123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659 |
- {*
- ===============================================================================
- The original notice of the softfloat package is shown below. The conversion
- to pascal was done by Carl Eric Codere in 2002 ([email protected]).
- ===============================================================================
- This C source file is part of the SoftFloat IEC/IEEE Floating-Point
- Arithmetic Package, Release 2a.
- Written by John R. Hauser. This work was made possible in part by the
- International Computer Science Institute, located at Suite 600, 1947 Center
- Street, Berkeley, California 94704. Funding was partially provided by the
- National Science Foundation under grant MIP-9311980. The original version
- of this code was written as part of a project to build a fixed-point vector
- processor in collaboration with the University of California at Berkeley,
- overseen by Profs. Nelson Morgan and John Wawrzynek. More information
- is available through the Web page
- `http://HTTP.CS.Berkeley.EDU/~jhauser/arithmetic/SoftFloat.html'.
- THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
- has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
- TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
- PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
- AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
- Derivative works are acceptable, even for commercial purposes, so long as
- (1) they include prominent notice that the work is derivative, and (2) they
- include prominent notice akin to these four paragraphs for those parts of
- this code that are retained.
- ===============================================================================
- *}
- unit softfpu;
- { Overflow checking must be disabled,
- since some operations expect overflow!
- }
- {$Q-}
- {$ifdef fpc}
- {$define hascompilerproc}
- {$endif}
- {$ifdef fpc}
- {$goto on}
- {$endif}
- interface
- {
- -------------------------------------------------------------------------------
- Software IEC/IEEE floating-point types.
- -------------------------------------------------------------------------------
- }
- TYPE
- float32 = longword;
- flag = byte;
- uint8 = byte;
- int8 = shortint;
- uint16 = word;
- int16 = integer;
- uint32 = longword;
- int32 = longint;
- bits8 = byte;
- sbits8 = shortint;
- bits16 = word;
- sbits16 = integer;
- sbits32 = longint;
- bits32 = longword;
- {$ifndef fpc}
- qword = int64;
- {$endif}
- uint64 = qword;
- bits64 = qword;
- sbits64 = int64;
- {$ifdef ENDIAN_LITTLE}
- float64 = packed record
- low: bits32;
- high: bits32;
- end;
- int64rec = packed record
- low: bits32;
- high: bits32;
- end;
- {$else}
- float64 = packed record
- high,low : bits32;
- end;
- int64rec = packed record
- high,low : bits32;
- end;
- {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_lt(a: float64;b: float64): flag; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_le(a: float64;b: float64): flag; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_eq(a: float64;b: float64): flag; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the double-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sqrt( a: float64; var out: float64 ); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the double-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_rem(a: float64; b : float64; var out: float64); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the double-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_div(a: float64; b : float64 ; var out: float64 ); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_mul( a: float64; b:float64; Var out: float64); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sub(a: float64; b : float64; var out: float64); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the double-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_add( a: float64; b : float64; Var out : float64); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Rounds the double-precision floating-point value `a' to an integer,
- and returns the result as a double-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_round_to_int(a: float64; var out: float64 ); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the single-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_float32(a: float64 ): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32_round_to_zero(a: float64 ): int32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32(a: float64): int32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_lt( a:float32 ; b : float32): flag; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_le( a: float32; b : float32 ):flag; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_eq( a:float32; b:float32): flag; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the single-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sqrt(a: float32 ): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the single-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_rem(a: float32; b: float32 ):float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the single-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_div(a: float32;b: float32 ): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_mul(a: float32; b: float32 ) : float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sub( a: float32 ; b:float32 ): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the single-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_add( a: float32; b:float32 ): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Rounds the single-precision floating-point value `a' to an integer,
- and returns the result as a single-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_round_to_int( a: float32): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the double-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float32_to_float64( a : float32; var out: Float64); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32_round_to_zero( a: Float32 ): int32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32( a : float32) : int32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the double-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure int32_to_float64( a: int32; var c: float64 ); {$ifdef hascompilerproc} compilerproc; {$endif}
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the single-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function int32_to_float32( a: int32): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float64( a: int64 ): float64; {$ifdef hascompilerproc} compilerproc; {$endif}
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float32( a: int64 ): float32; {$ifdef hascompilerproc} compilerproc; {$endif}
- CONST
- {-------------------------------------------------------------------------------
- Software IEC/IEEE floating-point underflow tininess-detection mode.
- -------------------------------------------------------------------------------
- *}
- float_tininess_after_rounding = 0;
- float_tininess_before_rounding = 1;
- {*
- -------------------------------------------------------------------------------
- Software IEC/IEEE floating-point rounding mode.
- -------------------------------------------------------------------------------
- *}
- {
- Round to nearest.
- This is the default mode. It should be used unless there is a specific
- need for one of the others. In this mode results are rounded to the
- nearest representable value. If the result is midway between two
- representable values, the even representable is chosen. Even here
- means the lowest-order bit is zero. This rounding mode prevents
- statistical bias and guarantees numeric stability: round-off errors
- in a lengthy calculation will remain smaller than half of FLT_EPSILON.
- Round toward plus Infinity.
- All results are rounded to the smallest representable value which is
- greater than the result.
- Round toward minus Infinity.
- All results are rounded to the largest representable value which is
- less than the result.
- Round toward zero.
- All results are rounded to the largest representable value whose
- magnitude is less than that of the result. In other words, if the
- result is negative it is rounded up; if it is positive, it is
- rounded down.
- }
- float_round_nearest_even = 0;
- float_round_down = 1;
- float_round_up = 2;
- float_round_to_zero = 3;
- {*
- -------------------------------------------------------------------------------
- Software IEC/IEEE floating-point exception flags.
- -------------------------------------------------------------------------------
- *}
- float_flag_invalid = 1;
- float_flag_divbyzero = 4;
- float_flag_overflow = 8;
- float_flag_underflow = 16;
- float_flag_inexact = 32;
- {*
- -------------------------------------------------------------------------------
- Floating-point rounding mode and exception flags.
- -------------------------------------------------------------------------------
- *}
- const
- float_rounding_mode : Byte = float_round_nearest_even;
- float_exception_flags : Byte = 0;
- {*
- -------------------------------------------------------------------------------
- Underflow tininess-detection mode, statically initialized to default value.
- (The declaration in `softfloat.h' must match the `int8' type here.)
- -------------------------------------------------------------------------------
- *}
- const float_detect_tininess: int8 = float_tininess_after_rounding;
- implementation
- {*
- -------------------------------------------------------------------------------
- Raises the exceptions specified by `flags'. Floating-point traps can be
- defined here if desired. It is currently not possible for such a trap
- to substitute a result value. If traps are not implemented, this routine
- should be simply `float_exception_flags |= flags;'.
- -------------------------------------------------------------------------------
- *}
- procedure float_raise( i: shortint );
- Begin
- float_exception_flags := float_exception_flags or i;
- if (float_exception_flags and float_flag_invalid) <> 0 then
- RunError(207)
- else
- if (float_exception_flags and float_flag_divbyzero) <> 0 then
- RunError(200)
- else
- if (float_exception_flags and float_flag_overflow) <> 0 then
- RunError(205)
- else
- if (float_exception_flags and float_flag_underflow) <> 0 then
- RunError(206);
- end;
- (*****************************************************************************)
- (*----------------------------------------------------------------------------*)
- (* Primitive arithmetic functions, including multi-word arithmetic, and *)
- (* division and square root approximations. (Can be specialized to target if *)
- (* desired.) *)
- (* ---------------------------------------------------------------------------*)
- (*****************************************************************************)
- {*
- -------------------------------------------------------------------------------
- Shifts `a' right by the number of bits given in `count'. If any nonzero
- bits are shifted off, they are ``jammed'' into the least significant bit of
- the result by setting the least significant bit to 1. The value of `count'
- can be arbitrarily large; in particular, if `count' is greater than 32, the
- result will be either 0 or 1, depending on whether `a' is zero or nonzero.
- The result is stored in the location pointed to by `zPtr'.
- -------------------------------------------------------------------------------
- *}
- Procedure shift32RightJamming( a: bits32 ; count: int16 ; VAR zPtr :bits32);
- var
- z: Bits32;
- Begin
- if ( count = 0 ) then
- z := a
- else
- if ( count < 32 ) then
- Begin
- z := ( a shr count ) or bits32( (( a shl ( ( - count ) AND 31 )) ) <> 0);
- End
- else
- Begin
- z := bits32( a <> 0 );
- End;
- zPtr := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
- number of bits given in `count'. Any bits shifted off are lost. The value
- of `count' can be arbitrarily large; in particular, if `count' is greater
- than 64, the result will be 0. The result is broken into two 32-bit pieces
- which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shift64Right(
- a0 :bits32; a1: bits32; count:int16; VAR z0Ptr:bits32; VAR z1Ptr:bits32);
- Var
- z0, z1: bits32;
- negCount : int8;
- Begin
- negCount := ( - count ) AND 31;
- if ( count = 0 ) then
- Begin
- z1 := a1;
- z0 := a0;
- End
- else if ( count < 32 ) then
- Begin
- z1 := ( a0 shl negCount ) OR ( a1 shr count );
- z0 := a0 shr count;
- End
- else
- Begin
- if (count < 64) then
- z1 := ( a0 shr ( count AND 31 ) )
- else
- z1 := 0;
- z0 := 0;
- End;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
- number of bits given in `count'. If any nonzero bits are shifted off, they
- are ``jammed'' into the least significant bit of the result by setting the
- least significant bit to 1. The value of `count' can be arbitrarily large;
- in particular, if `count' is greater than 64, the result will be either 0
- or 1, depending on whether the concatenation of `a0' and `a1' is zero or
- nonzero. The result is broken into two 32-bit pieces which are stored at
- the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shift64RightJamming(
- a0:bits32; a1: bits32; count:int16; VAR Z0Ptr :bits32;VAR z1Ptr: bits32 );
- VAR
- z0, z1 : bits32;
- negCount : int8;
- Begin
- negCount := ( - count ) AND 31;
- if ( count = 0 ) then
- Begin
- z1 := a1;
- z0 := a0;
- End
- else
- if ( count < 32 ) then
- Begin
- z1 := ( a0 shl negCount ) OR ( a1 shr count ) OR bits32( ( a1 shl negCount ) <> 0 );
- z0 := a0 shr count;
- End
- else
- Begin
- if ( count = 32 ) then
- Begin
- z1 := a0 OR bits32( a1 <> 0 );
- End
- else
- if ( count < 64 ) Then
- Begin
- z1 := ( a0 shr ( count AND 31 ) ) OR bits32( ( ( a0 shl negCount ) OR a1 ) <> 0 );
- End
- else
- Begin
- z1 := bits32( ( a0 OR a1 ) <> 0 );
- End;
- z0 := 0;
- End;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
- by 32 _plus_ the number of bits given in `count'. The shifted result is
- at most 64 nonzero bits; these are broken into two 32-bit pieces which are
- stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
- off form a third 32-bit result as follows: The _last_ bit shifted off is
- the most-significant bit of the extra result, and the other 31 bits of the
- extra result are all zero if and only if _all_but_the_last_ bits shifted off
- were all zero. This extra result is stored in the location pointed to by
- `z2Ptr'. The value of `count' can be arbitrarily large.
- (This routine makes more sense if `a0', `a1', and `a2' are considered
- to form a fixed-point value with binary point between `a1' and `a2'. This
- fixed-point value is shifted right by the number of bits given in `count',
- and the integer part of the result is returned at the locations pointed to
- by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
- corrupted as described above, and is returned at the location pointed to by
- `z2Ptr'.)
- -------------------------------------------------------------------------------
- }
- Procedure
- shift64ExtraRightJamming(
- a0: bits32;
- a1: bits32;
- a2: bits32;
- count: int16;
- VAR z0Ptr: bits32;
- VAR z1Ptr: bits32;
- VAR z2Ptr: bits32
- );
- Var
- z0, z1, z2: bits32;
- negCount : int8;
- Begin
- negCount := ( - count ) AND 31;
- if ( count = 0 ) then
- Begin
- z2 := a2;
- z1 := a1;
- z0 := a0;
- End
- else
- Begin
- if ( count < 32 ) Then
- Begin
- z2 := a1 shl negCount;
- z1 := ( a0 shl negCount ) OR ( a1 shr count );
- z0 := a0 shr count;
- End
- else
- Begin
- if ( count = 32 ) then
- Begin
- z2 := a1;
- z1 := a0;
- End
- else
- Begin
- a2 := a2 or a1;
- if ( count < 64 ) then
- Begin
- z2 := a0 shl negCount;
- z1 := a0 shr ( count AND 31 );
- End
- else
- Begin
- if count = 64 then
- z2 := a0
- else
- z2 := bits32(a0 <> 0);
- z1 := 0;
- End;
- End;
- z0 := 0;
- End;
- z2 := z2 or bits32( a2 <> 0 );
- End;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
- number of bits given in `count'. Any bits shifted off are lost. The value
- of `count' must be less than 32. The result is broken into two 32-bit
- pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shortShift64Left(
- a0:bits32; a1:bits32; count:int16; VAR z0Ptr:bits32; VAR z1Ptr:bits32 );
- Begin
- z1Ptr := a1 shl count;
- if count = 0 then
- z0Ptr := a0
- else
- z0Ptr := ( a0 shl count ) OR ( a1 shr ( ( - count ) AND 31 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
- by the number of bits given in `count'. Any bits shifted off are lost.
