cpubase.pas 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the i8086, i386 and x86-64 architecture
  4. * This code was inspired by the NASM sources
  5. The Netwide Assembler is Copyright (c) 1996 Simon Tatham and
  6. Julian Hall. All rights reserved.
  7. This program is free software; you can redistribute it and/or modify
  8. it under the terms of the GNU General Public License as published by
  9. the Free Software Foundation; either version 2 of the License, or
  10. (at your option) any later version.
  11. This program is distributed in the hope that it will be useful,
  12. but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. GNU General Public License for more details.
  15. You should have received a copy of the GNU General Public License
  16. along with this program; if not, write to the Free Software
  17. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. ****************************************************************************
  19. }
  20. {# Base unit for processor information. This unit contains
  21. enumerations of registers, opcodes, sizes, and other
  22. such things which are processor specific.
  23. }
  24. unit cpubase;
  25. {$i fpcdefs.inc}
  26. interface
  27. uses
  28. globals,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. {$if defined(x86_64)}
  36. TAsmOp={$i x8664op.inc}
  37. {$elseif defined(i386)}
  38. TAsmOp={$i i386op.inc}
  39. {$elseif defined(i8086)}
  40. TAsmOp={$i i8086op.inc}
  41. {$endif}
  42. { This should define the array of instructions as string }
  43. op2strtable=array[tasmop] of string[16];
  44. {$ifdef i8086}
  45. ImmInt = SmallInt;
  46. {$else i8086}
  47. ImmInt = Longint;
  48. {$endif i8086}
  49. const
  50. { First value of opcode enumeration }
  51. firstop = low(tasmop);
  52. { Last value of opcode enumeration }
  53. lastop = high(tasmop);
  54. {*****************************************************************************
  55. Registers
  56. *****************************************************************************}
  57. const
  58. { Integer Super registers }
  59. RS_NO = $ffffffff;
  60. RS_RAX = $00; {EAX}
  61. RS_RCX = $01; {ECX}
  62. RS_RDX = $02; {EDX}
  63. RS_RBX = $03; {EBX}
  64. RS_RSI = $04; {ESI}
  65. RS_RDI = $05; {EDI}
  66. RS_RBP = $06; {EBP}
  67. RS_RSP = $07; {ESP}
  68. RS_R8 = $08; {R8}
  69. RS_R9 = $09; {R9}
  70. RS_R10 = $0a; {R10}
  71. RS_R11 = $0b; {R11}
  72. RS_R12 = $0c; {R12}
  73. RS_R13 = $0d; {R13}
  74. RS_R14 = $0e; {R14}
  75. RS_R15 = $0f; {R15}
  76. { create aliases to allow code sharing between x86-64 and i386 }
  77. RS_EAX = RS_RAX;
  78. RS_EBX = RS_RBX;
  79. RS_ECX = RS_RCX;
  80. RS_EDX = RS_RDX;
  81. RS_ESI = RS_RSI;
  82. RS_EDI = RS_RDI;
  83. RS_EBP = RS_RBP;
  84. RS_ESP = RS_RSP;
  85. { create aliases to allow code sharing between i386 and i8086 }
  86. RS_AX = RS_RAX;
  87. RS_BX = RS_RBX;
  88. RS_CX = RS_RCX;
  89. RS_DX = RS_RDX;
  90. RS_SI = RS_RSI;
  91. RS_DI = RS_RDI;
  92. RS_BP = RS_RBP;
  93. RS_SP = RS_RSP;
  94. { Number of first imaginary register }
  95. first_int_imreg = $10;
  96. { Float Super registers }
  97. RS_ST0 = $00;
  98. RS_ST1 = $01;
  99. RS_ST2 = $02;
  100. RS_ST3 = $03;
  101. RS_ST4 = $04;
  102. RS_ST5 = $05;
  103. RS_ST6 = $06;
  104. RS_ST7 = $07;
  105. RS_ST = $08;
