12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112 |
- {
- This file is part of the Numlib package.
- Copyright (c) 1986-2000 by
- Kees van Ginneken, Wil Kortsmit and Loek van Reij of the
- Computational centre of the Eindhoven University of Technology
- FPC port Code by Marco van de Voort ([email protected])
- documentation by Michael van Canneyt ([email protected])
- Interpolate and (curve) fitting.
- Slegpb in this unit patched parameters slightly. Units IPF and sle
- were not in the same revision in this numlib copy (which was a
- copy of the work directory of the author) .
- Contains two undocumented functions. If you recognize the algoritm,
- mail us.
- See the file COPYING.FPC, included in this distribution,
- for details about the copyright.
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- **********************************************************************}
- {
- }
- {$IFNDEF FPC_DOTTEDUNITS}
- unit ipf;
- {$ENDIF FPC_DOTTEDUNITS}
- {$modeswitch exceptions}
- {$I direct.inc}
- interface
- {$IFDEF FPC_DOTTEDUNITS}
- uses NumLib.Typ, NumLib.Mdt, NumLib.Dsl, NumLib.Sle, NumLib.Spe;
- {$ELSE FPC_DOTTEDUNITS}
- uses typ, mdt, dsl, sle, spe;
- {$ENDIF FPC_DOTTEDUNITS}
- type
- THermiteSplineType = (
- hstMonotone // preserves monotonicity of the interpolated function by using
- // a Fritsch-Carlson algorithm
- );
- { Determine natural cubic spline "s" for data set (x,y), output to (a,d2a)
- term=1 success,
- =2 failure calculating "s"
- =3 wrong input (e.g. x,y is not sorted increasing on x)}
- procedure ipffsn(n: ArbInt; var x, y, a, d2a: ArbFloat; var term: ArbInt);
- {calculate d2s from x,y, which can be used to calculate s}
- procedure ipfisn(n: ArbInt; var x, y, d2s: ArbFloat; var term: ArbInt);
- {Calculate function value for dataset (x,y), with n.c. spline d2s for
- x value t. Return (corrected) y value.
- s calculated from x,y, with e.g. ipfisn}
- function ipfspn(n: ArbInt; var x, y, d2s: ArbFloat; t: ArbFloat;
- var term: ArbInt): ArbFloat;
- {Calculate minimum and maximum values for the n.c. spline d2s.
- Does NOT take source points into account.}
- procedure ipfsmm(n: ArbInt; var x, y, d2s, minv, maxv: ArbFloat;
- var term: ArbInt);
- {Calculates tangents for each data point (d1s), for a given array of input data
- points (x,y), by using a selected variant of a Hermite cubic spline interpolation.
- Inputs:
- hst - algorithm selection
- n - highest array index
- x[0..n] - array of X values (one value for each data point)
- y[0..n] - array of Y values (one value for each data point)
- Outputs:
- d1s[0..n] - array of tangent values (one value for each data point)
- term - status: 1 if function succeeded, 3 if less than two data points given
- }
- procedure ipfish(hst: THermiteSplineType; n: ArbInt; var x, y, d1s: ArbFloat; var term: ArbInt);
- {Calculates interpolated function value for a given array of input data points
- (x,y) and tangents for each data point (d1s), for input value t, by using a
- Hermite cubic spline interpolation; d1s array can be obtained by calling the
- ipfish procedure.
