIZE*6] := dcval;
- wsptr^[DCTSIZE*7] := dcval;
- Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- Inc(ISLOW_MULT_TYPE_PTR(quantptr));
- Inc(int_ptr(wsptr));
- continue;
- end;
- { Even part: reverse the even part of the forward DCT. }
- { The rotator is sqrt(2)*c(-6). }
- z2 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
- z3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
- z1 := MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 := z1 + MULTIPLY(z3, - FIX_1_847759065);
- tmp3 := z1 + MULTIPLY(z2, FIX_0_765366865);
- z2 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
- z3 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
- tmp0 := (z2 + z3) shl CONST_BITS;
- tmp1 := (z2 - z3) shl CONST_BITS;
- tmp10 := tmp0 + tmp3;
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- { Odd part per figure 8; the matrix is unitary and hence its
- transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
- tmp0 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
- tmp1 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
- tmp2 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
- tmp3 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
- z1 := tmp0 + tmp3;
- z2 := tmp1 + tmp2;
- z3 := tmp0 + tmp2;
- z4 := tmp1 + tmp3;
- z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
- tmp0 := MULTIPLY(tmp0, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
- tmp1 := MULTIPLY(tmp1, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
- tmp2 := MULTIPLY(tmp2, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
- tmp3 := MULTIPLY(tmp3, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
- z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
- z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
- z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
- z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
- Inc(z3, z5);
- Inc(z4, z5);
- Inc(tmp0, z1 + z3);
- Inc(tmp1, z2 + z4);
- Inc(tmp2, z2 + z3);
- Inc(tmp3, z1 + z4);
- { Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
- wsptr^[DCTSIZE*0] := int (DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*7] := int (DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*1] := int (DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*6] := int (DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*2] := int (DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*5] := int (DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*3] := int (DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS));
- wsptr^[DCTSIZE*4] := int (DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS));
- Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- Inc(ISLOW_MULT_TYPE_PTR(quantptr));
- Inc(int_ptr(wsptr));
- end;
- { Pass 2: process rows from work array, store into output array. }
- { Note that we must descale the results by a factor of 8 == 2**3, }
- { and also undo the PASS1_BITS scaling. }
- wsptr := @workspace;
- for ctr := 0 to pred(DCTSIZE) do
- begin
- outptr := output_buf^[ctr];
- Inc(JSAMPLE_PTR(outptr), output_col);
- { Rows of zeroes can be exploited in the same way as we did with columns.
- However, the column calculation has created many nonzero AC terms, so
- the simplification applies less often (typically 5% to 10% of the time).
- On machines with very fast multiplication, it's possible that the
- test takes more time than it's worth. In that case this section
- may be commented out. }
- {$ifndef NO_ZERO_ROW_TEST}
- if ((wsptr^[1]=0) and (wsptr^[2]=0) and (wsptr^[3]=0) and (wsptr^[4]=0)
- and (wsptr^[5]=0) and (wsptr^[6]=0) and (wsptr^[7]=0)) then
- begin
- { AC terms all zero }
- JSAMPLE(dcval_) := range_limit^[int(DESCALE(INT32(wsptr^[0]),
- PASS1_BITS+3)) and RANGE_MASK];
- outptr^[0] := dcval_;
- outptr^[1] := dcval_;
- outptr^[2] := dcval_;
- outptr^[3] := dcval_;
- outptr^[4] := dcval_;
- outptr^[5] := dcval_;
- outptr^[6] := dcval_;
- outptr^[7] := dcval_;
- Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
- continue;
- end;
- {$endif}
- { Even part: reverse the even part of the forward DCT. }
- { The rotator is sqrt(2)*c(-6). }
- z2 := INT32 (wsptr^[2]);
- z3 := INT32 (wsptr^[6]);
- z1 := MULTIPLY(z2 + z3, FIX_0_541196100);
- tmp2 := z1 + MULTIPLY(z3, - FIX_1_847759065);
- tmp3 := z1 + MULTIPLY(z2, FIX_0_765366865);
- tmp0 := (INT32(wsptr^[0]) + INT32(wsptr^[4])) shl CONST_BITS;
- tmp1 := (INT32(wsptr^[0]) - INT32(wsptr^[4])) shl CONST_BITS;
- tmp10 := tmp0 + tmp3;
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- { Odd part per figure 8; the matrix is unitary and hence its
- transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
- tmp0 := INT32(wsptr^[7]);
- tmp1 := INT32(wsptr^[5]);
- tmp2 := INT32(wsptr^[3]);
- tmp3 := INT32(wsptr^[1]);
- z1 := tmp0 + tmp3;
- z2 := tmp1 + tmp2;
- z3 := tmp0 + tmp2;
- z4 := tmp1 + tmp3;
- z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
- tmp0 := MULTIPLY(tmp0, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
- tmp1 := MULTIPLY(tmp1, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
- tmp2 := MULTIPLY(tmp2, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
- tmp3 := MULTIPLY(tmp3, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
- z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
- z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
- z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
- z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
- Inc(z3, z5);
- Inc(z4, z5);
- Inc(tmp0, z1 + z3);
- Inc(tmp1, z2 + z4);
- Inc(tmp2, z2 + z3);
- Inc(tmp3, z1 + z4);
- { Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
- outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[7] := range_limit^[ int(DESCALE(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[1] := range_limit^[ int(DESCALE(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[6] := range_limit^[ int(DESCALE(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[2] := range_limit^[ int(DESCALE(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[5] := range_limit^[ int(DESCALE(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[3] := range_limit^[ int(DESCALE(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- outptr^[4] := range_limit^[ int(DESCALE(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3))
- and RANGE_MASK];
- Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
- end;
- end;
- end.
|