  106. { Number of first imaginary register }
  107. first_fpu_imreg = $09;
  108. { MM Super registers }
  109. RS_XMM0 = $00;
  110. RS_XMM1 = $01;
  111. RS_XMM2 = $02;
  112. RS_XMM3 = $03;
  113. RS_XMM4 = $04;
  114. RS_XMM5 = $05;
  115. RS_XMM6 = $06;
  116. RS_XMM7 = $07;
  117. RS_XMM8 = $08;
  118. RS_XMM9 = $09;
  119. RS_XMM10 = $0a;
  120. RS_XMM11 = $0b;
  121. RS_XMM12 = $0c;
  122. RS_XMM13 = $0d;
  123. RS_XMM14 = $0e;
  124. RS_XMM15 = $0f;
  125. {$if defined(x86_64)}
  126. RS_RFLAGS = $06;
  127. {$elseif defined(i386)}
  128. RS_EFLAGS = $06;
  129. {$elseif defined(i8086)}
  130. RS_FLAGS = $06;
  131. {$endif}
  132. { Number of first imaginary register }
  133. {$ifdef x86_64}
  134. first_mm_imreg = $10;
  135. {$else x86_64}
  136. first_mm_imreg = $08;
  137. {$endif x86_64}
  138. { The subregister that specifies the entire register and an address }
  139. {$if defined(x86_64)}
  140. { Hammer }
  141. R_SUBWHOLE = R_SUBQ;
  142. R_SUBADDR = R_SUBQ;
  143. {$elseif defined(i386)}
  144. { i386 }
  145. R_SUBWHOLE = R_SUBD;
  146. R_SUBADDR = R_SUBD;
  147. {$elseif defined(i8086)}
  148. { i8086 }
  149. R_SUBWHOLE = R_SUBW;
  150. R_SUBADDR = R_SUBW;
  151. {$endif}
  152. { Available Registers }
  153. {$if defined(x86_64)}
  154. {$i r8664con.inc}
  155. {$elseif defined(i386)}
  156. {$i r386con.inc}
  157. {$elseif defined(i8086)}
  158. {$i r8086con.inc}
  159. {$endif}
  160. type
  161. { Number of registers used for indexing in tables }
  162. {$if defined(x86_64)}
  163. tregisterindex=0..{$i r8664nor.inc}-1;
  164. {$elseif defined(i386)}
  165. tregisterindex=0..{$i r386nor.inc}-1;
  166. {$elseif defined(i8086)}
  167. tregisterindex=0..{$i r8086nor.inc}-1;
  168. {$endif}
  169. const
  170. regnumber_table : array[tregisterindex] of tregister = (
  171. {$if defined(x86_64)}
  172. {$i r8664num.inc}
  173. {$elseif defined(i386)}
  174. {$i r386num.inc}
  175. {$elseif defined(i8086)}
  176. {$i r8086num.inc}
  177. {$endif}
  178. );
  179. regstabs_table : array[tregisterindex] of shortint = (
  180. {$if defined(x86_64)}
  181. {$i r8664stab.inc}
  182. {$elseif defined(i386)}
  183. {$i r386stab.inc}
  184. {$elseif defined(i8086)}
  185. {$i r8086stab.inc}
  186. {$endif}
  187. );
  188. regdwarf_table : array[tregisterindex] of shortint = (
  189. {$if defined(x86_64)}
  190. {$i r8664dwrf.inc}
  191. {$elseif defined(i386)}
  192. {$i r386dwrf.inc}
  193. {$elseif defined(i8086)}
  194. {$i r8086dwrf.inc}
  195. {$endif}
  196. );
  197. {$if defined(x86_64)}
  198. RS_DEFAULTFLAGS = RS_RFLAGS;
  199. NR_DEFAULTFLAGS = NR_RFLAGS;
  200. {$elseif defined(i386)}
  201. RS_DEFAULTFLAGS = RS_EFLAGS;
  202. NR_DEFAULTFLAGS = NR_EFLAGS;
  203. {$elseif defined(i8086)}
  204. RS_DEFAULTFLAGS = RS_FLAGS;
  205. NR_DEFAULTFLAGS = NR_FLAGS;
  206. {$endif}
  207. type
  208. totherregisterset = set of tregisterindex;
  209. {*****************************************************************************
  210. Conditions
  211. *****************************************************************************}
  212. type
  213. TAsmCond=(C_None,
  214. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  215. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  216. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  217. );