- Inputs:
- n - highest array index
- x[0..n] - array of X values (one value for each data point)
- y[0..n] - array of Y values (one value for each data point)
- d1s[0..n] - array of tangent values (one value for each data point)
- t - input value X
- Outputs:
- term - status: 1 if function succeeded, 3 if less than two data points given
- result - interpolated function value Y
- }
- function ipfsph(n: ArbInt; var x, y, d1s: ArbFloat; t: ArbFloat; var term: ArbInt): ArbFloat;
- {Calculate n-degree polynomal b for dataset (x,y) with m elements
- using the least squares method.}
- procedure ipfpol(m, n: ArbInt; var x, y, b: ArbFloat; var term: ArbInt);
- {**** undocumented ****}
- function spline( n : ArbInt;
- x : complex;
- var ac : complex;
- var gammar: ArbFloat;
- u1 : ArbFloat;
- pf : complex): ArbFloat;
- {**** undocumented ****}
- procedure splineparameters
- ( n : ArbInt;
- var ac, alfadc : complex;
- var lambda,
- gammar, u1,
- kwsom, energie : ArbFloat;
- var pf : complex);
- implementation
- procedure ipffsn(n: ArbInt; var x, y, a, d2a: ArbFloat; var term: ArbInt);
- var i, sr, n1s, ns1, ns2: ArbInt;
- s, lam, lam0, lam1, lambda, ey, ca, p, q, r: ArbFloat;
- px, py, pd, pa, pd2a,
- h, z, diagb, dinv, qty, qtdinvq, c, t, tl: ^arfloat1;
- ub: boolean;
- procedure solve; {n, py, qty, h, qtdinvq, dinv, lam, t, pa, pd2a, term}
- var i: ArbInt;
- p, q, r: ArbFloat;
- f, c: ^arfloat1;
- ca: ArbFloat = 0.0;
- begin
- getmem(f, 3*ns1); getmem(c, ns1);
- for i:=1 to n-1 do
- begin
- f^[3*i]:=qtdinvq^[3*i]+lam*t^[2*i];
- if i > 1
- then
- f^[3*i-1]:=qtdinvq^[3*i-1]+lam*t^[2*i-1];
- if i > 2
- then
- f^[3*i-2]:=qtdinvq^[3*i-2];
- if lam=0
- then
- c^[i]:=qty^[i]
- else
- c^[i]:=lam*qty^[i]
- end;
- slegpb(n-1, 2,{ 3,} f^[1], c^[1], pd2a^[1], ca, term);
- if term=2
- then
- begin
- freemem(f, 3*ns1); freemem(c, ns1);
- exit
- end;
- p:=1/h^[1];
- if lam=0
- then
- r:=1
- else
- r:=1/lam;
- q:=1/h^[2]; pa^[1]:=py^[1]-r*dinv^[1]*p*pd2a^[1];
- pa^[2]:=py^[2]-r*dinv^[2]*(pd2a^[2]*q-(p+q)*pd2a^[1]); p:=q;
- for i:=3 to n-1 do
- begin
- q:=1/h^[i];
- pa^[i]:=py^[i]-r*dinv^[i]*
- (p*pd2a^[i-2]-(p+q)*pd2a^[i-1]+q*pd2a^[i]);
- p:=q
- end;
- q:=1/h^[n];
- pa^[n]:=py^[n]-r*dinv^[n]*(p*pd2a^[n-2]-(p+q)*pd2a^[n-1]);
- pa^[n+1]:=py^[n+1]-r*dinv^[n+1]*q*pd2a^[n-1];
- if lam=0
- then
- for i:=1 to n-1 do
- pd2a^[i]:=0;
- freemem(f, 3*ns1); freemem(c, ns1);
