cpubase.pas 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414
  1. {
  2. Copyright (c) 2016-2017 by Karoly Balogh
  3. Contains the base types for the WebAssembly
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. { This Unit contains the base types for the Java Virtual Machine
  18. }
  19. unit cpubase;
  20. {$i fpcdefs.inc}
  21. interface
  22. uses
  23. globtype,
  24. aasmbase,cpuinfo,cgbase;
  25. {*****************************************************************************
  26. Assembler Opcodes
  27. *****************************************************************************}
  28. type
  29. TAsmOp=(A_None,
  30. // control flow
  31. a_block, a_loop, a_br, a_br_if, a_br_table, a_if, a_else, a_end_block,
  32. a_end_loop, a_end_if, a_end_function, a_return, a_unreachable,
  33. // basic
  34. a_nop, a_drop, a_i32_const, a_i64_const, a_f32_const, a_f64_const,
  35. a_get_local, a_set_local, a_tee_local, a_get_global, a_set_global,
  36. a_select, a_call, a_call_indirect,
  37. // integer
  38. a_i32_add, a_i64_add, a_i32_sub, a_i64_sub, a_i32_mul, a_i64_mul,
  39. a_i32_div_s, a_i64_div_s, a_i32_div_u, a_i64_div_u, a_i32_rem_s, a_i64_rem_s,
  40. a_i32_rem_u, a_i64_rem_u, a_i32_and, a_i64_and, a_i32_or, a_i64_or,
  41. a_i32_xor, a_i64_xor, a_i32_shl, a_i64_shl, a_i32_shr_s, a_i64_shr_s,
  42. a_i32_shr_u, a_i64_shr_u, a_i32_rotl, a_i64_rotl, a_i32_rotr, a_i64_rotr,
  43. a_i32_clz, a_i64_clz, a_i32_ctz, a_i64_ctz, a_i32_popcnt, a_i64_popcnt,
  44. a_i32_eqz, a_i64_eqz,
  45. // floating point
  46. a_f32_add, a_f64_add, a_f32_sub, a_f64_sub, a_f32_mul, a_f64_mul,
  47. a_f32_div, a_f64_div, a_f32_sqrt, a_f64_sqrt, a_f32_min, a_f64_min,
  48. a_f32_max, a_f64_max, a_f32_ceil, a_f64_ceil, a_f32_floor, a_f64_floor,
  49. a_f32_trunc, a_f64_trunc, a_f32_nearest, a_f64_nearest, a_f32_abs, a_f64_abs,
  50. a_f32_neg, a_f64_neg, a_f32_copysign, a_f64_copysign,
  51. // integer compare
  52. a_i32_eq, a_i64_eq, a_i32_ne, a_i64_ne, a_i32_lt_s, a_i64_lt_s,
  53. a_i32_lt_u, a_i64_lt_u, a_i32_le_s, a_i64_le_s, a_i32_le_u, a_i64_le_u,
  54. a_i32_gt_s, a_i64_gt_s, a_i32_gt_u, a_i64_gt_u, a_i32_ge_s, a_i64_ge_s,
  55. a_i32_ge_u, a_i64_ge_u,
  56. // floating point compare
  57. a_f32_eq, a_f64_eq, a_f32_ne, a_f64_ne, a_f32_lt, a_f64_lt,
  58. a_f32_le, a_f64_le, a_f32_gt, a_f64_gt, a_f32_ge, a_f64_ge,
  59. // conversion
  60. a_i32_wrap_i64, a_i64_extend_s_i32, a_i64_extend_u_i32,
  61. a_i32_extend_s_8,a_i32_extend_s_16,a_i64_extend_s_8,a_i64_extend_s_16,a_i64_extend_s_32,
  62. a_i32_trunc_s_f32, a_i32_trunc_s_f64, a_i64_trunc_s_f32, a_i64_trunc_s_f64,
  63. a_i32_trunc_u_f32, a_i32_trunc_u_f64, a_i64_trunc_u_f32, a_i64_trunc_u_f64,
  64. a_f32_demote_f64, a_f64_promote_f32,
  65. a_f32_convert_s_i32, a_f32_convert_s_i64,a_f64_convert_s_i32,a_f64_convert_s_i64,
  66. a_f32_convert_u_i32, a_f32_convert_u_i64,a_f64_convert_u_i32,a_f64_convert_u_i64,
  67. a_i32_reinterpret_f32, a_i64_reinterpret_f64, a_f32_reinterpret_i32, a_f64_reinterpret_f64,
  68. // load/store
  69. a_i32_load, a_i64_load, a_f32_load, a_f64_load,
  70. a_i32_store, a_i64_store, a_f32_store, a_f64_store,
  71. a_i32_load8_s, a_i32_load16_s, a_i64_load8_s, a_i64_load16_s, a_i64_load32_s,
  72. a_i32_load8_u, a_i32_load16_u, a_i64_load8_u, a_i64_load16_u, a_i64_load32_u,
  73. a_i32_store8, a_i32_store16, a_i64_store8, a_i64_store16, a_i64_store32,
  74. // additional memory
  75. a_grow_memory, a_current_memory
  76. );
  77. TWasmBasicType = (wbt_i32, wbt_i64, wbt_f32, wbt_f64);
  78. TWasmResultType = array of TWasmBasicType;
  79. { TWasmFuncType }