- The value of `count' must be less than 32. The result is broken into three
- 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
- `z1Ptr', and `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- shortShift96Left(
- a0: bits32;
- a1: bits32;
- a2: bits32;
- count: int16;
- VAR z0Ptr: bits32;
- VAR z1Ptr: bits32;
- VAR z2Ptr: bits32
- );
- Var
- z0, z1, z2: bits32;
- negCount: int8;
- Begin
- z2 := a2 shl count;
- z1 := a1 shl count;
- z0 := a0 shl count;
- if ( 0 < count ) then
- Begin
- negCount := ( ( - count ) AND 31 );
- z1 := z1 or (a2 shr negCount);
- z0 := z0 or (a1 shr negCount);
- End;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
- value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
- any carry out is lost. The result is broken into two 32-bit pieces which
- are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- add64(
- a0:bits32; a1:bits32; b0:bits32; b1:bits32; VAR z0Ptr:bits32; VAR z1Ptr:bits32 );
- Var
- z1: bits32;
- Begin
- z1 := a1 + b1;
- z1Ptr := z1;
- z0Ptr := a0 + b0 + bits32( z1 < a1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
- 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
- modulo 2^96, so any carry out is lost. The result is broken into three
- 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
- `z1Ptr', and `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- add96(
- a0: bits32;
- a1: bits32;
- a2: bits32;
- b0: bits32;
- b1: bits32;
- b2: bits32;
- VAR z0Ptr: bits32;
- VAR z1Ptr: bits32;
- VAR z2Ptr: bits32
- );
- var
- z0, z1, z2: bits32;
- carry0, carry1: int8;
- Begin
- z2 := a2 + b2;
- carry1 := int8( z2 < a2 );
- z1 := a1 + b1;
- carry0 := int8( z1 < a1 );
- z0 := a0 + b0;
- z1 := z1 + carry1;
- z0 := z0 + bits32( z1 < carry1 );
- z0 := z0 + carry0;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
- 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
- 2^64, so any borrow out (carry out) is lost. The result is broken into two
- 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
- `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- sub64(
- a0: bits32; a1 : bits32; b0 :bits32; b1: bits32; VAR z0Ptr:bits32; VAR z1Ptr: bits32 );
- Begin
- z1Ptr := a1 - b1;
- z0Ptr := a0 - b0 - bits32( a1 < b1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
- the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
- is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
- into three 32-bit pieces which are stored at the locations pointed to by
- `z0Ptr', `z1Ptr', and `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- sub96(
- a0:bits32;
- a1:bits32;
- a2:bits32;
- b0:bits32;
- b1:bits32;
- b2:bits32;
- VAR z0Ptr:bits32;
- VAR z1Ptr:bits32;
- VAR z2Ptr:bits32
- );
- Var
- z0, z1, z2: bits32;
- borrow0, borrow1: int8;
- Begin
- z2 := a2 - b2;
- borrow1 := int8( a2 < b2 );
- z1 := a1 - b1;
- borrow0 := int8( a1 < b1 );
- z0 := a0 - b0;
- z0 := z0 - bits32( z1 < borrow1 );
- z1 := z1 - borrow1;
- z0 := z0 -borrow0;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
- into two 32-bit pieces which are stored at the locations pointed to by
- `z0Ptr' and `z1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure mul32To64( a:bits32; b:bits32; VAR z0Ptr: bits32; VAR z1Ptr
- :bits32 );
- Var
- aHigh, aLow, bHigh, bLow: bits16;
- z0, zMiddleA, zMiddleB, z1: bits32;
- Begin
- aLow := a and $ffff;
- aHigh := a shr 16;
- bLow := b and $ffff;
- bHigh := b shr 16;
- z1 := ( bits32( aLow) ) * bLow;
- zMiddleA := ( bits32 (aLow) ) * bHigh;
- zMiddleB := ( bits32 (aHigh) ) * bLow;
- z0 := ( bits32 (aHigh) ) * bHigh;
- zMiddleA := zMiddleA + zMiddleB;
- z0 := z0 + ( ( bits32 ( zMiddleA < zMiddleB ) ) shl 16 ) + ( zMiddleA shr 16 );
- zMiddleA := zmiddleA shl 16;
- z1 := z1 + zMiddleA;
- z0 := z0 + bits32( z1 < zMiddleA );
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
- to obtain a 96-bit product. The product is broken into three 32-bit pieces
- which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
- `z2Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- mul64By32To96(
- a0:bits32;
- a1:bits32;
- b:bits32;
- VAR z0Ptr:bits32;
- VAR z1Ptr:bits32;
- VAR z2Ptr:bits32
- );
- Var
- z0, z1, z2, more1: bits32;
- Begin
- mul32To64( a1, b, z1, z2 );
- mul32To64( a0, b, z0, more1 );
- add64( z0, more1, 0, z1, z0, z1 );
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
- 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
- product. The product is broken into four 32-bit pieces which are stored at
- the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure
- mul64To128(
- a0:bits32;
- a1:bits32;
- b0:bits32;
- b1:bits32;
- VAR z0Ptr:bits32;
- VAR z1Ptr:bits32;
- VAR z2Ptr:bits32;
- VAR z3Ptr:bits32
- );
- Var
- z0, z1, z2, z3: bits32;
- more1, more2: bits32;
- Begin
- mul32To64( a1, b1, z2, z3 );
- mul32To64( a1, b0, z1, more2 );
- add64( z1, more2, 0, z2, z1, z2 );
- mul32To64( a0, b0, z0, more1 );
- add64( z0, more1, 0, z1, z0, z1 );
- mul32To64( a0, b1, more1, more2 );
- add64( more1, more2, 0, z2, more1, z2 );
- add64( z0, z1, 0, more1, z0, z1 );
- z3Ptr := z3;
- z2Ptr := z2;
- z1Ptr := z1;
- z0Ptr := z0;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns an approximation to the 32-bit integer quotient obtained by dividing
- `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
- divisor `b' must be at least 2^31. If q is the exact quotient truncated
- toward zero, the approximation returned lies between q and q + 2 inclusive.
- If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
- unsigned integer is returned.
- -------------------------------------------------------------------------------
- *}
- Function estimateDiv64To32( a0:bits32; a1: bits32; b:bits32): bits32;
- Var
- b0, b1: bits32;
- rem0, rem1, term0, term1: bits32;
- z: bits32;
- Begin
- if ( b <= a0 ) then
- Begin
- estimateDiv64To32 := $FFFFFFFF;
- exit;
- End;
- b0 := b shr 16;
- if ( b0 shl 16 <= a0 ) then
- z:= $FFFF0000
- else
- z:= ( a0 div b0 ) shl 16;
- mul32To64( b, z, term0, term1 );
- sub64( a0, a1, term0, term1, rem0, rem1 );
- while ( ( sbits32 (rem0) ) < 0 ) do
- Begin
- z := z - $10000;
- b1 := b shl 16;
- add64( rem0, rem1, b0, b1, rem0, rem1 );
- End;
- rem0 := ( rem0 shl 16 ) OR ( rem1 shr 16 );
- if ( b0 shl 16 <= rem0 ) then
- z := z or $FFFF
- else
- z := z or (rem0 div b0);
- estimateDiv64To32 := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns an approximation to the square root of the 32-bit significand given
- by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
- `aExp' (the least significant bit) is 1, the integer returned approximates
- 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
- is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
- case, the approximation returned lies strictly within +/-2 of the exact
- value.
- -------------------------------------------------------------------------------
- *}
- Function estimateSqrt32( aExp: int16; a: bits32 ): bits32;
- const sqrtOddAdjustments: array[0..15] of bits16 = (
- $0004, $0022, $005D, $00B1, $011D, $019F, $0236, $02E0,
- $039C, $0468, $0545, $0631, $072B, $0832, $0946, $0A67
- );
- const sqrtEvenAdjustments: array[0..15] of bits16 = (
- $0A2D, $08AF, $075A, $0629, $051A, $0429, $0356, $029E,
- $0200, $0179, $0109, $00AF, $0068, $0034, $0012, $0002
- );
- Var
- index: int8;
- z: bits32;
- Begin
- index := ( a shr 27 ) AND 15;
- if ( aExp AND 1 ) <> 0 then
- Begin
- z := $4000 + ( a shr 17 ) - sqrtOddAdjustments[ index ];
- z := ( ( a div z ) shl 14 ) + ( z shl 15 );
- a := a shr 1;
- End
- else
- Begin
- z := $8000 + ( a shr 17 ) - sqrtEvenAdjustments[ index ];
- z := a div z + z;
- if ( $20000 <= z ) then
- z := $FFFF8000
- else
- z := ( z shl 15 );
- if ( z <= a ) then
- Begin
- estimateSqrt32 := bits32 ( ( sbits32 (a )) shr 1 );
- exit;
- End;
- End;
- estimateSqrt32 := ( ( estimateDiv64To32( a, 0, z ) ) shr 1 ) + ( z shr 1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the number of leading 0 bits before the most-significant 1 bit of
- `a'. If `a' is zero, 32 is returned.
- -------------------------------------------------------------------------------
- *}
- Function countLeadingZeros32( a:bits32 ): int8;
- const countLeadingZerosHigh:array[0..255] of int8 = (
- 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
- 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- );
- Var
- shiftCount: int8;
- Begin
- shiftCount := 0;
- if ( a < $10000 ) then
- Begin
- shiftCount := shiftcount + 16;
- a := a shl 16;
- End;
- if ( a < $1000000 ) then
- Begin
- shiftCount := shiftcount + 8;
- a := a shl 8;
- end;
- shiftCount := shiftcount + countLeadingZerosHigh[ a shr 24 ];
- countLeadingZeros32:= shiftCount;
- End;
- {*----------------------------------------------------------------------------
- | Returns the number of leading 0 bits before the most-significant 1 bit of
- | `a'. If `a' is zero, 64 is returned.
- *----------------------------------------------------------------------------*}
- function countLeadingZeros64( a : bits64): int8;
- var
- shiftcount : int8;
- Begin
- shiftCount := 0;
- if ( a < (bits64(1) shl 32 )) then
- shiftCount := shiftcount + 32
- else
- a := a shr 32;
- shiftCount := shiftCount + countLeadingZeros32( a );
- countLeadingZeros64:= shiftCount;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
- equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
- returns 0.
- -------------------------------------------------------------------------------
- *}
- Function eq64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- eq64 := flag( a0 = b0 ) and flag( a1 = b1 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
- than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
- Otherwise, returns 0.
- -------------------------------------------------------------------------------
- *}
- Function le64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- le64:= flag( a0 < b0 ) or flag( ( a0 = b0 ) and ( a1 <= b1 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
- than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
- returns 0.
- -------------------------------------------------------------------------------
- *}
- Function lt64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- lt64 := flag( a0 < b0 ) or flag( ( a0 = b0 ) and ( a1 < b1 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
- equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
- returns 0.
- -------------------------------------------------------------------------------
- *}
- Function ne64( a0: bits32; a1:bits32 ;b0:bits32; b1:bits32 ): flag;
- Begin
- ne64:= flag( a0 <> b0 ) or flag( a1 <> b1 );
- End;
- (*****************************************************************************)
- (* End Low-Level arithmetic *)
- (*****************************************************************************)
- {*
- -------------------------------------------------------------------------------
- Functions and definitions to determine: (1) whether tininess for underflow
- is detected before or after rounding by default, (2) what (if anything)
- happens when exceptions are raised, (3) how signaling NaNs are distinguished
- from quiet NaNs, (4) the default generated quiet NaNs, and (4) how NaNs
- are propagated from function inputs to output. These details are ENDIAN
- specific
- -------------------------------------------------------------------------------
- *}
- {$IFDEF ENDIAN_LITTLE}
- {*
- -------------------------------------------------------------------------------
- Internal canonical NaN format.
- -------------------------------------------------------------------------------
- *}
- TYPE
- commonNaNT = packed record
- sign: flag;
- high, low : bits32;
- end;
- {*
- -------------------------------------------------------------------------------
- The pattern for a default generated single-precision NaN.
- -------------------------------------------------------------------------------
- *}
- const float32_default_nan = $FFC00000;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is a NaN;
- otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float32_is_nan( a : float32 ): flag;
- Begin
- float32_is_nan:= flag( $FF000000 < bits32 ( a shl 1 ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is a signaling
- NaN; otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float32_is_signaling_nan( a : float32 ): flag;
- Begin
- float32_is_signaling_nan := flag
- ( ( ( a shr 22 ) and $1FF ) = $1FE ) and( a and $003FFFFF );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point NaN
- `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- exception is raised.
- -------------------------------------------------------------------------------
- *}
- Procedure float32ToCommonNaN( a: float32; VAR c:commonNaNT );
- var
- z : commonNaNT ;
- Begin
- if ( float32_is_signaling_nan( a ) <> 0) then
- float_raise( float_flag_invalid );
- z.sign := a shr 31;
- z.low := 0;
- z.high := a shl 9;
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the canonical NaN `a' to the single-
- precision floating-point format.
- -------------------------------------------------------------------------------
- *}
- Function commonNaNToFloat32( a : commonNaNT ): float32;
- Begin
- commonNaNToFloat32 := ( ( bits32 (a.sign) ) shl 31 ) or $7FC00000 or ( a.high shr 9 );
- End;
- {*
- -------------------------------------------------------------------------------
- Takes two single-precision floating-point values `a' and `b', one of which
- is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- signaling NaN, the invalid exception is raised.