- end; {solve}
- function e(var c, h: ArbFloat; n:ArbInt): ArbFloat;
- var i:ArbInt;
- s:ArbFloat;
- pc, ph: ^arfloat1;
- begin
- ph:=@h; pc:=@c;
- s:=ph^[1]*pc^[1]*pc^[1];
- for i:=1 to n-2 do
- s:=s+(pc^[i]*(pc^[i]+pc^[i+1])+pc^[i+1]*pc^[i+1])*ph^[i+1];
- e:=(s+pc^[n-1]*pc^[n-1]*ph^[n])/3
- end; {e}
- function cr(lambda: ArbFloat): ArbFloat;
- var s, crs: ArbFloat;
- i: ArbInt;
- begin
- cr:=0; lam:=lambda;
- solve; { n, py, qty, h, qtdinvq, dinv, lam, t, pa, pd2a, term }
- if term=2
- then
- exit;
- crs:=ey;
- if lam <> 0
- then
- begin
- crs:=crs+e(pd2a^[1], h^[1], n);
- s:=0;
- for i:=1 to n-1 do
- s:=s+pd2a^[i]*qty^[i];
- crs:=crs-2*s
- end;
- s:=0;
- for i:=1 to n+1 do
- s:=s+sqr(pa^[i]-py^[i])*diagb^[i];
- cr:=crs-s
- end; {cr}
- procedure roof1r(a, b, ae, re: ArbFloat; var x: ArbFloat);
- var fa, fb, c, fc, m, tol, w1, w2 : ArbFloat;
- k : ArbInt;
- stop : boolean;
- begin
- fa:=cr(a);
- if term=2
- then
- exit;
- fb:=cr(b);
- if term=2
- then
- exit;
- if abs(fb)>abs(fa)
- then
- begin
- c:=b; fc:=fb; x:=a; b:=a; fb:=fa; a:=c; fa:=fc
- end
- else
- begin
- c:=a; fc:=fa; x:=b
- end;
- k:=0;
- tol:=ae+re*spemax(abs(a), abs(b));
- w1:=abs(b-a); stop:=false;
- while (abs(b-a)>tol) and (fb<>0) and (not stop) do
- begin
- m:=(a+b)/2;
- if (k>=2) or (fb=fc)
- then
- x:=m
- else
- begin
- x:=(b*fc-c*fb)/(fc-fb);
- if abs(b-x)<tol
- then
- x:=b-tol*spesgn(b-a);
- if spesgn(x-m)=spesgn(x-b)
- then
- x:=m
- end;
- c:=b; fc:=fb; b:=x; fb:=cr(x);
- if term=2
- then
- exit;
- if spesgn(fa)*spesgn(fb)>0
- then
- begin
- a:=c; fa:=fc; k:=0
- end
- else
- k:=k+1;
- if abs(fb)>=abs(fa)
- then
- begin
- c:=b; fc:=fb; x:=a; b:=a; fb:=fa; a:=c; fa:=fc; k:=0
- end;
- tol:=ae+re*spemax(abs(a), abs(b));
- w2:=abs(b-a);
- if w2>=w1
- then
- stop:=true;
- w1:=w2
- end
- end; {roof1r}
- procedure NoodGreep;
- var I, j: ArbInt;
- begin
- i:=1;
- while i <= n do
- begin
- if (pd^[i] <= 0) or (px^[i+1] <= px^[i])
- then
- begin
- term:=3;
- exit
- end;
- i:=i+1
- end;
- if pd^[n+1] <= 0
- then
- begin
- term:=3;
- exit
- end;
- for i:=1 to n+1 do
- dinv^[i]:=1/pd^[i];
- for i:=1 to n do
- h^[i]:=px^[i+1]-px^[i];
- t^[2]:=(h^[1]+h^[2])/3;
- for i:=2 to n-1 do
- begin
- t^[2*i]:=(h^[i]+h^[i+1])/3; t^[2*i-1]:=h^[i]/6
- end;
- move(t^[1], tl^[1], ns2);
- mdtgpb(n-1, 1, 2, tl^[1], ca, term);
- if term=2
- then
- exit;
- z^[1]:=1/(h^[1]*tl^[2]);
- for j:=2 to n-1 do