  218. const
  219. cond2str:array[TAsmCond] of string[3]=('',
  220. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  221. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  222. 'ns','nz','o','p','pe','po','s','z'
  223. );
  224. {*****************************************************************************
  225. Flags
  226. *****************************************************************************}
  227. type
  228. TResFlags = (F_E,F_NE,F_G,F_L,F_GE,F_LE,F_C,F_NC,
  229. F_A,F_AE,F_B,F_BE,
  230. F_S,F_NS,F_O,F_NO,
  231. { For IEEE-compliant floating-point compares,
  232. same as normal counterparts but additionally check PF }
  233. F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE);
  234. const
  235. FPUFlags = [F_FE,F_FNE,F_FA,F_FAE,F_FB,F_FBE];
  236. FPUFlags2Flags: array[F_FE..F_FBE] of TResFlags = (
  237. F_E,F_NE,F_A,F_AE,F_B,F_BE
  238. );
  239. {*****************************************************************************
  240. Constants
  241. *****************************************************************************}
  242. const
  243. { declare aliases }
  244. LOC_SSEREGISTER = LOC_MMREGISTER;
  245. LOC_CSSEREGISTER = LOC_CMMREGISTER;
  246. max_operands = 4;
  247. maxfpuregs = 8;
  248. {*****************************************************************************
  249. CPU Dependent Constants
  250. *****************************************************************************}
  251. {$i cpubase.inc}
  252. {*****************************************************************************
  253. Helpers
  254. *****************************************************************************}
  255. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  256. function reg2opsize(r:Tregister):topsize;
  257. function reg_cgsize(const reg: tregister): tcgsize;
  258. function is_calljmp(o:tasmop):boolean;
  259. procedure inverse_flags(var f: TResFlags);
  260. function flags_to_cond(const f: TResFlags) : TAsmCond;
  261. function is_segment_reg(r:tregister):boolean;
  262. function findreg_by_number(r:Tregister):tregisterindex;
  263. function std_regnum_search(const s:string):Tregister;
  264. function std_regname(r:Tregister):string;
  265. function dwarf_reg(r:tregister):shortint;
  266. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  267. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  268. { checks whether two segment registers are normally equal in the current memory model }
  269. function segment_regs_equal(r1,r2:tregister):boolean;
  270. { checks whether the specified op is an x86 string instruction (e.g. cmpsb, movsd, scasw, etc.) }
  271. function is_x86_string_op(op: TAsmOp): boolean;
  272. { checks whether the specified op is an x86 parameterless string instruction
  273. (e.g. returns true for movsb, cmpsw, etc, but returns false for movs, cmps, etc.) }
  274. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  275. { checks whether the specified op is an x86 parameterized string instruction
  276. (e.g. returns true for movs, cmps, etc, but returns false for movsb, cmpsb, etc.) }
  277. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  278. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  279. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  280. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  281. { returns the 0-based operand number (intel syntax) of the ds:[si] param of