- -------------------------------------------------------------------------------
- *}
- Function propagateFloat32NaN( a : float32 ; b: float32 ): float32;
- Var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN: flag;
- label returnLargerSignificand;
- Begin
- aIsNaN := float32_is_nan( a );
- aIsSignalingNaN := float32_is_signaling_nan( a );
- bIsNaN := float32_is_nan( b );
- bIsSignalingNaN := float32_is_signaling_nan( b );
- a := a or $00400000;
- b := b or $00400000;
- if ( aIsSignalingNaN or bIsSignalingNaN ) <> 0 then
- float_raise( float_flag_invalid );
- if ( aIsSignalingNaN )<> 0 then
- Begin
- if ( bIsSignalingNaN ) <> 0 then
- goto returnLargerSignificand;
- if bIsNan <> 0 then
- propagateFloat32NaN := b
- else
- propagateFloat32NaN := a;
- exit;
- End
- else if ( aIsNaN <> 0) then
- Begin
- if ( bIsSignalingNaN or not bIsNaN )<> 0 then
- Begin
- propagateFloat32NaN := a;
- exit;
- End;
- returnLargerSignificand:
- if ( bits32 ( a shl 1 ) < bits32 ( b shl 1 ) ) then
- Begin
- propagateFloat32NaN := b;
- exit;
- End;
- if ( bits32 ( b shl 1 ) < bits32 ( a shl 1 ) ) then
- Begin
- propagateFloat32NaN := a;
- End;
- if a < b then
- propagateFloat32NaN := a
- else
- propagateFloat32NaN := b;
- exit;
- End
- else
- Begin
- propagateFloat32NaN := b;
- exit;
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- The pattern for a default generated double-precision NaN. The `high' and
- `low' values hold the most- and least-significant bits, respectively.
- -------------------------------------------------------------------------------
- *}
- const
- float64_default_nan_high = $FFF80000;
- float64_default_nan_low = $00000000;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is a NaN;
- otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float64_is_nan( a : float64 ) : flag;
- Begin
- float64_is_nan :=
- flag( $FFE00000 <= bits32 ( a.high shl 1 ) )
- and ( a.low or ( a.high and $000FFFFF ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is a signaling
- NaN; otherwise returns 0.
- -------------------------------------------------------------------------------
- *}
- Function float64_is_signaling_nan( a : float64 ): flag;
- Begin
- float64_is_signaling_nan :=
- flag( ( ( a.high shr 19 ) and $FFF ) = $FFE )
- and ( a.low or ( a.high and $0007FFFF ) );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point NaN
- `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- exception is raised.
- -------------------------------------------------------------------------------
- *}
- Procedure float64ToCommonNaN( a : float64; VAR c:commonNaNT );
- Var
- z : commonNaNT;
- Begin
- if ( float64_is_signaling_nan( a )<>0 ) then
- float_raise( float_flag_invalid );
- z.sign := a.high shr 31;
- shortShift64Left( a.high, a.low, 12, z.high, z.low );
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the canonical NaN `a' to the double-
- precision floating-point format.
- -------------------------------------------------------------------------------
- *}
- Procedure commonNaNToFloat64( a : commonNaNT; VAR c: float64 );
- Var
- z: float64;
- Begin
- shift64Right( a.high, a.low, 12, z.high, z.low );
- z.high := z.high or ( ( bits32 (a.sign) ) shl 31 ) or $7FF80000;
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes two double-precision floating-point values `a' and `b', one of which
- is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- signaling NaN, the invalid exception is raised.
- -------------------------------------------------------------------------------
- *}
- Procedure propagateFloat64NaN( a: float64; b: float64 ; VAR c: float64 );
- Var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN: flag;
- label returnLargerSignificand;
- Begin
- aIsNaN := float64_is_nan( a );
- aIsSignalingNaN := float64_is_signaling_nan( a );
- bIsNaN := float64_is_nan( b );
- bIsSignalingNaN := float64_is_signaling_nan( b );
- a.high := a.high or $00080000;
- b.high := b.high or $00080000;
- if ( aIsSignalingNaN or bIsSignalingNaN )<> 0 then
- float_raise( float_flag_invalid );
- if ( aIsSignalingNaN )<>0 then
- Begin
- if ( bIsSignalingNaN )<>0 then
- goto returnLargerSignificand;
- if bIsNan <> 0 then
- c := b
- else
- c := a;
- exit;
- End
- else if ( aIsNaN )<> 0 then
- Begin
- if ( bIsSignalingNaN or not bIsNaN ) <> 0 then
- Begin
- c := a;
- exit;
- End;
- returnLargerSignificand:
- if ( lt64( a.high shl 1, a.low, b.high shl 1, b.low ) ) <> 0 then
- Begin
- c := b;
- exit;
- End;
- if ( lt64( b.high shl 1, b.low, a.high shl 1, a.low ) ) <> 0 then
- Begin
- c := a;
- exit;
- End;
- if a.high < b.high then
- c := a
- else
- c := b;
- exit;
- End
- else
- Begin
- c := b;
- exit;
- End;
- End;
- {$ELSE}
- { Big endian code }
- (*----------------------------------------------------------------------------
- | Internal canonical NaN format.
- *----------------------------------------------------------------------------*)
- type
- commonNANT = packed record
- sign : flag;
- high, low : bits32;
- end;
- (*----------------------------------------------------------------------------
- | The pattern for a default generated single-precision NaN.
- *----------------------------------------------------------------------------*)
- const float32_default_nan = $7FFFFFFF;
- (*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is a NaN;
- | otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float32_is_nan(a: float32): flag;
- begin
- float32_is_nan := flag( $FF000000 < bits32( a shl 1 ) );
- end;
- (*----------------------------------------------------------------------------
- | Returns 1 if the single-precision floating-point value `a' is a signaling
- | NaN; otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float32_is_signaling_nan(a: float32):flag;
- begin
- float32_is_signaling_nan := flag( ( ( a shr 22 ) and $1FF ) = $1FE ) and flag( boolean((a and $003FFFFF)<>0) );
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the single-precision floating-point NaN
- | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- | exception is raised.
- *----------------------------------------------------------------------------*)
- Procedure float32ToCommonNaN( a: float32; VAR c:commonNaNT );
- var
- z: commonNANT;
- begin
- if float32_is_signaling_nan(a)<>0 then
- float_raise(float_flag_invalid);
- z.sign := a shr 31;
- z.low := 0;
- z.high := a shl 9;
- c:=z;
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the canonical NaN `a' to the single-
- | precision floating-point format.
- *----------------------------------------------------------------------------*)
- function CommonNanToFloat32(a : CommonNaNT): float32;
- begin
- CommonNanToFloat32:= ( ( bits32( a.sign )) shl 31 ) OR $7FC00000 OR ( a.high shr 9 );
- end;
- (*----------------------------------------------------------------------------
- | Takes two single-precision floating-point values `a' and `b', one of which
- | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- | signaling NaN, the invalid exception is raised.
- *----------------------------------------------------------------------------*)
- function propagateFloat32NaN( a: float32 ; b: float32): float32;
- var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN: flag;
- begin
- aIsNaN := float32_is_nan( a );
- aIsSignalingNaN := float32_is_signaling_nan( a );
- bIsNaN := float32_is_nan( b );
- bIsSignalingNaN := float32_is_signaling_nan( b );
- a := a or $00400000;
- b := b or $00400000;
- if ( aIsSignalingNaN or bIsSignalingNaN )<>0 then
- float_raise( float_flag_invalid );
- if bIsSignalingNaN<>0 then
- propagateFloat32Nan := b
- else if aIsSignalingNan<>0 then
- propagateFloat32Nan := a
- else if bIsNan<>0 then
- propagateFloat32Nan := b
- else
- propagateFloat32Nan := a;
- end;
- (*----------------------------------------------------------------------------
- | The pattern for a default generated double-precision NaN. The `high' and
- | `low' values hold the most- and least-significant bits, respectively.
- *----------------------------------------------------------------------------*)
- const
- float64_default_nan_high = $7FFFFFFF;
- float64_default_nan_low = $FFFFFFFF;
- (*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is a NaN;
- | otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float64_is_nan(a: float64): flag;
- begin
- float64_is_nan := flag (
- ( $FFE00000 <= bits32 ( a.high shl 1 ) )
- and ( (a.low<>0) or (( a.high and $000FFFFF )<>0) ));
- end;
- (*----------------------------------------------------------------------------
- | Returns 1 if the double-precision floating-point value `a' is a signaling
- | NaN; otherwise returns 0.
- *----------------------------------------------------------------------------*)
- function float64_is_signaling_nan( a:float64): flag;
- begin
- float64_is_signaling_nan := flag
- ( ( ( a.high shr 19 ) and $FFF ) = $FFE )
- and ( (a.low<>0) or ( boolean(( a.high and $0007FFFF )<>0)) );
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the double-precision floating-point NaN
- | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
- | exception is raised.
- *----------------------------------------------------------------------------*)
- Procedure float64ToCommonNaN( a : float64; VAR c:commonNaNT );
- var
- z : commonNaNT;
- begin
- if ( float64_is_signaling_nan( a )<>0 ) then
- float_raise( float_flag_invalid );
- z.sign := a.high shr 31;
- shortShift64Left( a.high, a.low, 12, z.high, z.low );
- c:=z;
- end;
- (*----------------------------------------------------------------------------
- | Returns the result of converting the canonical NaN `a' to the double-
- | precision floating-point format.
- *----------------------------------------------------------------------------*)
- Procedure commonNaNToFloat64( a : commonNaNT; VAR c: float64 );
- var
- z: float64;
- begin
- shift64Right( a.high, a.low, 12, z.high, z.low );
- z.high := z.high or ( ( bits32 (a.sign) ) shl 31 ) or $7FF80000;
- c:=z;
- end;
- (*----------------------------------------------------------------------------
- | Takes two double-precision floating-point values `a' and `b', one of which
- | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
- | signaling NaN, the invalid exception is raised.
- *----------------------------------------------------------------------------*)
- Procedure propagateFloat64NaN( a: float64; b: float64 ; VAR c: float64 );
- var
- aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN : flag;
- begin
- aIsNaN := float64_is_nan( a );
- aIsSignalingNaN := float64_is_signaling_nan( a );
- bIsNaN := float64_is_nan( b );
- bIsSignalingNaN := float64_is_signaling_nan( b );
- a.high := a.high or $00080000;
- b.high := b.high or $00080000;
- if ( (aIsSignalingNaN<>0) or (bIsSignalingNaN<>0) ) then
- float_raise( float_flag_invalid );
- if bIsSignalingNaN<>0 then
- c := b
- else if aIsSignalingNan<>0 then
- c := a
- else if bIsNan<>0 then
- c := b
- else
- c := a;
- end;
- {$ENDIF}
- (****************************************************************************)
- (* END ENDIAN SPECIFIC CODE *)
- (****************************************************************************)
- {*
- -------------------------------------------------------------------------------
- Returns the fraction bits of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function ExtractFloat32Frac(a : Float32) : Bits32;
- Begin
- ExtractFloat32Frac := A AND $007FFFFF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat32Exp( a: float32 ): Int16;
- Begin
- extractFloat32Exp := (a shr 23) AND $FF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the sign bit of the single-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat32Sign( a: float32 ): Flag;
- Begin
- extractFloat32Sign := a shr 31;
- End;
- {*
- -------------------------------------------------------------------------------
- Normalizes the subnormal single-precision floating-point value represented
- by the denormalized significand `aSig'. The normalized exponent and
- significand are stored at the locations pointed to by `zExpPtr' and
- `zSigPtr', respectively.
- -------------------------------------------------------------------------------
- *}
- Procedure normalizeFloat32Subnormal( aSig : bits32; VAR zExpPtr: Int16; VAR zSigPtr :bits32);
- Var
- ShiftCount : BYTE;
- Begin
- shiftCount := countLeadingZeros32( aSig ) - 8;
- zSigPtr := aSig shl shiftCount;
- zExpPtr := 1 - shiftCount;
- End;
- {*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
- single-precision floating-point value, returning the result. After being
- shifted into the proper positions, the three fields are simply added
- together to form the result. This means that any integer portion of `zSig'
- will be added into the exponent. Since a properly normalized significand
- will have an integer portion equal to 1, the `zExp' input should be 1 less
- than the desired result exponent whenever `zSig' is a complete, normalized
- significand.
- -------------------------------------------------------------------------------
- *}
- Function packFloat32( zSign: Flag; zExp : Int16; zSig: Bits32 ): Float32;
- Begin
- packFloat32 := ( ( bits32( zSign) ) shl 31 ) + ( ( bits32 (zExp) ) shl 23 )
- + zSig;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper single-precision floating-
- point value corresponding to the abstract input. Ordinarily, the abstract
- value is simply rounded and packed into the single-precision format, with
- the inexact exception raised if the abstract input cannot be represented
- exactly. However, if the abstract value is too large, the overflow and
- inexact exceptions are raised and an infinity or maximal finite value is
- returned. If the abstract value is too small, the input value is rounded to
- a subnormal number, and the underflow and inexact exceptions are raised if
- the abstract input cannot be represented exactly as a subnormal single-
- precision floating-point number.