  80. TWasmFuncType = class
  81. params: TWasmResultType;
  82. results: TWasmResultType;
  83. constructor Create(aparams, aresults: TWasmResultType);
  84. procedure add_param(param: TWasmBasicType);
  85. procedure add_result(res: TWasmBasicType);
  86. end;
  87. {# This should define the array of instructions as string }
  88. op2strtable=array[tasmop] of string[31];
  89. Const
  90. {# First value of opcode enumeration }
  91. firstop = low(tasmop);
  92. {# Last value of opcode enumeration }
  93. lastop = high(tasmop);
  94. AsmOp_Store = [
  95. a_i32_store, a_i32_store16, a_i32_store8
  96. ,a_i64_store, a_i64_store16, a_i64_store8, a_i64_store32
  97. ,a_f32_store, a_f64_store
  98. ];
  99. AsmOp_Load = [
  100. a_i32_load,
  101. a_i32_load8_s, a_i32_load8_u,
  102. a_i32_load16_s, a_i32_load16_u,
  103. a_i64_load,
  104. a_i64_load8_s, a_i64_load8_u,
  105. a_i64_load16_s, a_i64_load16_u,
  106. a_i64_load32_s, a_i64_load32_u,
  107. a_f32_load, a_f64_load
  108. ];
  109. AsmOp_LoadStore = AsmOp_Load + AsmOp_Store;
  110. {*****************************************************************************
  111. Registers
  112. *****************************************************************************}
  113. type
  114. { Number of registers used for indexing in tables }
  115. tregisterindex=0..{$i rwasmnor.inc}-1; // no registers in wasm
  116. totherregisterset = set of tregisterindex;
  117. const
  118. { Available Superregisters }
  119. // there's no registers in wasm
  120. {$i rwasmsup.inc}
  121. { No Subregisters }
  122. R_SUBWHOLE = R_SUBNONE;
  123. { Available Registers }
  124. // there's no registers in wasm
  125. {$i rwasmcon.inc}
  126. { aliases }
  127. { used as base register in references for parameters passed to
  128. subroutines: these are passed on the evaluation stack, but this way we
  129. can use the offset field to indicate the order, which is used by ncal
  130. to sort the parameters }
  131. NR_EVAL_STACK_BASE = NR_R0;
  132. RS_EVAL_STACK_BASE = RS_R0;
  133. { used as base register in references to indicate that it's a local }
  134. NR_LOCAL_STACK_POINTER_REG = NR_R1;
  135. RS_LOCAL_STACK_POINTER_REG = RS_R1;
  136. { fake register, representing the local frame pointer. Used for accessing
  137. address-taken local variables on the linear stack: (localframeptr+offset). }
  138. NR_LOCAL_FRAME_POINTER_REG = NR_R3;
  139. RS_LOCAL_FRAME_POINTER_REG = RS_R3;
  140. maxvarregs = 1;
  141. maxfpuvarregs = 1;
  142. { Integer Super registers first and last }
  143. first_int_imreg = 4;
  144. { Float Super register first and last }
  145. first_fpu_imreg = 4;
  146. { MM Super register first and last }
  147. first_mm_imreg = 4;
  148. regnumber_table : array[tregisterindex] of tregister = (
  149. {$i rwasmnum.inc}
  150. );
  151. EVALSTACKLOCS = [LOC_REGISTER,LOC_CREGISTER,LOC_FPUREGISTER,LOC_CFPUREGISTER,
  152. LOC_MMREGISTER,LOC_CMMREGISTER,LOC_SUBSETREG,LOC_CSUBSETREG];
  153. {*****************************************************************************
  154. References
  155. *****************************************************************************}
  156. type
  157. { array reference types }
  158. tarrayreftype = (art_none,art_indexreg,art_indexref,art_indexconst);
  159. {*****************************************************************************
  160. Conditions
  161. *****************************************************************************}
  162. type
  163. // not used by wasm target
  164. TAsmCond=(C_None);
  165. {*****************************************************************************