  282. a x86 string instruction }
  283. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  284. { returns the 0-based operand number (intel syntax) of the es:[di] param of
  285. a x86 string instruction }
  286. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  287. {$ifdef i8086}
  288. { return whether we need to add an extra FWAIT instruction before the given
  289. instruction, when we're targeting the i8087. This includes almost all x87
  290. instructions, but certain ones, which always have or have not a built in
  291. FWAIT prefix are excluded (e.g. FINIT,FNINIT,etc.). }
  292. function requires_fwait_on_8087(op: TAsmOp): boolean;
  293. {$endif i8086}
  294. implementation
  295. uses
  296. globtype,
  297. rgbase,verbose;
  298. const
  299. {$if defined(x86_64)}
  300. std_regname_table : TRegNameTable = (
  301. {$i r8664std.inc}
  302. );
  303. regnumber_index : array[tregisterindex] of tregisterindex = (
  304. {$i r8664rni.inc}
  305. );
  306. std_regname_index : array[tregisterindex] of tregisterindex = (
  307. {$i r8664sri.inc}
  308. );
  309. {$elseif defined(i386)}
  310. std_regname_table : TRegNameTable = (
  311. {$i r386std.inc}
  312. );
  313. regnumber_index : array[tregisterindex] of tregisterindex = (
  314. {$i r386rni.inc}
  315. );
  316. std_regname_index : array[tregisterindex] of tregisterindex = (
  317. {$i r386sri.inc}
  318. );
  319. {$elseif defined(i8086)}
  320. std_regname_table : TRegNameTable = (
  321. {$i r8086std.inc}
  322. );
  323. regnumber_index : array[tregisterindex] of tregisterindex = (
  324. {$i r8086rni.inc}
  325. );
  326. std_regname_index : array[tregisterindex] of tregisterindex = (
  327. {$i r8086sri.inc}
  328. );
  329. {$endif}
  330. {*****************************************************************************
  331. Helpers
  332. *****************************************************************************}
  333. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  334. begin
  335. case s of
  336. OS_8,OS_S8:
  337. cgsize2subreg:=R_SUBL;
  338. OS_16,OS_S16:
  339. cgsize2subreg:=R_SUBW;
  340. OS_32,OS_S32:
  341. cgsize2subreg:=R_SUBD;
  342. OS_64,OS_S64:
  343. cgsize2subreg:=R_SUBQ;
  344. OS_M64:
  345. cgsize2subreg:=R_SUBNONE;
  346. OS_F32,OS_F64,OS_C64:
  347. case regtype of
  348. R_FPUREGISTER:
  349. cgsize2subreg:=R_SUBWHOLE;
  350. R_MMREGISTER:
  351. case s of
  352. OS_F32:
  353. cgsize2subreg:=R_SUBMMS;
  354. OS_F64:
  355. cgsize2subreg:=R_SUBMMD;
  356. else
  357. internalerror(2009071901);
  358. end;
  359. else
  360. internalerror(2009071902);
  361. end;
  362. OS_M128,OS_MS128,OS_MF128,OS_MD128:
  363. cgsize2subreg:=R_SUBMMX;
  364. OS_M256,OS_MS256,OS_MF256,OS_MD256:
  365. cgsize2subreg:=R_SUBMMY;
  366. OS_M512,OS_MS512,OS_MF512,OS_MD512:
  367. cgsize2subreg:=R_SUBMMZ;
  368. OS_NO:
  369. { error message should have been thrown already before, so avoid only
  370. an internal error }
  371. cgsize2subreg:=R_SUBNONE;
  372. else
  373. internalerror(200301231);
  374. end;
  375. end;
  376. function reg_cgsize(const reg: tregister): tcgsize;
  377. const subreg2cgsize:array[Tsubregister] of Tcgsize =