- The input significand `zSig' has its binary point between bits 30
- and 29, which is 7 bits to the left of the usual location. This shifted
- significand must be normalized or smaller. If `zSig' is not normalized,
- `zExp' must be 0; in that case, the result returned is a subnormal number,
- and it must not require rounding. In the usual case that `zSig' is
- normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
- The handling of underflow and overflow follows the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function roundAndPackFloat32( zSign : Flag; zExp : Int16; zSig : Bits32 ) : float32;
- Var
- roundingMode : BYTE;
- roundNearestEven : Flag;
- roundIncrement, roundBits : BYTE;
- IsTiny : Flag;
- Begin
- roundingMode := float_rounding_mode;
- if (roundingMode = float_round_nearest_even) then
- Begin
- roundNearestEven := Flag(TRUE);
- end
- else
- roundNearestEven := Flag(FALSE);
- roundIncrement := $40;
- if ( Boolean(roundNearestEven) = FALSE) then
- Begin
- if ( roundingMode = float_round_to_zero ) Then
- Begin
- roundIncrement := 0;
- End
- else
- Begin
- roundIncrement := $7F;
- if ( zSign <> 0 ) then
- Begin
- if roundingMode = float_round_up then roundIncrement := 0;
- End
- else
- Begin
- if roundingMode = float_round_down then roundIncrement := 0;
- End;
- End
- End;
- roundBits := zSig AND $7F;
- if ($FD <= bits16 (zExp) ) then
- Begin
- if (( $FD < zExp ) OR ( zExp = $FD ) AND ( sbits32 ( zSig + roundIncrement ) < 0 ) ) then
- Begin
- float_raise( float_flag_overflow OR float_flag_inexact );
- roundAndPackFloat32:=packFloat32( zSign, $FF, 0 ) - Flag( roundIncrement = 0 );
- exit;
- End;
- if ( zExp < 0 ) then
- Begin
- isTiny :=
- flag(( float_detect_tininess = float_tininess_before_rounding )
- OR ( zExp < -1 )
- OR ( (zSig + roundIncrement) < $80000000 ));
- shift32RightJamming( zSig, - zExp, zSig );
- zExp := 0;
- roundBits := zSig AND $7F;
- if ( (isTiny = flag(TRUE)) and (roundBits<>0) ) then
- float_raise( float_flag_underflow );
- End;
- End;
- if ( roundBits )<> 0 then
- float_exception_flags := float_flag_inexact OR float_exception_flags;
- zSig := ( zSig + roundIncrement ) shr 7;
- zSig := zSig AND not bits32( bits32( ( roundBits XOR $40 ) = 0 ) and roundNearestEven );
- if ( zSig = 0 ) then zExp := 0;
- roundAndPackFloat32 := packFloat32( zSign, zExp, zSig );
- exit;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand `zSig', and returns the proper single-precision floating-
- point value corresponding to the abstract input. This routine is just like
- `roundAndPackFloat32' except that `zSig' does not have to be normalized.
- Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
- floating-point exponent.
- -------------------------------------------------------------------------------
- *}
- Function normalizeRoundAndPackFloat32( zSign: flag; zExp: int16; zSig:bits32 ): float32;
- Var
- ShiftCount : int8;
- Begin
- shiftCount := countLeadingZeros32( zSig ) - 1;
- normalizeRoundAndPackFloat32 := roundAndPackFloat32( zSign, zExp - shiftCount, zSig shl shiftCount );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the least-significant 32 fraction bits of the double-precision
- floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Frac( a: float64 ): bits32;
- Begin
- extractFloat64Frac := a.low;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the most-significant 20 fraction bits of the double-precision
- floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Frac0(a: float64): bits32;
- Begin
- extractFloat64Frac0 := a.high and $000FFFFF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the least-significant 32 fraction bits of the double-precision
- floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Frac1(a: float64): bits32;
- Begin
- extractFloat64Frac1 := a.low;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the exponent bits of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Exp(a: float64): int16;
- Begin
- extractFloat64Exp:= ( a.high shr 20 ) AND $7FF;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the sign bit of the double-precision floating-point value `a'.
- -------------------------------------------------------------------------------
- *}
- Function extractFloat64Sign(a: float64) : flag;
- Begin
- extractFloat64Sign := a.high shr 31;
- End;
- {*
- -------------------------------------------------------------------------------
- Normalizes the subnormal double-precision floating-point value represented
- by the denormalized significand formed by the concatenation of `aSig0' and
- `aSig1'. The normalized exponent is stored at the location pointed to by
- `zExpPtr'. The most significant 21 bits of the normalized significand are
- stored at the location pointed to by `zSig0Ptr', and the least significant
- 32 bits of the normalized significand are stored at the location pointed to
- by `zSig1Ptr'.
- -------------------------------------------------------------------------------
- *}
- Procedure normalizeFloat64Subnormal(
- aSig0: bits32;
- aSig1: bits32;
- VAR zExpPtr : Int16;
- VAR zSig0Ptr : Bits32;
- VAR zSig1Ptr : Bits32
- );
- Var
- ShiftCount : Int8;
- Begin
- if ( aSig0 = 0 ) then
- Begin
- shiftCount := countLeadingZeros32( aSig1 ) - 11;
- if ( shiftCount < 0 ) then
- Begin
- zSig0Ptr := aSig1 shr ( - shiftCount );
- zSig1Ptr := aSig1 shl ( shiftCount AND 31 );
- End
- else
- Begin
- zSig0Ptr := aSig1 shl shiftCount;
- zSig1Ptr := 0;
- End;
- zExpPtr := - shiftCount - 31;
- End
- else
- Begin
- shiftCount := countLeadingZeros32( aSig0 ) - 11;
- shortShift64Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
- zExpPtr := 1 - shiftCount;
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Packs the sign `zSign', the exponent `zExp', and the significand formed by
- the concatenation of `zSig0' and `zSig1' into a double-precision floating-
- point value, returning the result. After being shifted into the proper
- positions, the three fields `zSign', `zExp', and `zSig0' are simply added
- together to form the most significant 32 bits of the result. This means
- that any integer portion of `zSig0' will be added into the exponent. Since
- a properly normalized significand will have an integer portion equal to 1,
- the `zExp' input should be 1 less than the desired result exponent whenever
- `zSig0' and `zSig1' concatenated form a complete, normalized significand.
- -------------------------------------------------------------------------------
- *}
- Procedure
- packFloat64( zSign: Flag; zExp: Int16; zSig0: Bits32; zSig1 : Bits32; VAR c : float64);
- var
- z: Float64;
- Begin
- z.low := zSig1;
- z.high := ( ( bits32 (zSign) ) shl 31 ) + ( ( bits32 (zExp) ) shl 20 ) + zSig0;
- c := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and extended significand formed by the concatenation of `zSig0', `zSig1',
- and `zSig2', and returns the proper double-precision floating-point value
- corresponding to the abstract input. Ordinarily, the abstract value is
- simply rounded and packed into the double-precision format, with the inexact
- exception raised if the abstract input cannot be represented exactly.
- However, if the abstract value is too large, the overflow and inexact
- exceptions are raised and an infinity or maximal finite value is returned.
- If the abstract value is too small, the input value is rounded to a
- subnormal number, and the underflow and inexact exceptions are raised if the
- abstract input cannot be represented exactly as a subnormal double-precision
- floating-point number.
- The input significand must be normalized or smaller. If the input
- significand is not normalized, `zExp' must be 0; in that case, the result
- returned is a subnormal number, and it must not require rounding. In the
- usual case that the input significand is normalized, `zExp' must be 1 less
- than the ``true'' floating-point exponent. The handling of underflow and
- overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure
- roundAndPackFloat64(
- zSign: Flag; zExp: Int16; zSig0: Bits32; zSig1: Bits32; zSig2: Bits32; Var c: Float64 );
- Var
- roundingMode : Int8;
- roundNearestEven, increment, isTiny : Flag;
- Begin
- roundingMode := float_rounding_mode;
- roundNearestEven := flag( roundingMode = float_round_nearest_even );
- increment := flag( sbits32 (zSig2) < 0 );
- if ( roundNearestEven = flag(FALSE) ) then
- Begin
- if ( roundingMode = float_round_to_zero ) then
- increment := 0
- else
- Begin
- if ( zSign )<> 0 then
- Begin
- increment := flag( roundingMode = float_round_down ) and zSig2;
- End
- else
- Begin
- increment := flag( roundingMode = float_round_up ) and zSig2;
- End
- End
- End;
- if ( $7FD <= bits16 (zExp) ) then
- Begin
- if (( $7FD < zExp )
- or (( zExp = $7FD )
- and (eq64( $001FFFFF, $FFFFFFFF, zSig0, zSig1 )<>0)
- and (increment<>0)
- )
- ) then
- Begin
- float_raise( float_flag_overflow OR float_flag_inexact );
- if (( roundingMode = float_round_to_zero )
- or ( (zSign<>0) and ( roundingMode = float_round_up ) )
- or ( (zSign = 0) and ( roundingMode = float_round_down ) )
- ) then
- Begin
- packFloat64( zSign, $7FE, $000FFFFF, $FFFFFFFF, c );
- exit;
- End;
- packFloat64( zSign, $7FF, 0, 0, c );
- exit;
- End;
- if ( zExp < 0 ) then
- Begin
- isTiny :=
- flag( float_detect_tininess = float_tininess_before_rounding )
- or flag( zExp < -1 )
- or flag(increment = 0)
- or flag(lt64( zSig0, zSig1, $001FFFFF, $FFFFFFFF)<>0);
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, - zExp, zSig0, zSig1, zSig2 );
- zExp := 0;
- if ( isTiny<>0) and (zSig2<>0 ) then float_raise( float_flag_underflow );
- if ( roundNearestEven )<>0 then
- Begin
- increment := flag( sbits32 (zSig2) < 0 );
- End
- else
- Begin
- if ( zSign )<>0 then
- Begin
- increment := flag( roundingMode = float_round_down ) and zSig2;
- End
- else
- Begin
- increment := flag( roundingMode = float_round_up ) and zSig2;
- End
- End;
- End;
- End;
- if ( zSig2 )<>0 then
- float_exception_flags := float_exception_flags OR float_flag_inexact;
- if ( increment )<>0 then
- Begin
- add64( zSig0, zSig1, 0, 1, zSig0, zSig1 );
- zSig1 := zSig1 and not ( bits32(flag( zSig2 + zSig2 = 0 )) and roundNearestEven );
- End
- else
- Begin
- if ( ( zSig0 or zSig1 ) = 0 ) then zExp := 0;
- End;
- packFloat64( zSign, zExp, zSig0, zSig1, c );
- End;
- {*
- -------------------------------------------------------------------------------
- Takes an abstract floating-point value having sign `zSign', exponent `zExp',
- and significand formed by the concatenation of `zSig0' and `zSig1', and
- returns the proper double-precision floating-point value corresponding
- to the abstract input. This routine is just like `roundAndPackFloat64'
- except that the input significand has fewer bits and does not have to be
- normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
- point exponent.