  166. Constants
  167. *****************************************************************************}
  168. const
  169. max_operands = 2;
  170. {*****************************************************************************
  171. Default generic sizes
  172. *****************************************************************************}
  173. {$ifdef cpu64bitaddr}
  174. {# Defines the default address size for a processor,
  175. -- fake for JVM, only influences default width of
  176. arithmetic calculations }
  177. OS_ADDR = OS_64;
  178. {# the natural int size for a processor,
  179. has to match osuinttype/ossinttype as initialized in psystem }
  180. OS_INT = OS_64;
  181. OS_SINT = OS_S64;
  182. {$else}
  183. {# Defines the default address size for a processor,
  184. -- fake for wasm, only influences default width of
  185. arithmetic calculations }
  186. OS_ADDR = OS_32;
  187. {# the natural int size for a processor,
  188. has to match osuinttype/ossinttype as initialized in psystem }
  189. OS_INT = OS_32;
  190. OS_SINT = OS_S32;
  191. {$endif}
  192. {# the maximum float size for a processor, }
  193. OS_FLOAT = OS_F64;
  194. {# the size of a vector register for a processor }
  195. OS_VECTOR = OS_M128;
  196. {*****************************************************************************
  197. Generic Register names
  198. *****************************************************************************}
  199. { dummies, not used for Wasm }
  200. {# Stack pointer register }
  201. { used as base register in references to indicate that it's a local }
  202. NR_STACK_POINTER_REG = NR_R1;
  203. RS_STACK_POINTER_REG = RS_R1;
  204. {# Frame pointer register }
  205. NR_FRAME_POINTER_REG = NR_LOCAL_FRAME_POINTER_REG;
  206. RS_FRAME_POINTER_REG = RS_LOCAL_FRAME_POINTER_REG;
  207. { WebAssembly results are returned on the evaluation stack, not via a register }
  208. { Results are returned in this register (32-bit values) }
  209. NR_FUNCTION_RETURN_REG = NR_NO;
  210. RS_FUNCTION_RETURN_REG = RS_NO;
  211. { Low part of 64bit return value }
  212. NR_FUNCTION_RETURN64_LOW_REG = NR_NO;
  213. RS_FUNCTION_RETURN64_LOW_REG = RS_NO;
  214. { High part of 64bit return value }
  215. NR_FUNCTION_RETURN64_HIGH_REG = NR_NO;
  216. RS_FUNCTION_RETURN64_HIGH_REG = RS_NO;
  217. { The value returned from a function is available in this register }
  218. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  219. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  220. { The lowh part of 64bit value returned from a function }
  221. NR_FUNCTION_RESULT64_LOW_REG = NR_FUNCTION_RETURN64_LOW_REG;
  222. RS_FUNCTION_RESULT64_LOW_REG = RS_FUNCTION_RETURN64_LOW_REG;
  223. { The high part of 64bit value returned from a function }
  224. NR_FUNCTION_RESULT64_HIGH_REG = NR_FUNCTION_RETURN64_HIGH_REG;
  225. RS_FUNCTION_RESULT64_HIGH_REG = RS_FUNCTION_RETURN64_HIGH_REG;
  226. NR_FPU_RESULT_REG = NR_NO;
  227. NR_MM_RESULT_REG = NR_NO;
  228. {*****************************************************************************
  229. GCC /ABI linking information
  230. *****************************************************************************}
  231. { dummies, not used for Wasm }
  232. {# Required parameter alignment when calling a routine
  233. }
  234. std_param_align = 1;
  235. {*****************************************************************************
  236. CPU Dependent Constants
  237. *****************************************************************************}
  238. maxfpuregs = 0;
  239. FRAME_POINTER_SYM = '$fp';