  378. (OS_NO,OS_8,OS_8,OS_16,OS_32,OS_64,OS_NO,OS_NO,OS_NO,OS_F32,OS_F64,OS_NO,OS_M128,OS_M256,OS_M512,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO,OS_NO);
  379. begin
  380. case getregtype(reg) of
  381. R_INTREGISTER :
  382. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  383. R_FPUREGISTER :
  384. reg_cgsize:=OS_F80;
  385. R_MMXREGISTER:
  386. reg_cgsize:=OS_M64;
  387. R_MMREGISTER:
  388. reg_cgsize:=subreg2cgsize[getsubreg(reg)];
  389. R_SPECIALREGISTER :
  390. case reg of
  391. NR_CS,NR_DS,NR_ES,NR_SS,NR_FS,NR_GS:
  392. reg_cgsize:=OS_16;
  393. {$ifdef x86_64}
  394. NR_DR0..NR_TR7:
  395. reg_cgsize:=OS_64;
  396. {$endif x86_64}
  397. else
  398. reg_cgsize:=OS_32
  399. end
  400. else
  401. internalerror(2003031801);
  402. end;
  403. end;
  404. function reg2opsize(r:Tregister):topsize;
  405. const
  406. subreg2opsize : array[tsubregister] of topsize =
  407. (S_NO,S_B,S_B,S_W,S_L,S_Q,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO,S_NO);
  408. begin
  409. reg2opsize:=S_L;
  410. case getregtype(r) of
  411. R_INTREGISTER :
  412. reg2opsize:=subreg2opsize[getsubreg(r)];
  413. R_FPUREGISTER :
  414. reg2opsize:=S_FL;
  415. R_MMXREGISTER,
  416. R_MMREGISTER :
  417. reg2opsize:=S_MD;
  418. R_SPECIALREGISTER :
  419. begin
  420. case r of
  421. NR_CS,NR_DS,NR_ES,
  422. NR_SS,NR_FS,NR_GS :
  423. reg2opsize:=S_W;
  424. end;
  425. end;
  426. else
  427. internalerror(200303181);
  428. end;
  429. end;
  430. function is_calljmp(o:tasmop):boolean;
  431. begin
  432. case o of
  433. A_CALL,
  434. {$if defined(i386) or defined(i8086)}
  435. A_JCXZ,
  436. {$endif defined(i386) or defined(i8086)}
  437. A_JECXZ,
  438. {$ifdef x86_64}
  439. A_JRCXZ,
  440. {$endif x86_64}
  441. A_JMP,
  442. A_LOOP,
  443. A_LOOPE,
  444. A_LOOPNE,
  445. A_LOOPNZ,
  446. A_LOOPZ,
  447. A_LCALL,
  448. A_LJMP,
  449. A_Jcc :
  450. is_calljmp:=true;
  451. else
  452. is_calljmp:=false;
  453. end;
  454. end;
  455. procedure inverse_flags(var f: TResFlags);
  456. const
  457. inv_flags: array[TResFlags] of TResFlags =
  458. (F_NE,F_E,F_LE,F_GE,F_L,F_G,F_NC,F_C,
  459. F_BE,F_B,F_AE,F_A,
  460. F_NS,F_S,F_NO,F_O,
  461. F_FNE,F_FE,F_FBE,F_FB,F_FAE,F_FA);
  462. begin
  463. f:=inv_flags[f];
  464. end;
  465. function flags_to_cond(const f: TResFlags) : TAsmCond;
  466. const
  467. flags_2_cond : array[TResFlags] of TAsmCond =
  468. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE,C_S,C_NS,C_O,C_NO,
  469. C_None,C_None,C_None,C_None,C_None,C_None);
  470. begin
  471. result := flags_2_cond[f];
  472. if (result=C_None) then
  473. InternalError(2014041301);
  474. end;
  475. function is_segment_reg(r:tregister):boolean;
  476. begin
  477. result:=false;
  478. case r of
  479. NR_CS,NR_DS,NR_ES,
  480. NR_SS,NR_FS,NR_GS :
  481. result:=true;
  482. end;
  483. end;
  484. function findreg_by_number(r:Tregister):tregisterindex;
  485. var
  486. hr : tregister;
  487. begin
  488. { for the name the sub reg doesn't matter }
  489. hr:=r;
  490. if (getregtype(hr)=R_MMREGISTER) and
  491. (getsubreg(hr)<>R_SUBMMY) then
  492. setsubreg(hr,R_SUBMMX);
  493. result:=findreg_by_number_table(hr,regnumber_index);
  494. end;
  495. function std_regnum_search(const s:string):Tregister;
  496. begin
  497. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  498. end;