- -------------------------------------------------------------------------------
- *}
- Procedure
- normalizeRoundAndPackFloat64(
- zSign:flag; zExp:int16; zSig0:bits32; zSig1:bits32; VAR c: float64 );
- Var
- shiftCount : int8;
- zSig2 : bits32;
- Begin
- if ( zSig0 = 0 ) then
- Begin
- zSig0 := zSig1;
- zSig1 := 0;
- zExp := zExp -32;
- End;
- shiftCount := countLeadingZeros32( zSig0 ) - 11;
- if ( 0 <= shiftCount ) then
- Begin
- zSig2 := 0;
- shortShift64Left( zSig0, zSig1, shiftCount, zSig0, zSig1 );
- End
- else
- Begin
- shift64ExtraRightJamming
- (zSig0, zSig1, 0, - shiftCount, zSig0, zSig1, zSig2 );
- End;
- zExp := zExp - shiftCount;
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, c );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the single-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function int32_to_float32( a: int32): float32; {$ifdef fpc}[public,Alias:'INT32_TO_FLOAT32'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- zSign : Flag;
- Begin
- if ( a = 0 ) then
- Begin
- int32_to_float32 := 0;
- exit;
- End;
- if ( a = sbits32 ($80000000) ) then
- Begin
- int32_to_float32 := packFloat32( 1, $9E, 0 );
- exit;
- end;
- zSign := flag( a < 0 );
- If zSign<>0 then
- a := -a;
- int32_to_float32:=
- normalizeRoundAndPackFloat32( zSign, $9C, a );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the 32-bit two's complement integer `a' to
- the double-precision floating-point format. The conversion is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure int32_to_float64( a: int32; var c: float64 );{$ifdef fpc} [public,Alias:'INT32_TO_FLOAT64'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- var
- zSign : flag;
- absA : bits32;
- shiftCount : int8;
- zSig0, zSig1 : bits32;
- Begin
- if ( a = 0 ) then
- Begin
- packFloat64( 0, 0, 0, 0, c );
- exit;
- end;
- zSign := flag( a < 0 );
- if ZSign<>0 then
- AbsA := -a
- else
- AbsA := a;
- shiftCount := countLeadingZeros32( absA ) - 11;
- if ( 0 <= shiftCount ) then
- Begin
- zSig0 := absA shl shiftCount;
- zSig1 := 0;
- End
- else
- Begin
- shift64Right( absA, 0, - shiftCount, zSig0, zSig1 );
- End;
- packFloat64( zSign, $412 - shiftCount, zSig0, zSig1,c );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32( a : float32) : int32;{$ifdef fpc} [public,Alias:'FLOAT32_TO_INT32'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign: flag;
- aExp, shiftCount: int16;
- aSig, aSigExtra: bits32;
- z: int32;
- roundingMode: int8;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- shiftCount := aExp - $96;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $9E <= aExp ) then
- Begin
- if ( a <> $CF000000 ) then
- Begin
- float_raise( float_flag_invalid );
- if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
- Begin
- float32_to_int32 := $7FFFFFFF;
- exit;
- End;
- End;
- float32_to_int32 := sbits32 ($80000000);
- exit;
- End;
- z := ( aSig or $00800000 ) shl shiftCount;
- if ( aSign<>0 ) then z := - z;
- End
- else
- Begin
- if ( aExp < $7E ) then
- Begin
- aSigExtra := aExp OR aSig;
- z := 0;
- End
- else
- Begin
- aSig := aSig OR $00800000;
- aSigExtra := aSig shl ( shiftCount and 31 );
- z := aSig shr ( - shiftCount );
- End;
- if ( aSigExtra<>0 ) then
- float_exception_flags := float_exception_flags
- or float_flag_inexact;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- if ( sbits32 (aSigExtra) < 0 ) then
- Begin
- Inc(z);
- if ( bits32 ( aSigExtra shl 1 ) = 0 ) then
- z := z and not 1;
- End;
- if ( aSign<>0 ) then
- z := - z;
- End
- else
- Begin
- aSigExtra := flag( aSigExtra <> 0 );
- if ( aSign<>0 ) then
- Begin
- z := z + (flag( roundingMode = float_round_down ) and aSigExtra);
- z := - z;
- End
- else
- Begin
- z := z + (flag( roundingMode = float_round_up ) and aSigExtra);
- End
- End;
- End;
- float32_to_int32 := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float32_to_int32_round_to_zero( a: Float32 ): int32;
- {$ifdef fpc}[public,Alias:'FLOAT32_TO_INT32_ROUND_TO_ZERO'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign : flag;
- aExp, shiftCount : int16;
- aSig : bits32;
- z : int32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- shiftCount := aExp - $9E;
- if ( 0 <= shiftCount ) then
- Begin
- if ( a <> $CF000000 ) then
- Begin
- float_raise( float_flag_invalid );
- if ( (aSign=0) or ( ( aExp = $FF ) and (aSig<>0) ) ) then
- Begin
- float32_to_int32_round_to_zero := $7FFFFFFF;
- exit;
- end;
- End;
- float32_to_int32_round_to_zero:= sbits32 ($80000000);
- exit;
- End
- else
- if ( aExp <= $7E ) then
- Begin
- if ( aExp or aSig )<>0 then
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- float32_to_int32_round_to_zero := 0;
- exit;
- End;
- aSig := ( aSig or $00800000 ) shl 8;
- z := aSig shr ( - shiftCount );
- if ( bits32 ( aSig shl ( shiftCount and 31 ) )<> 0 ) then
- Begin
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- End;
- if ( aSign<>0 ) then z := - z;
- float32_to_int32_round_to_zero := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the single-precision floating-point value
- `a' to the double-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float32_to_float64( a : float32; var out: Float64);
- {$ifdef fpc}[public,Alias:'FLOAT32_TO_FLOAT64'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign : flag;
- aExp : int16;
- aSig, zSig0, zSig1: bits32;
- tmp : CommonNanT;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- if ( aExp = $FF ) then
- Begin
- if ( aSig<>0 ) then
- Begin
- float32ToCommonNaN(a, tmp);
- commonNaNToFloat64(tmp , out);
- exit;
- End;
- packFloat64( aSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- packFloat64( aSign, 0, 0, 0, out );
- exit;
- end;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- Dec(aExp);
- End;
- shift64Right( aSig, 0, 3, zSig0, zSig1 );
- packFloat64( aSign, aExp + $380, zSig0, zSig1, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Rounds the single-precision floating-point value `a' to an integer,
- and returns the result as a single-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_round_to_int( a: float32): float32;
- {$ifdef fpc}[public,Alias:'FLOAT32_ROUND_TO_INT'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign: flag;
- aExp: int16;
- lastBitMask, roundBitsMask: bits32;
- roundingMode: int8;
- z: float32;
- Begin
- aExp := extractFloat32Exp( a );
- if ( $96 <= aExp ) then
- Begin
- if ( ( aExp = $FF ) and (extractFloat32Frac( a )<>0) ) then
- Begin
- float32_round_to_int:= propagateFloat32NaN( a, a );
- exit;
- End;
- float32_round_to_int:=a;
- exit;
- End;
- if ( aExp <= $7E ) then
- Begin
- if ( bits32 ( a shl 1 ) = 0 ) then
- Begin
- float32_round_to_int:=a;
- exit;
- end;
- float_exception_flags
- := float_exception_flags OR float_flag_inexact;
- aSign := extractFloat32Sign( a );
- case ( float_rounding_mode ) of
- float_round_nearest_even:
- Begin
- if ( ( aExp = $7E ) and (extractFloat32Frac( a )<>0) ) then
- Begin
- float32_round_to_int := packFloat32( aSign, $7F, 0 );
- exit;
- End;
- End;
- float_round_down:
- Begin
- if aSign <> 0 then
- float32_round_to_int := $BF800000
- else
- float32_round_to_int := 0;
- exit;
- End;
- float_round_up:
- Begin
- if aSign <> 0 then
- float32_round_to_int := $80000000
- else
- float32_round_to_int := $3F800000;
- exit;
- End;
- end;
- float32_round_to_int := packFloat32( aSign, 0, 0 );
- End;
- lastBitMask := 1;
- {_____________________________!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!}
- lastBitMask := lastBitMask shl ($96 - aExp);
- roundBitsMask := lastBitMask - 1;
- z := a;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- z := z + (lastBitMask shr 1);
- if ( ( z and roundBitsMask ) = 0 ) then
- z := z and not lastBitMask;
- End
- else if ( roundingMode <> float_round_to_zero ) then
- Begin
- if ( (extractFloat32Sign( z ) xor flag(roundingMode = float_round_up ))<>0 ) then
- Begin
- z := z + roundBitsMask;
- End;
- End;
- z := z and not roundBitsMask;
- if ( z <> a ) then
- float_exception_flags := float_exception_flags or float_flag_inexact;
- float32_round_to_int := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the single-precision
- floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- before being returned. `zSign' is ignored if the result is a NaN.
- The addition is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function addFloat32Sigs( a:float32; b: float32; zSign:flag ): float32;
- Var
- aExp, bExp, zExp: int16;
- aSig, bSig, zSig: bits32;
- expDiff: int16;
- label roundAndPack;
- Begin
- aSig:=extractFloat32Frac( a );
- aExp:=extractFloat32Exp( a );
- bSig:=extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- expDiff := aExp - bExp;
- aSig := aSig shl 6;
- bSig := bSig shl 6;
- if ( 0 < expDiff ) then
- Begin
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0) then
- Begin
- addFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- addFloat32Sigs := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig := bSig or $20000000;
- End;
- shift32RightJamming( bSig, expDiff, bSig );
- zExp := aExp;
- End
- else
- If ( expDiff < 0 ) then
- Begin
- if ( bExp = $FF ) then
- Begin
- if ( bSig<>0 ) then
- Begin
- addFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- end;
- addFloat32Sigs := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig := aSig OR $20000000;
- End;
- shift32RightJamming( aSig, - expDiff, aSig );
- zExp := bExp;
- End
- else
- Begin
- if ( aExp = $FF ) then
- Begin
- if ( aSig OR bSig )<> 0 then
- Begin
- addFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- end;
- addFloat32Sigs := a;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- addFloat32Sigs := packFloat32( zSign, 0, ( aSig + bSig ) shr 6 );
- exit;
- end;
- zSig := $40000000 + aSig + bSig;
- zExp := aExp;
- goto roundAndPack;
- End;
- aSig := aSig OR $20000000;
- zSig := ( aSig + bSig ) shl 1;
- Dec(zExp);
- if ( sbits32 (zSig) < 0 ) then
- Begin
- zSig := aSig + bSig;
- Inc(zExp);
- End;
- roundAndPack:
- addFloat32Sigs := roundAndPackFloat32( zSign, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the single-
- precision floating-point values `a' and `b'. If `zSign' is 1, the
- difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function subFloat32Sigs( a:float32; b:float32; zSign:flag ): float32;
- Var
- aExp, bExp, zExp: int16;
- aSig, bSig, zSig: bits32;
- expDiff : int16;
- label aExpBigger;
- label bExpBigger;
- label aBigger;
- label bBigger;
- label normalizeRoundAndPack;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- expDiff := aExp - bExp;
- aSig := aSig shl 7;
- bSig := bSig shl 7;
- if ( 0 < expDiff ) then goto aExpBigger;
- if ( expDiff < 0 ) then goto bExpBigger;
- if ( aExp = $FF ) then
- Begin
- if ( aSig OR bSig )<> 0 then
- Begin
- subFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- float_raise( float_flag_invalid );
- subFloat32Sigs := float32_default_nan;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- aExp := 1;
- bExp := 1;
- End;
- if ( bSig < aSig ) Then goto aBigger;
- if ( aSig < bSig ) Then goto bBigger;
- subFloat32Sigs := packFloat32( flag(float_rounding_mode = float_round_down), 0, 0 );
- exit;
- bExpBigger:
- if ( bExp = $FF ) then
- Begin
- if ( bSig<>0 ) then
- Begin
- subFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- subFloat32Sigs := packFloat32( zSign XOR 1, $FF, 0 );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig := aSig OR $40000000;
- End;
- shift32RightJamming( aSig, - expDiff, aSig );
- bSig := bSig OR $40000000;
- bBigger:
- zSig := bSig - aSig;
- zExp := bExp;
- zSign := zSign xor 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0) then
- Begin
- subFloat32Sigs := propagateFloat32NaN( a, b );
- exit;
- End;
- subFloat32Sigs := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig := bSig OR $40000000;
- End;
- shift32RightJamming( bSig, expDiff, bSig );
- aSig := aSig OR $40000000;
- aBigger:
- zSig := aSig - bSig;
- zExp := aExp;
- normalizeRoundAndPack:
- Dec(zExp);
- subFloat32Sigs := normalizeRoundAndPackFloat32( zSign, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the single-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_add( a: float32; b:float32 ): float32;{$ifdef fpc} [public,Alias:'FLOAT32_ADD'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign: Flag;
- Begin
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign = bSign ) then
- Begin
- float32_add := addFloat32Sigs( a, b, aSign );
- End
- else
- Begin
- float32_add := subFloat32Sigs( a, b, aSign );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sub( a: float32 ; b:float32 ): float32;{$ifdef fpc} [public,Alias:'FLOAT32_SUB'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign: flag;
- Begin
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign = bSign ) then
- Begin
- float32_sub := subFloat32Sigs( a, b, aSign );
- End
- else
- Begin
- float32_sub := addFloat32Sigs( a, b, aSign );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the single-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_mul(a: float32; b: float32 ) : float32;{$ifdef fpc} [public,Alias:'FLOAT32_MUL'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp : int16;
- aSig, bSig, zSig0, zSig1: bits32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- bSign := extractFloat32Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $FF ) then
- Begin
- if ( (aSig<>0) OR ( ( bExp = $FF ) AND (bSig<>0) ) ) then
- Begin
- float32_mul := propagateFloat32NaN( a, b );
- End;