  240. BASE_POINTER_SYM = '$bp';
  241. { Global variable, that acts as the stack pointer in linear memory
  242. (also called the "linear stack"). This stack is used for address-taken
  243. local variables. This separate stack is needed, because the WASM
  244. implementation's runtime call stack (which includes return addresses and
  245. function parameters) is not visible in linear memory. }
  246. STACK_POINTER_SYM = '__stack_pointer';
  247. {*****************************************************************************
  248. Helpers
  249. *****************************************************************************}
  250. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  251. function reg_cgsize(const reg: tregister) : tcgsize;
  252. function std_regnum_search(const s:string):Tregister;
  253. function std_regname(r:Tregister):string;
  254. function findreg_by_number(r:Tregister):tregisterindex;
  255. function eh_return_data_regno(nr: longint): longint;
  256. { since we don't use tasmconds, don't call this routine
  257. (it will internalerror). We need it anyway to get aoptobj
  258. to compile (but it won't execute it).
  259. }
  260. function inverse_cond(const c: TAsmCond): Tasmcond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  261. implementation
  262. uses
  263. verbose,
  264. rgbase;
  265. {*****************************************************************************
  266. Helpers
  267. *****************************************************************************}
  268. const
  269. std_regname_table : array[tregisterindex] of string[15] = (
  270. {$i rwasmstd.inc}
  271. );
  272. regnumber_index : array[tregisterindex] of tregisterindex = (
  273. {$i rwasmrni.inc}
  274. );
  275. std_regname_index : array[tregisterindex] of tregisterindex = (
  276. {$i rwasmsri.inc}
  277. );
  278. function reg_cgsize(const reg: tregister): tcgsize;
  279. begin
  280. result:=OS_NO;
  281. end;
  282. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  283. begin
  284. cgsize2subreg:=R_SUBNONE;
  285. end;
  286. function std_regnum_search(const s:string):Tregister;
  287. begin
  288. result:=NR_NO;
  289. end;
  290. function findreg_by_number(r:Tregister):tregisterindex;
  291. begin
  292. result:=findreg_by_number_table(r,regnumber_index);
  293. end;
  294. function std_regname(r:Tregister):string;
  295. var
  296. p : tregisterindex;
  297. begin
  298. p:=findreg_by_number_table(r,regnumber_index);
  299. if p<>0 then
  300. result:=std_regname_table[p]
  301. else
  302. result:=generic_regname(r);
  303. end;
  304. function eh_return_data_regno(nr: longint): longint;
  305. begin
  306. result:=-1;
  307. end;
  308. function inverse_cond(const c: TAsmCond): Tasmcond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  309. begin
  310. result:=C_None;
  311. internalerror(2015082701);
  312. end;
  313. {*****************************************************************************
  314. TWasmFuncType
  315. *****************************************************************************}
  316. constructor TWasmFuncType.Create(aparams, aresults: TWasmResultType);
  317. begin
  318. inherited Create;
  319. params:=aparams;
  320. results:=aresults;
  321. end;
  322. procedure TWasmFuncType.add_param(param: TWasmBasicType);
  323. begin
  324. SetLength(params,Length(params)+1);
  325. params[High(params)]:=param;
  326. end;
  327. procedure TWasmFuncType.add_result(res: TWasmBasicType);
  328. begin
  329. SetLength(results,Length(results)+1);
  330. results[High(results)]:=res;
  331. end;
  332. end.