  499. function std_regname(r:Tregister):string;
  500. var
  501. p : tregisterindex;
  502. begin
  503. if (getregtype(r)=R_MMXREGISTER) or
  504. ((getregtype(r)=R_MMREGISTER) and not(getsubreg(r) in [R_SUBMMX,R_SUBMMY])) then
  505. r:=newreg(getregtype(r),getsupreg(r),R_SUBNONE);
  506. p:=findreg_by_number(r);
  507. if p<>0 then
  508. result:=std_regname_table[p]
  509. else
  510. result:=generic_regname(r);
  511. end;
  512. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  513. const
  514. inverse: array[TAsmCond] of TAsmCond=(C_None,
  515. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  516. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  517. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  518. );
  519. begin
  520. result := inverse[c];
  521. end;
  522. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  523. begin
  524. result := c1 = c2;
  525. end;
  526. function dwarf_reg(r:tregister):shortint;
  527. begin
  528. result:=regdwarf_table[findreg_by_number(r)];
  529. if result=-1 then
  530. internalerror(200603251);
  531. end;
  532. function segment_regs_equal(r1, r2: tregister): boolean;
  533. begin
  534. if not is_segment_reg(r1) or not is_segment_reg(r2) then
  535. internalerror(2013062301);
  536. { every segment register is equal to itself }
  537. if r1=r2 then
  538. exit(true);
  539. {$if defined(i8086)}
  540. case current_settings.x86memorymodel of
  541. mm_tiny:
  542. begin
  543. { CS=DS=SS }
  544. if ((r1=NR_CS) or (r1=NR_DS) or (r1=NR_SS)) and
  545. ((r2=NR_CS) or (r2=NR_DS) or (r2=NR_SS)) then
  546. exit(true);
  547. { the remaining are distinct from each other }
  548. exit(false);
  549. end;
  550. mm_small,mm_medium:
  551. begin
  552. { DS=SS }
  553. if ((r1=NR_DS) or (r1=NR_SS)) and
  554. ((r2=NR_DS) or (r2=NR_SS)) then
  555. exit(true);
  556. { the remaining are distinct from each other }
  557. exit(false);
  558. end;
  559. mm_compact,mm_large,mm_huge:
  560. { all segment registers are different in these models }
  561. exit(false);
  562. else
  563. internalerror(2013062302);
  564. end;
  565. {$elseif defined(i386) or defined(x86_64)}
  566. { DS=SS=ES }
  567. if ((r1=NR_DS) or (r1=NR_SS) or (r1=NR_ES)) and
  568. ((r2=NR_DS) or (r2=NR_SS) or (r2=NR_ES)) then
  569. exit(true);
  570. { the remaining are distinct from each other }
  571. exit(false);
  572. {$endif}
  573. end;
  574. function is_x86_string_op(op: TAsmOp): boolean;
  575. begin
  576. case op of
  577. {$ifdef x86_64}
  578. A_MOVSQ,
  579. A_CMPSQ,
  580. A_SCASQ,
  581. A_LODSQ,
  582. A_STOSQ,
  583. {$endif x86_64}
  584. A_MOVSB,A_MOVSW,A_MOVSD,
  585. A_CMPSB,A_CMPSW,A_CMPSD,
  586. A_SCASB,A_SCASW,A_SCASD,
  587. A_LODSB,A_LODSW,A_LODSD,
  588. A_STOSB,A_STOSW,A_STOSD,
  589. A_INSB, A_INSW, A_INSD,
  590. A_OUTSB,A_OUTSW,A_OUTSD,
  591. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  592. result:=true;
  593. else
  594. result:=false;
  595. end;
  596. end;
  597. function is_x86_parameterless_string_op(op: TAsmOp): boolean;
  598. begin
  599. case op of
  600. {$ifdef x86_64}
  601. A_MOVSQ,
  602. A_CMPSQ,
  603. A_SCASQ,
  604. A_LODSQ,
  605. A_STOSQ,
  606. {$endif x86_64}
  607. A_MOVSB,A_MOVSW,A_MOVSD,
  608. A_CMPSB,A_CMPSW,A_CMPSD,
  609. A_SCASB,A_SCASW,A_SCASD,