- if ( ( bExp OR bSig ) = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_mul := float32_default_nan;
- exit;
- End;
- float32_mul := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0 ) then
- Begin
- float32_mul := propagateFloat32NaN( a, b );
- exit;
- End;
- if ( ( aExp OR aSig ) = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_mul := float32_default_nan;
- exit;
- End;
- float32_mul := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- float32_mul := packFloat32( zSign, 0, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- if ( bExp = 0 ) then
- Begin
- if ( bSig = 0 ) then
- Begin
- float32_mul := packFloat32( zSign, 0, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( bSig, bExp, bSig );
- End;
- zExp := aExp + bExp - $7F;
- aSig := ( aSig OR $00800000 ) shl 7;
- bSig := ( bSig OR $00800000 ) shl 8;
- mul32To64( aSig, bSig, zSig0, zSig1 );
- zSig0 := zSig0 OR bits32( zSig1 <> 0 );
- if ( 0 <= sbits32 ( zSig0 shl 1 ) ) then
- Begin
- zSig0 := zSig0 shl 1;
- Dec(zExp);
- End;
- float32_mul := roundAndPackFloat32( zSign, zExp, zSig0 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the single-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_div(a: float32;b: float32 ): float32;{$ifdef fpc} [public,Alias:'FLOAT32_DIV'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp: int16;
- aSig, bSig, zSig, rem0, rem1, term0, term1: bits32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- bSign := extractFloat32Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0 ) then
- Begin
- float32_div := propagateFloat32NaN( a, b );
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0) then
- Begin
- float32_div := propagateFloat32NaN( a, b );
- End;
- float_raise( float_flag_invalid );
- float32_div := float32_default_nan;
- exit;
- End;
- float32_div := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0) then
- Begin
- float32_div := propagateFloat32NaN( a, b );
- exit;
- End;
- float32_div := packFloat32( zSign, 0, 0 );
- exit;
- End;
- if ( bExp = 0 ) Then
- Begin
- if ( bSig = 0 ) Then
- Begin
- if ( ( aExp OR aSig ) = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_div := float32_default_nan;
- exit;
- End;
- float_raise( float_flag_divbyzero );
- float32_div := packFloat32( zSign, $FF, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( bSig, bExp, bSig );
- End;
- if ( aExp = 0 ) Then
- Begin
- if ( aSig = 0 ) Then
- Begin
- float32_div := packFloat32( zSign, 0, 0 );
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- zExp := aExp - bExp + $7D;
- aSig := ( aSig OR $00800000 ) shl 7;
- bSig := ( bSig OR $00800000 ) shl 8;
- if ( bSig <= ( aSig + aSig ) ) then
- Begin
- aSig := aSig shr 1;
- Inc(zExp);
- End;
- zSig := estimateDiv64To32( aSig, 0, bSig );
- if ( ( zSig and $3F ) <= 2 ) then
- Begin
- mul32To64( bSig, zSig, term0, term1 );
- sub64( aSig, 0, term0, term1, rem0, rem1 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig);
- add64( rem0, rem1, 0, bSig, rem0, rem1 );
- End;
- zSig := zSig or bits32( rem1 <> 0 );
- End;
- float32_div := roundAndPackFloat32( zSign, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the single-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_rem(a: float32; b: float32 ):float32;{$ifdef fpc} [public,Alias:'FLOAT32_REM'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, expDiff: int16;
- aSig, bSig, q, allZero, alternateASig: bits32;
- sigMean: sbits32;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- bSig := extractFloat32Frac( b );
- bExp := extractFloat32Exp( b );
- bSign := extractFloat32Sign( b );
- if ( aExp = $FF ) then
- Begin
- if ( (aSig<>0) OR ( ( bExp = $FF ) AND (bSig <>0)) ) then
- Begin
- float32_rem := propagateFloat32NaN( a, b );
- exit;
- End;
- float_raise( float_flag_invalid );
- float32_rem := float32_default_nan;
- exit;
- End;
- if ( bExp = $FF ) then
- Begin
- if ( bSig <> 0 ) then
- Begin
- float32_rem := propagateFloat32NaN( a, b );
- exit;
- End;
- float32_rem := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- if ( bSig = 0 ) then
- Begin
- float_raise( float_flag_invalid );
- float32_rem := float32_default_nan;
- exit;
- End;
- normalizeFloat32Subnormal( bSig, bExp, bSig );
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- float32_rem := a;
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- expDiff := aExp - bExp;
- aSig := ( aSig OR $00800000 ) shl 8;
- bSig := ( bSig OR $00800000 ) shl 8;
- if ( expDiff < 0 ) then
- Begin
- if ( expDiff < -1 ) then
- Begin
- float32_rem := a;
- exit;
- End;
- aSig := aSig shr 1;
- End;
- q := bits32( bSig <= aSig );
- if ( q <> 0) then
- aSig := aSig - bSig;
- expDiff := expDiff - 32;
- while ( 0 < expDiff ) do
- Begin
- q := estimateDiv64To32( aSig, 0, bSig );
- if (2 < q) then
- q := q - 2
- else
- q := 0;
- aSig := - ( ( bSig shr 2 ) * q );
- expDiff := expDiff - 30;
- End;
- expDiff := expDiff + 32;
- if ( 0 < expDiff ) then
- Begin
- q := estimateDiv64To32( aSig, 0, bSig );
- if (2 < q) then
- q := q - 2
- else
- q := 0;
- q := q shr (32 - expDiff);
- bSig := bSig shr 2;
- aSig := ( ( aSig shr 1 ) shl ( expDiff - 1 ) ) - bSig * q;
- End
- else
- Begin
- aSig := aSig shr 2;
- bSig := bSig shr 2;
- End;
- Repeat
- alternateASig := aSig;
- Inc(q);
- aSig := aSig - bSig;
- Until not ( 0 <= sbits32 (aSig) );
- sigMean := aSig + alternateASig;
- if ( ( sigMean < 0 ) OR ( ( sigMean = 0 ) AND (( q and 1 )<>0) ) ) then
- Begin
- aSig := alternateASig;
- End;
- zSign := flag( sbits32 (aSig) < 0 );
- if ( zSign<>0 ) then
- aSig := - aSig;
- float32_rem := normalizeRoundAndPackFloat32( aSign xor zSign, bExp, aSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the single-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_sqrt(a: float32 ): float32;{$ifdef fpc} [public,Alias:'FLOAT32_SQRT'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign : flag;
- aExp, zExp : int16;
- aSig, zSig, rem0, rem1, term0, term1: bits32;
- label roundAndPack;
- Begin
- aSig := extractFloat32Frac( a );
- aExp := extractFloat32Exp( a );
- aSign := extractFloat32Sign( a );
- if ( aExp = $FF ) then
- Begin
- if ( aSig <> 0) then
- Begin
- float32_sqrt := propagateFloat32NaN( a, 0 );
- exit;
- End;
- if ( aSign = 0) then
- Begin
- float32_sqrt := a;
- exit;
- End;
- float_raise( float_flag_invalid );
- float32_sqrt := float32_default_nan;
- exit;
- End;
- if ( aSign <> 0) then
- Begin
- if ( ( aExp OR aSig ) = 0 ) then
- Begin
- float32_sqrt := a;
- exit;
- End;
- float_raise( float_flag_invalid );
- float32_sqrt := float32_default_nan;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( aSig = 0 ) then
- Begin
- float32_sqrt := 0;
- exit;
- End;
- normalizeFloat32Subnormal( aSig, aExp, aSig );
- End;
- zExp := ( ( aExp - $7F ) shr 1 ) + $7E;
- aSig := ( aSig OR $00800000 ) shl 8;
- zSig := estimateSqrt32( aExp, aSig ) + 2;
- if ( ( zSig and $7F ) <= 5 ) then
- Begin
- if ( zSig < 2 ) then
- Begin
- zSig := $7FFFFFFF;
- goto roundAndPack;
- End
- else
- Begin
- aSig := aSig shr (aExp and 1);
- mul32To64( zSig, zSig, term0, term1 );
- sub64( aSig, 0, term0, term1, rem0, rem1 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig);
- shortShift64Left( 0, zSig, 1, term0, term1 );
- term1 := term1 or 1;
- add64( rem0, rem1, term0, term1, rem0, rem1 );
- End;
- zSig := zSig OR bits32( ( rem0 OR rem1 ) <> 0 );
- End;
- End;
- shift32RightJamming( zSig, 1, zSig );
- roundAndPack:
- float32_sqrt := roundAndPackFloat32( 0, zExp, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_eq( a:float32; b:float32): flag;{$ifdef fpc} [public,Alias:'FLOAT32_EQ'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Begin
- if ((( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0))
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- if ( (float32_is_signaling_nan( a )<>0) OR (float32_is_signaling_nan( b )<>0) ) then
- Begin
- float_raise( float_flag_invalid );
- End;
- float32_eq := 0;
- exit;
- End;
- float32_eq := flag( a = b ) OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_le( a: float32; b : float32 ):flag;{$ifdef fpc} [public,Alias:'FLOAT32_LE'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- var
- aSign, bSign: flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0) )
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float32_le := 0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_le := aSign OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 );
- exit;
- End;
- float32_le := flag(flag( a = b ) OR flag( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_lt( a:float32 ; b : float32): flag;{$ifdef fpc} [public,Alias:'FLOAT32_LT'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- var
- aSign, bSign: flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a ) <>0))
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b ) <>0) )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float32_lt :=0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_lt := aSign AND flag( bits32 ( ( a OR b ) shl 1 ) <> 0 );
- exit;
- End;
- float32_lt := flag(flag( a <> b ) AND flag( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The invalid exception is
- raised if either operand is a NaN. Otherwise, the comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_eq_signaling( a: float32; b: float32) : flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a ) <> 0))
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b ) <> 0))
- ) then
- Begin
- float_raise( float_flag_invalid );
- float32_eq_signaling := 0;
- exit;
- End;
- float32_eq_signaling := (flag( a = b ) OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- cause an exception. Otherwise, the comparison is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_le_quiet( a: float32 ; b : float32 ): flag;
- Var
- aSign, bSign: flag;
- aExp, bExp: int16;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0) )
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- if ( (float32_is_signaling_nan( a )<>0) OR (float32_is_signaling_nan( b )<>0) ) then
- Begin
- float_raise( float_flag_invalid );
- End;
- float32_le_quiet := 0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_le_quiet := aSign OR flag( bits32 ( ( a OR b ) shl 1 ) = 0 );
- exit;
- End;
- float32_le_quiet := flag(flag( a = b ) OR flag( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the single-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- exception. Otherwise, the comparison is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float32_lt_quiet( a: float32 ; b: float32 ): flag;
- Var
- aSign, bSign: flag;
- Begin
- if ( ( ( extractFloat32Exp( a ) = $FF ) AND (extractFloat32Frac( a )<>0) )
- OR ( ( extractFloat32Exp( b ) = $FF ) AND (extractFloat32Frac( b )<>0) )
- ) then
- Begin
- if ( (float32_is_signaling_nan( a )<>0) OR (float32_is_signaling_nan( b )<>0) ) then
- Begin
- float_raise( float_flag_invalid );
- End;
- float32_lt_quiet := 0;
- exit;
- End;
- aSign := extractFloat32Sign( a );
- bSign := extractFloat32Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float32_lt_quiet := aSign AND flag( bits32 ( ( a OR b ) shl 1 ) <> 0 );
- exit;
- End;
- float32_lt_quiet := flag(flag( a <> b ) AND ( aSign xor flag( a < b ) ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic---which means in particular that the conversion is rounded
- according to the current rounding mode. If `a' is a NaN, the largest
- positive integer is returned. Otherwise, if the conversion overflows, the
- largest integer with the same sign as `a' is returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32(a: float64): int32;{$ifdef fpc} [public,Alias:'FLOAT64_TO_INT32'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- var
- aSign: flag;
- aExp, shiftCount: int16;
- aSig0, aSig1, absZ, aSigExtra: bits32;
- z: int32;
- roundingMode: int8;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- shiftCount := aExp - $413;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $41E < aExp ) then
- Begin
- if ( ( aExp = $7FF ) AND (( aSig0 OR aSig1 )<>0) ) then
- aSign := 0;
- goto invalid;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra );
- if ( $80000000 < absZ ) then
- goto invalid;
- End
- else
- Begin
- aSig1 := flag( aSig1 <> 0 );
- if ( aExp < $3FE ) then
- Begin
- aSigExtra := aExp OR aSig0 OR aSig1;
- absZ := 0;
- End
- else
- Begin
- aSig0 := aSig0 OR $00100000;
- aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1;
- absZ := aSig0 shr ( - shiftCount );
- End;
- End;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- if ( sbits32(aSigExtra) < 0 ) then
- Begin
- Inc(absZ);
- if ( bits32 ( aSigExtra shl 1 ) = 0 ) then
- absZ := absZ and not 1;
- End;
- if aSign <> 0 then
- z := - absZ
- else
- z := absZ;
- End
- else
- Begin
- aSigExtra := bits32( aSigExtra <> 0 );
- if ( aSign <> 0) then
- Begin
- z := - ( absZ
- + ( int32( roundingMode = float_round_down ) and aSigExtra ) );
- End
- else
- Begin
- z := absZ + ( int32( roundingMode = float_round_up ) and aSigExtra );
- End
- End;
- if ( (( aSign xor flag( z < 0 ) )<>0) AND (z<>0) ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- if (aSign <> 0 ) then
- float64_to_int32 := sbits32 ($80000000)
- else
- float64_to_int32 := $7FFFFFFF;
- exit;
- End;
- if ( aSigExtra <> 0) then
- float_exception_flags := float_exception_flags or float_flag_inexact;
- float64_to_int32 := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the 32-bit two's complement integer format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic, except that the conversion is always rounded toward zero.
- If `a' is a NaN, the largest positive integer is returned. Otherwise, if
- the conversion overflows, the largest integer with the same sign as `a' is
- returned.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_int32_round_to_zero(a: float64 ): int32;
- {$ifdef fpc} [public,Alias:'FLOAT64_TO_INT32_ROUND_TO_ZERO'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign: flag;
- aExp, shiftCount: int16;
- aSig0, aSig1, absZ, aSigExtra: bits32;
- z: int32;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- shiftCount := aExp - $413;
- if ( 0 <= shiftCount ) then
- Begin
- if ( $41E < aExp ) then
- Begin
- if ( ( aExp = $7FF ) AND (( aSig0 OR aSig1 )<>0) ) then
- aSign := 0;
- goto invalid;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, shiftCount, absZ, aSigExtra );
- End
- else
- Begin
- if ( aExp < $3FF ) then
- Begin
- if ( aExp OR aSig0 OR aSig1 )<>0 then
- Begin
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- End;
- float64_to_int32_round_to_zero := 0;
- exit;
- End;
- aSig0 := aSig0 or $00100000;
- aSigExtra := ( aSig0 shl ( shiftCount and 31 ) ) OR aSig1;
- absZ := aSig0 shr ( - shiftCount );
- End;
- if aSign <> 0 then
- z := - absZ
- else
- z := absZ;
- if ( (( aSign xor flag( z < 0 )) <> 0) AND (z<>0) ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- if (aSign <> 0) then
- float64_to_int32_round_to_zero := sbits32 ($80000000)
- else
- float64_to_int32_round_to_zero := $7FFFFFFF;
- exit;
- End;
- if ( aSigExtra <> 0) then
- float_exception_flags := float_exception_flags or float_flag_inexact;
- float64_to_int32_round_to_zero := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of converting the double-precision floating-point value
- `a' to the single-precision floating-point format. The conversion is
- performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_to_float32(a: float64 ): float32;{$ifdef fpc} [public,Alias:'FLOAT64_TO_FLOAT32'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign: flag;
- aExp: int16;
- aSig0, aSig1, zSig: bits32;
- allZero: bits32;
- tmp : CommonNanT;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- float64ToCommonNaN( a, tmp );
- float64_to_float32 := commonNaNToFloat32( tmp );
- exit;
- End;
- float64_to_float32 := packFloat32( aSign, $FF, 0 );
- exit;
- End;
- shift64RightJamming( aSig0, aSig1, 22, allZero, zSig );
- if ( aExp <> 0) then
- zSig := zSig OR $40000000;
- float64_to_float32 := roundAndPackFloat32( aSign, aExp - $381, zSig );
- End;
- {*
- -------------------------------------------------------------------------------
- Rounds the double-precision floating-point value `a' to an integer,
- and returns the result as a double-precision floating-point value. The
- operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_round_to_int(a: float64; var out: float64 );{$ifdef fpc} [public,Alias:'FLOAT64_ROUND_TO_INT'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign: flag;
- aExp: int16;
- lastBitMask, roundBitsMask: bits32;
- roundingMode: int8;
- z: float64;
- Begin
- aExp := extractFloat64Exp( a );
- if ( $413 <= aExp ) then
- Begin
- if ( $433 <= aExp ) then
- Begin
- if ( ( aExp = $7FF )
- AND
- (
- ( extractFloat64Frac0( a ) OR extractFloat64Frac1( a )
- ) <>0)
- ) then
- Begin
- propagateFloat64NaN( a, a, out );
- exit;
- End;
- out := a;
- exit;
- End;
- lastBitMask := 1;
- lastBitMask := ( lastBitMask shl ( $432 - aExp ) ) shl 1;
- roundBitsMask := lastBitMask - 1;
- z := a;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- if ( lastBitMask <> 0) then
- Begin
- add64( z.high, z.low, 0, lastBitMask shr 1, z.high, z.low );
- if ( ( z.low and roundBitsMask ) = 0 ) then
- z.low := z.low and not lastBitMask;
- End
- else
- Begin
- if ( sbits32 (z.low) < 0 ) then
- Begin
- Inc(z.high);
- if ( bits32 ( z.low shl 1 ) = 0 ) then
- z.high := z.high and not 1;
- End;
- End;
- End
- else if ( roundingMode <> float_round_to_zero ) then
- Begin
- if ( extractFloat64Sign( z )
- xor flag( roundingMode = float_round_up ) )<> 0 then
- Begin
- add64( z.high, z.low, 0, roundBitsMask, z.high, z.low );
- End;
- End;
- z.low := z.low and not roundBitsMask;
- End
- else
- Begin
- if ( aExp <= $3FE ) then
- Begin
- if ( ( ( bits32 ( a.high shl 1 ) ) OR a.low ) = 0 ) then
- Begin
- out := a;
- exit;
- End;
- float_exception_flags := float_exception_flags or
- float_flag_inexact;
- aSign := extractFloat64Sign( a );
- case ( float_rounding_mode ) of
- float_round_nearest_even:
- Begin
- if ( ( aExp = $3FE )
- AND ( (extractFloat64Frac0( a ) OR extractFloat64Frac1( a ) )<>0)
- ) then
- Begin
- packFloat64( aSign, $3FF, 0, 0, out );
- exit;
- End;
- End;
- float_round_down:
- Begin
- if aSign<>0 then
- packFloat64( 1, $3FF, 0, 0, out )
- else
- packFloat64( 0, 0, 0, 0, out );
- exit;
- End;
- float_round_up:
- Begin
- if aSign <> 0 then
- packFloat64( 1, 0, 0, 0, out )
- else
- packFloat64( 0, $3FF, 0, 0, out );
- exit;
- End;
- end;
- packFloat64( aSign, 0, 0, 0, out );
- exit;
- End;
- lastBitMask := 1;
- lastBitMask := lastBitMask shl ($413 - aExp);
- roundBitsMask := lastBitMask - 1;
- z.low := 0;
- z.high := a.high;
- roundingMode := float_rounding_mode;
- if ( roundingMode = float_round_nearest_even ) then
- Begin
- z.high := z.high + lastBitMask shr 1;
- if ( ( ( z.high and roundBitsMask ) OR a.low ) = 0 ) then
- Begin
- z.high := z.high and not lastBitMask;
- End;
- End
- else if ( roundingMode <> float_round_to_zero ) then
- Begin
- if ( extractFloat64Sign( z )
- xor flag( roundingMode = float_round_up ) )<> 0 then
- Begin
- z.high := z.high or bits32( a.low <> 0 );
- z.high := z.high + roundBitsMask;
- End;
- End;
- z.high := z.high and not roundBitsMask;
- End;
- if ( ( z.low <> a.low ) OR ( z.high <> a.high ) ) then
- Begin
- float_exception_flags :=
- float_exception_flags or float_flag_inexact;
- End;
- out := z;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the absolute values of the double-precision
- floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
- before being returned. `zSign' is ignored if the result is a NaN.
- The addition is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure addFloat64Sigs( a:float64 ; b: float64 ; zSign:flag; Var out: float64 );
- Var
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2: bits32;
- expDiff: int16;
- label shiftRight1;
- label roundAndPack;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- expDiff := aExp - bExp;
- if ( 0 < expDiff ) then
- Begin
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- end;
- out := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig0 := bSig0 or $00100000;
- End;
- shift64ExtraRightJamming(
- bSig0, bSig1, 0, expDiff, bSig0, bSig1, zSig2 );
- zExp := aExp;
- End
- else if ( expDiff < 0 ) then
- Begin
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- packFloat64( zSign, $7FF, 0, 0, out );
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig0 := aSig0 or $00100000;
- End;
- shift64ExtraRightJamming(
- aSig0, aSig1, 0, - expDiff, aSig0, aSig1, zSig2 );
- zExp := bExp;
- End
- else
- Begin
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 OR bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- out := a;
- exit;
- End;
- add64( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1 );
- if ( aExp = 0 ) then
- Begin
- packFloat64( zSign, 0, zSig0, zSig1, out );
- exit;
- End;
- zSig2 := 0;
- zSig0 := zSig0 or $00200000;
- zExp := aExp;
- goto shiftRight1;
- End;
- aSig0 := aSig0 or $00100000;
- add64( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1 );
- Dec(zExp);
- if ( zSig0 < $00200000 ) then
- goto roundAndPack;
- Inc(zExp);
- shiftRight1:
- shift64ExtraRightJamming( zSig0, zSig1, zSig2, 1, zSig0, zSig1, zSig2 );
- roundAndPack:
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the absolute values of the double-
- precision floating-point values `a' and `b'. If `zSign' is 1, the
- difference is negated before being returned. `zSign' is ignored if the
- result is a NaN. The subtraction is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure subFloat64Sigs( a:float64; b: float64 ; zSign:flag; Var out: float64 );
- Var
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1: bits32;
- expDiff: int16;
- z: float64;
- label aExpBigger;
- label bExpBigger;
- label aBigger;
- label bBigger;
- label normalizeRoundAndPack;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- expDiff := aExp - bExp;
- shortShift64Left( aSig0, aSig1, 10, aSig0, aSig1 );
- shortShift64Left( bSig0, bSig1, 10, bSig0, bSig1 );
- if ( 0 < expDiff ) then goto aExpBigger;
- if ( expDiff < 0 ) then goto bExpBigger;
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 OR bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- aExp := 1;
- bExp := 1;
- End;
- if ( bSig0 < aSig0 ) then goto aBigger;
- if ( aSig0 < bSig0 ) then goto bBigger;
- if ( bSig1 < aSig1 ) then goto aBigger;
- if ( aSig1 < bSig1 ) then goto bBigger;
- packFloat64( flag(float_rounding_mode = float_round_down), 0, 0, 0 , out);
- exit;
- bExpBigger:
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- packFloat64( zSign xor 1, $7FF, 0, 0, out );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- Inc(expDiff);
- End
- else
- Begin
- aSig0 := aSig0 or $40000000;
- End;
- shift64RightJamming( aSig0, aSig1, - expDiff, aSig0, aSig1 );
- bSig0 := bSig0 or $40000000;
- bBigger:
- sub64( bSig0, bSig1, aSig0, aSig1, zSig0, zSig1 );
- zExp := bExp;
- zSign := zSign xor 1;
- goto normalizeRoundAndPack;
- aExpBigger:
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- out := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- Dec(expDiff);
- End
- else
- Begin
- bSig0 := bSig0 or $40000000;
- End;
- shift64RightJamming( bSig0, bSig1, expDiff, bSig0, bSig1 );
- aSig0 := aSig0 or $40000000;
- aBigger:
- sub64( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1 );
- zExp := aExp;
- normalizeRoundAndPack:
- Dec(zExp);
- normalizeRoundAndPackFloat64( zSign, zExp - 10, zSig0, zSig1, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of adding the double-precision floating-point values `a'
- and `b'. The operation is performed according to the IEC/IEEE Standard for
- Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_add( a: float64; b : float64; Var out : float64);
- {$ifdef fpc}[public,Alias:'FLOAT64_ADD'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign: flag;
- Begin
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign = bSign ) then
- Begin
- addFloat64Sigs( a, b, aSign, out );
- End
- else
- Begin
- subFloat64Sigs( a, b, aSign, out );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of subtracting the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sub(a: float64; b : float64; var out: float64);
- {$ifdef fpc}[public,Alias:'FLOAT64_SUB'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign: flag;
- Begin
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign = bSign ) then
- Begin
- subFloat64Sigs( a, b, aSign, out );
- End
- else
- Begin
- addFloat64Sigs( a, b, aSign, out );
- End;
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of multiplying the double-precision floating-point values
- `a' and `b'. The operation is performed according to the IEC/IEEE Standard
- for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_mul( a: float64; b:float64; Var out: float64);
- {$ifdef fpc}[public,Alias:'FLOAT64_MUL'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3: bits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- bSign := extractFloat64Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $7FF ) then
- Begin
- if ( (( aSig0 OR aSig1 ) <>0)
- OR ( ( bExp = $7FF ) AND (( bSig0 OR bSig1 )<>0) ) ) then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- if ( ( bExp OR bSig0 OR bSig1 ) = 0 ) then goto invalid;
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 )<> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- if ( ( aExp OR aSig0 OR aSig1 ) = 0 ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- if ( bExp = 0 ) then
- Begin
- if ( ( bSig0 OR bSig1 ) = 0 ) then
- Begin
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( bSig0, bSig1, bExp, bSig0, bSig1 );
- End;
- zExp := aExp + bExp - $400;
- aSig0 := aSig0 or $00100000;
- shortShift64Left( bSig0, bSig1, 12, bSig0, bSig1 );
- mul64To128( aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3 );
- add64( zSig0, zSig1, aSig0, aSig1, zSig0, zSig1 );
- zSig2 := zSig2 or flag( zSig3 <> 0 );
- if ( $00200000 <= zSig0 ) then
- Begin
- shift64ExtraRightJamming(
- zSig0, zSig1, zSig2, 1, zSig0, zSig1, zSig2 );
- Inc(zExp);
- End;
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the result of dividing the double-precision floating-point value `a'
- by the corresponding value `b'. The operation is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_div(a: float64; b : float64 ; var out: float64 );
- {$ifdef fpc}[public,Alias:'FLOAT64_DIV'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, zExp: int16;
- aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2: bits32;
- rem0, rem1, rem2, rem3, term0, term1, term2, term3: bits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- bSign := extractFloat64Sign( b );
- zSign := aSign xor bSign;
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 )<> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- end;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 )<>0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- goto invalid;
- End;
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 )<> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- if ( ( bSig0 OR bSig1 ) = 0 ) then
- Begin
- if ( ( aExp OR aSig0 OR aSig1 ) = 0 ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- float_raise( float_flag_divbyzero );
- packFloat64( zSign, $7FF, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( bSig0, bSig1, bExp, bSig0, bSig1 );
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- packFloat64( zSign, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- zExp := aExp - bExp + $3FD;
- shortShift64Left( aSig0 OR $00100000, aSig1, 11, aSig0, aSig1 );
- shortShift64Left( bSig0 OR $00100000, bSig1, 11, bSig0, bSig1 );
- if ( le64( bSig0, bSig1, aSig0, aSig1 )<>0 ) then
- Begin
- shift64Right( aSig0, aSig1, 1, aSig0, aSig1 );
- Inc(zExp);
- End;
- zSig0 := estimateDiv64To32( aSig0, aSig1, bSig0 );
- mul64By32To96( bSig0, bSig1, zSig0, term0, term1, term2 );
- sub96( aSig0, aSig1, 0, term0, term1, term2, rem0, rem1, rem2 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig0);
- add96( rem0, rem1, rem2, 0, bSig0, bSig1, rem0, rem1, rem2 );
- End;
- zSig1 := estimateDiv64To32( rem1, rem2, bSig0 );
- if ( ( zSig1 and $3FF ) <= 4 ) then
- Begin
- mul64By32To96( bSig0, bSig1, zSig1, term1, term2, term3 );
- sub96( rem1, rem2, 0, term1, term2, term3, rem1, rem2, rem3 );
- while ( sbits32 (rem1) < 0 ) do
- Begin
- Dec(zSig1);
- add96( rem1, rem2, rem3, 0, bSig0, bSig1, rem1, rem2, rem3 );
- End;
- zSig1 := zSig1 or flag( ( rem1 OR rem2 OR rem3 ) <> 0 );
- End;
- shift64ExtraRightJamming( zSig0, zSig1, 0, 11, zSig0, zSig1, zSig2 );
- roundAndPackFloat64( zSign, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the remainder of the double-precision floating-point value `a'
- with respect to the corresponding value `b'. The operation is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_rem(a: float64; b : float64; var out: float64);
- {$ifdef fpc}[public,Alias:'FLOAT64_REM'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign, zSign: flag;
- aExp, bExp, expDiff: int16;
- aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2: bits32;
- allZero, alternateASig0, alternateASig1, sigMean1: bits32;
- sigMean0: sbits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- bSig1 := extractFloat64Frac1( b );
- bSig0 := extractFloat64Frac0( b );
- bExp := extractFloat64Exp( b );
- bSign := extractFloat64Sign( b );
- if ( aExp = $7FF ) then
- Begin
- if ((( aSig0 OR aSig1 )<>0)
- OR ( ( bExp = $7FF ) AND (( bSig0 OR bSig1 )<>0) ) ) then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- goto invalid;
- End;
- if ( bExp = $7FF ) then
- Begin
- if ( bSig0 OR bSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, b, out );
- exit;
- End;
- out := a;
- exit;
- End;
- if ( bExp = 0 ) then
- Begin
- if ( ( bSig0 OR bSig1 ) = 0 ) then
- Begin
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- normalizeFloat64Subnormal( bSig0, bSig1, bExp, bSig0, bSig1 );
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- out := a;
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- expDiff := aExp - bExp;
- if ( expDiff < -1 ) then
- Begin
- out := a;
- exit;
- End;
- shortShift64Left(
- aSig0 OR $00100000, aSig1, 11 - flag( expDiff < 0 ), aSig0, aSig1 );
- shortShift64Left( bSig0 OR $00100000, bSig1, 11, bSig0, bSig1 );
- q := le64( bSig0, bSig1, aSig0, aSig1 );
- if ( q )<>0 then
- sub64( aSig0, aSig1, bSig0, bSig1, aSig0, aSig1 );
- expDiff := expDiff - 32;
- while ( 0 < expDiff ) do
- Begin
- q := estimateDiv64To32( aSig0, aSig1, bSig0 );
- if 4 < q then
- q:= q - 4
- else
- q := 0;
- mul64By32To96( bSig0, bSig1, q, term0, term1, term2 );
- shortShift96Left( term0, term1, term2, 29, term1, term2, allZero );
- shortShift64Left( aSig0, aSig1, 29, aSig0, allZero );
- sub64( aSig0, 0, term1, term2, aSig0, aSig1 );
- expDiff := expDiff - 29;
- End;
- if ( -32 < expDiff ) then
- Begin
- q := estimateDiv64To32( aSig0, aSig1, bSig0 );
- if 4 < q then
- q := q - 4
- else
- q := 0;
- q := q shr (- expDiff);
- shift64Right( bSig0, bSig1, 8, bSig0, bSig1 );
- expDiff := expDiff + 24;
- if ( expDiff < 0 ) then
- Begin
- shift64Right( aSig0, aSig1, - expDiff, aSig0, aSig1 );
- End
- else
- Begin
- shortShift64Left( aSig0, aSig1, expDiff, aSig0, aSig1 );
- End;
- mul64By32To96( bSig0, bSig1, q, term0, term1, term2 );
- sub64( aSig0, aSig1, term1, term2, aSig0, aSig1 );
- End
- else
- Begin
- shift64Right( aSig0, aSig1, 8, aSig0, aSig1 );
- shift64Right( bSig0, bSig1, 8, bSig0, bSig1 );
- End;
- Repeat
- alternateASig0 := aSig0;
- alternateASig1 := aSig1;
- Inc(q);
- sub64( aSig0, aSig1, bSig0, bSig1, aSig0, aSig1 );
- Until not ( 0 <= sbits32 (aSig0) );
- add64(
- aSig0, aSig1, alternateASig0, alternateASig1, bits32(sigMean0), sigMean1 );
- if ( ( sigMean0 < 0 )
- OR ( ( ( sigMean0 OR sigMean1 ) = 0 ) AND (( q AND 1 )<>0) ) ) then
- Begin
- aSig0 := alternateASig0;
- aSig1 := alternateASig1;
- End;
- zSign := flag( sbits32 (aSig0) < 0 );
- if ( zSign <> 0 ) then
- sub64( 0, 0, aSig0, aSig1, aSig0, aSig1 );
- normalizeRoundAndPackFloat64( aSign xor zSign, bExp - 4, aSig0, aSig1, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns the square root of the double-precision floating-point value `a'.