  610. A_LODSB,A_LODSW,A_LODSD,
  611. A_STOSB,A_STOSW,A_STOSD,
  612. A_INSB, A_INSW, A_INSD,
  613. A_OUTSB,A_OUTSW,A_OUTSD:
  614. result:=true;
  615. else
  616. result:=false;
  617. end;
  618. end;
  619. function is_x86_parameterized_string_op(op: TAsmOp): boolean;
  620. begin
  621. case op of
  622. A_MOVS,A_CMPS,A_SCAS,A_LODS,A_STOS,A_INS,A_OUTS:
  623. result:=true;
  624. else
  625. result:=false;
  626. end;
  627. end;
  628. function x86_parameterized_string_op_param_count(op: TAsmOp): shortint;
  629. begin
  630. case op of
  631. A_MOVS,A_CMPS,A_INS,A_OUTS:
  632. result:=2;
  633. A_SCAS,A_LODS,A_STOS:
  634. result:=1;
  635. else
  636. internalerror(2017101203);
  637. end;
  638. end;
  639. function x86_param2paramless_string_op(op: TAsmOp): TAsmOp;
  640. begin
  641. case op of
  642. A_MOVSB,A_MOVSW,A_MOVSD{$ifdef x86_64},A_MOVSQ{$endif}:
  643. result:=A_MOVS;
  644. A_CMPSB,A_CMPSW,A_CMPSD{$ifdef x86_64},A_CMPSQ{$endif}:
  645. result:=A_CMPS;
  646. A_SCASB,A_SCASW,A_SCASD{$ifdef x86_64},A_SCASQ{$endif}:
  647. result:=A_SCAS;
  648. A_LODSB,A_LODSW,A_LODSD{$ifdef x86_64},A_LODSQ{$endif}:
  649. result:=A_LODS;
  650. A_STOSB,A_STOSW,A_STOSD{$ifdef x86_64},A_STOSQ{$endif}:
  651. result:=A_STOS;
  652. A_INSB, A_INSW, A_INSD:
  653. result:=A_INS;
  654. A_OUTSB,A_OUTSW,A_OUTSD:
  655. result:=A_OUTS;
  656. else
  657. internalerror(2017101201);
  658. end;
  659. end;
  660. function get_x86_string_op_size(op: TAsmOp): TOpSize;
  661. begin
  662. case op of
  663. A_MOVSB,A_CMPSB,A_SCASB,A_LODSB,A_STOSB,A_INSB,A_OUTSB:
  664. result:=S_B;
  665. A_MOVSW,A_CMPSW,A_SCASW,A_LODSW,A_STOSW,A_INSW,A_OUTSW:
  666. result:=S_W;
  667. A_MOVSD,A_CMPSD,A_SCASD,A_LODSD,A_STOSD,A_INSD,A_OUTSD:
  668. result:=S_L;
  669. {$ifdef x86_64}
  670. A_MOVSQ,A_CMPSQ,A_SCASQ,A_LODSQ,A_STOSQ:
  671. result:=S_Q;
  672. {$endif x86_64}
  673. else
  674. internalerror(2017101202);
  675. end;
  676. end;
  677. function get_x86_string_op_si_param(op: TAsmOp):shortint;
  678. begin
  679. case op of
  680. A_MOVS,A_OUTS:
  681. result:=1;
  682. A_CMPS,A_LODS:
  683. result:=0;
  684. A_SCAS,A_STOS,A_INS:
  685. result:=-1;
  686. else
  687. internalerror(2017101102);
  688. end;
  689. end;
  690. function get_x86_string_op_di_param(op: TAsmOp):shortint;
  691. begin
  692. case op of
  693. A_MOVS,A_SCAS,A_STOS,A_INS:
  694. result:=0;
  695. A_CMPS:
  696. result:=1;
  697. A_LODS,A_OUTS:
  698. result:=-1;
  699. else
  700. internalerror(2017101202);
  701. end;
  702. end;
  703. {$ifdef i8086}
  704. function requires_fwait_on_8087(op: TAsmOp): boolean;
  705. begin
  706. case op of
  707. A_F2XM1,A_FABS,A_FADD,A_FADDP,A_FBLD,A_FBSTP,A_FCHS,A_FCOM,A_FCOMP,
  708. A_FCOMPP,A_FDECSTP,A_FDIV,A_FDIVP,A_FDIVR,A_FDIVRP,
  709. A_FFREE,A_FIADD,A_FICOM,A_FICOMP,A_FIDIV,A_FIDIVR,A_FILD,
  710. A_FIMUL,A_FINCSTP,A_FIST,A_FISTP,A_FISUB,A_FISUBR,A_FLD,A_FLD1,
  711. A_FLDCW,A_FLDENV,A_FLDL2E,A_FLDL2T,A_FLDLG2,A_FLDLN2,A_FLDPI,A_FLDZ,
  712. A_FMUL,A_FMULP,A_FNOP,A_FPATAN,A_FPREM,A_FPTAN,A_FRNDINT,
  713. A_FRSTOR,A_FSCALE,A_FSQRT,A_FST,
  714. A_FSTP,A_FSUB,A_FSUBP,A_FSUBR,A_FSUBRP,A_FTST,
  715. A_FXAM,A_FXCH,A_FXTRACT,A_FYL2X,A_FYL2XP1:
  716. result:=true;
  717. else
  718. result:=false;
  719. end;
  720. end;
  721. {$endif i8086}
  722. end.