- The operation is performed according to the IEC/IEEE Standard for Binary
- Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Procedure float64_sqrt( a: float64; var out: float64 );
- {$ifdef fpc}[public,Alias:'FLOAT64_SQRT'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign: flag;
- aExp, zExp: int16;
- aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0: bits32;
- rem0, rem1, rem2, rem3, term0, term1, term2, term3: bits32;
- z: float64;
- label invalid;
- Begin
- aSig1 := extractFloat64Frac1( a );
- aSig0 := extractFloat64Frac0( a );
- aExp := extractFloat64Exp( a );
- aSign := extractFloat64Sign( a );
- if ( aExp = $7FF ) then
- Begin
- if ( aSig0 OR aSig1 ) <> 0 then
- Begin
- propagateFloat64NaN( a, a, out );
- exit;
- End;
- if ( aSign = 0) then
- Begin
- out := a;
- exit;
- End;
- goto invalid;
- End;
- if ( aSign <> 0 ) then
- Begin
- if ( ( aExp OR aSig0 OR aSig1 ) = 0 ) then
- Begin
- out := a;
- exit;
- End;
- invalid:
- float_raise( float_flag_invalid );
- z.low := float64_default_nan_low;
- z.high := float64_default_nan_high;
- out := z;
- exit;
- End;
- if ( aExp = 0 ) then
- Begin
- if ( ( aSig0 OR aSig1 ) = 0 ) then
- Begin
- packFloat64( 0, 0, 0, 0, out );
- exit;
- End;
- normalizeFloat64Subnormal( aSig0, aSig1, aExp, aSig0, aSig1 );
- End;
- zExp := ( ( aExp - $3FF ) shr 1 ) + $3FE;
- aSig0 := aSig0 or $00100000;
- shortShift64Left( aSig0, aSig1, 11, term0, term1 );
- zSig0 := ( estimateSqrt32( aExp, term0 ) shr 1 ) + 1;
- if ( zSig0 = 0 ) then
- zSig0 := $7FFFFFFF;
- doubleZSig0 := zSig0 + zSig0;
- shortShift64Left( aSig0, aSig1, 9 - ( aExp and 1 ), aSig0, aSig1 );
- mul32To64( zSig0, zSig0, term0, term1 );
- sub64( aSig0, aSig1, term0, term1, rem0, rem1 );
- while ( sbits32 (rem0) < 0 ) do
- Begin
- Dec(zSig0);
- doubleZSig0 := doubleZSig0 - 2;
- add64( rem0, rem1, 0, doubleZSig0 OR 1, rem0, rem1 );
- End;
- zSig1 := estimateDiv64To32( rem1, 0, doubleZSig0 );
- if ( ( zSig1 and $1FF ) <= 5 ) then
- Begin
- if ( zSig1 = 0 ) then
- zSig1 := 1;
- mul32To64( doubleZSig0, zSig1, term1, term2 );
- sub64( rem1, 0, term1, term2, rem1, rem2 );
- mul32To64( zSig1, zSig1, term2, term3 );
- sub96( rem1, rem2, 0, 0, term2, term3, rem1, rem2, rem3 );
- while ( sbits32 (rem1) < 0 ) do
- Begin
- Dec(zSig1);
- shortShift64Left( 0, zSig1, 1, term2, term3 );
- term3 := term3 or 1;
- term2 := term2 or doubleZSig0;
- add96( rem1, rem2, rem3, 0, term2, term3, rem1, rem2, rem3 );
- End;
- zSig1 := zSig1 or bits32( ( rem1 OR rem2 OR rem3 ) <> 0 );
- End;
- shift64ExtraRightJamming( zSig0, zSig1, 0, 10, zSig0, zSig1, zSig2 );
- roundAndPackFloat64( 0, zExp, zSig0, zSig1, zSig2, out );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_eq(a: float64; b: float64): flag;
- {$ifdef fpc}[public,Alias:'FLOAT64_EQ'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- if ( (float64_is_signaling_nan( a )<>0) OR (float64_is_signaling_nan( b )<>0) ) then
- float_raise( float_flag_invalid );
- float64_eq := 0;
- exit;
- End;
- float64_eq := flag(
- ( a.low = b.low )
- AND ( ( a.high = b.high )
- OR ( ( a.low = 0 )
- AND ( bits32 ( ( a.high OR b.high ) shl 1 ) = 0 ) )
- ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- or equal to the corresponding value `b', and 0 otherwise. The comparison
- is performed according to the IEC/IEEE Standard for Binary Floating-Point
- Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_le(a: float64;b: float64): flag;
- {$ifdef fpc}[public,Alias:'FLOAT64_LE'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign: flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float64_le := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_le := flag(
- (aSign <> 0)
- OR ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- = 0 ));
- exit;
- End;
- if aSign <> 0 then
- float64_le := le64( b.high, b.low, a.high, a.low )
- else
- float64_le := le64( a.high, a.low, b.high, b.low );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. The comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_lt(a: float64;b: float64): flag;
- {$ifdef fpc}[public,Alias:'FLOAT64_LT'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- Var
- aSign, bSign: flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float64_lt := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_lt := flag(
- (aSign <> 0)
- AND ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- <> 0 ));
- exit;
- End;
- if aSign <> 0 then
- float64_lt := lt64( b.high, b.low, a.high, a.low )
- else
- float64_lt := lt64( a.high, a.low, b.high, b.low );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is equal to
- the corresponding value `b', and 0 otherwise. The invalid exception is
- raised if either operand is a NaN. Otherwise, the comparison is performed
- according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_eq_signaling( a: float64; b: float64): flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- float_raise( float_flag_invalid );
- float64_eq_signaling := 0;
- exit;
- End;
- float64_eq_signaling := flag(
- ( a.low = b.low )
- AND ( ( a.high = b.high )
- OR ( ( a.low = 0 )
- AND ( bits32 ( ( a.high OR b.high ) shl 1 ) = 0 ) )
- ));
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than or
- equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
- cause an exception. Otherwise, the comparison is performed according to the
- IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_le_quiet(a: float64 ; b: float64 ): flag;
- Var
- aSign, bSign : flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- if ( (float64_is_signaling_nan( a )<>0) OR (float64_is_signaling_nan( b )<>0) ) then
- float_raise( float_flag_invalid );
- float64_le_quiet := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_le_quiet := flag
- ((aSign <> 0)
- OR ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- = 0 ));
- exit;
- End;
- if aSign <> 0 then
- float64_le_quiet := le64( b.high, b.low, a.high, a.low )
- else
- float64_le_quiet := le64( a.high, a.low, b.high, b.low );
- End;
- {*
- -------------------------------------------------------------------------------
- Returns 1 if the double-precision floating-point value `a' is less than
- the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
- exception. Otherwise, the comparison is performed according to the IEC/IEEE
- Standard for Binary Floating-Point Arithmetic.
- -------------------------------------------------------------------------------
- *}
- Function float64_lt_quiet(a: float64; b: float64 ): Flag;
- Var
- aSign, bSign: flag;
- Begin
- if
- (
- ( extractFloat64Exp( a ) = $7FF )
- AND
- (
- (extractFloat64Frac0( a ) OR extractFloat64Frac1( a )) <>0
- )
- )
- OR (
- ( extractFloat64Exp( b ) = $7FF )
- AND (
- (extractFloat64Frac0( b ) OR (extractFloat64Frac1( b )) <> 0
- )
- )
- ) then
- Begin
- if ( (float64_is_signaling_nan( a )<>0) OR (float64_is_signaling_nan( b )<>0) ) then
- float_raise( float_flag_invalid );
- float64_lt_quiet := 0;
- exit;
- End;
- aSign := extractFloat64Sign( a );
- bSign := extractFloat64Sign( b );
- if ( aSign <> bSign ) then
- Begin
- float64_lt_quiet := flag(
- (aSign<>0)
- AND ( ( ( bits32 ( ( a.high OR b.high ) shl 1 ) ) OR a.low OR b.low )
- <> 0 ));
- exit;
- End;
- If aSign <> 0 then
- float64_lt_quiet := lt64( b.high, b.low, a.high, a.low )
- else
- float64_lt_quiet := lt64( a.high, a.low, b.high, b.low );
- End;
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the single-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float32( a: int64 ): float32;
- {$ifdef fpc}[public,Alias:'INT64_TO_FLOAT32'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- var
- zSign : flag;
- absA : uint64;
- shiftCount: int8;
- zSig : bits32;
- intval : int64rec;
- Begin
- if ( a = 0 ) then
- begin
- int64_to_float32 := 0;
- exit;
- end;
- if a < 0 then
- zSign := flag(TRUE)
- else
- zSign := flag(FALSE);
- if zSign<>0 then
- absA := -a
- else
- absA := a;
- shiftCount := countLeadingZeros64( absA ) - 40;
- if ( 0 <= shiftCount ) then
- begin
- int64_to_float32:= packFloat32( zSign, $95 - shiftCount, absA shl shiftCount );
- end
- else
- begin
- shiftCount := shiftCount + 7;
- if ( shiftCount < 0 ) then
- begin
- intval.low := int64rec(AbsA).low;
- intval.high := int64rec(AbsA).high;
- shift64RightJamming( intval.low, intval.high, - shiftCount,
- intval.low, intval.high);
- int64rec(absA).low := intval.low;
- int64rec(absA).high := intval.high;
- end
- else
- absA := absA shl shiftCount;
- int64_to_float32:=roundAndPackFloat32( zSign, $9C - shiftCount, absA );
- end;
- End;
- {*----------------------------------------------------------------------------
- | Returns the result of converting the 64-bit two's complement integer `a'
- | to the double-precision floating-point format. The conversion is performed
- | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
- *----------------------------------------------------------------------------*}
- function int64_to_float64( a: int64 ): float64;
- {$ifdef fpc}[public,Alias:'INT64_TO_FLOAT64'];{$ifdef hascompilerproc} compilerproc; {$endif}{$endif}
- var
- zSign : flag;
- float_result : float64;
- intval : int64rec;
- AbsA : bits64;
- shiftcount : int8;
- zSig0, zSig1 : bits32;
- Begin
- if ( a = 0 ) then
- Begin
- packFloat64( 0, 0, 0, 0, float_result );
- exit;
- end;
- zSign := flag( a < 0 );
- if ZSign<>0 then
- AbsA := -a
- else
- AbsA := a;
- shiftCount := countLeadingZeros64( absA ) - 11;
- if ( 0 <= shiftCount ) then
- Begin
- absA := absA shl shiftcount;
- zSig0:=int64rec(absA).high;
- zSig1:=int64rec(absA).low;
- End
- else
- Begin
- shift64Right( absA, 0, - shiftCount, zSig0, zSig1 );
- End;
- packFloat64( zSign, $432 - shiftCount, zSig0, zSig1, float_result );
- int64_to_float64:= float_result;
- End;
- end.
|