- z^[j]:=-(tl^[2*j-1]*z^[j-1])/tl^[2*j];
- s:=0;
- for j:=1 to n-1 do
- s:=s+sqr(z^[j]);
- diagb^[1]:=s;
- z^[1]:=(-1/h^[1]-1/h^[2])/tl^[2];
- if n>2
- then
- z^[2]:=(1/h^[2]-tl^[3]*z^[1])/tl^[4];
- for j:=3 to n-1 do
- z^[j]:=-tl^[2*j-1]*z^[j-1]/tl^[2*j];
- s:=0;
- for j:=1 to n-1 do
- s:=s+sqr(z^[j]);
- diagb^[2]:=s;
- for i:=2 to n-2 do
- begin
- z^[i-1]:=1/(h^[i]*tl^[2*(i-1)]);
- z^[i]:=(-1/h^[i]-1/h^[i+1]-tl^[2*i-1]*z^[i-1])/tl^[2*i];
- z^[i+1]:=(1/h^[i+1]-tl^[2*i+1]*z^[i])/tl^[2*(i+1)];
- for j:=i+2 to n-1 do
- z^[j]:=-tl^[2*j-1]*z^[j-1]/tl^[2*j];
- s:=0;
- for j:=i-1 to n-1 do
- s:=s+sqr(z^[j]);
- diagb^[i+1]:=s
- end;
- z^[n-2]:=1/(h^[n-1]*tl^[2*(n-2)]);
- z^[n-1]:=(-1/h^[n-1]-1/h^[n]-tl^[2*n-3]*z^[n-2])/tl^[2*(n-1)];
- s:=0;
- for j:=n-2 to n-1 do
- s:=s+sqr(z^[j]);
- diagb^[n]:=s;
- diagb^[n+1]:=1/sqr(h^[n]*tl^[2*(n-1)]);
- p:=1/h^[1];
- for i:=2 to n do
- begin
- q:=1/h^[i]; qty^[i-1]:=py^[i+1]*q-py^[i]*(p+q)+py^[i-1]*p;
- p:=q
- end;
- p:=1/h^[1]; q:=1/h^[2]; r:=1/h^[3];
- qtdinvq^[3]:=dinv^[1]*p*p+dinv^[2]*(p+q)*(p+q)+dinv^[3]*q*q;
- if n>2
- then
- begin
- qtdinvq^[6]:=dinv^[2]*q*q+dinv^[3]*(q+r)*(q+r)+dinv^[4]*r*r;
- qtdinvq^[5]:=-(dinv^[2]*(p+q)+dinv^[3]*(q+r))*q;
- p:=q; q:=r;
- for i:=3 to n-1 do
- begin
- r:=1/h^[i+1];
- qtdinvq^[3*i]:=dinv^[i]*q*q+dinv^[i+1]*(q+r)*(q+r)+dinv^[i+2]*r*r;
- qtdinvq^[3*i-1]:=-(dinv^[i]*(p+q)+dinv^[i+1]*(q+r))*q;
- qtdinvq^[3*i-2]:=dinv^[i]*p*q;
- p:=q; q:=r
- end
- end;
- dslgpb(n-1, 1, 2, tl^[1], qty^[1], c^[1], term);
- if term=2
- then
- exit;
- ey:=e(c^[1], h^[1], n);
- lam0:=0;
- s:=cr(lam0);
- if term=2
- then
- exit;
- if s >= 0
- then
- begin
- lambda:=0; term:=4
- end
- else
- begin
- lam1:=1e-8; ub:=false;
- while (not ub) and (lam1<=1.1e8) do
- begin
- s:=cr(lam1);
- if term=2
- then
- exit;
- if s >= 0
- then
- ub:=true
- else
- begin
- lam0:=lam1; lam1:=10*lam1
- end
- end;
- if not ub
- then
- begin
- term:=4; lambda:=lam0
- end
- else
- roof1r(lam0, lam1, 0, 1e-6, lambda);
- if term=2
- then
- exit
- end;
- end;
- begin
- term:=1;
- if n < 2
- then
- begin
- term:=3; exit
- end;
- sr:=sizeof(ArbFloat);
- n1s:=(n+1)*sr;
- ns2:=2*(n-1)*sr;
- ns1:=(n-1)*sr;
- getmem(dinv, n1s);
- getmem(h, n*sr);
- getmem(t, ns2);
- getmem(tl, ns2);
- getmem(z, ns1);
- getmem(diagb, n1s);
- getmem(qtdinvq, 3*ns1);
- getmem(c, ns1);
- getmem(qty, ns1);
- getmem(pd, n1s);
- { pd:=@d; }
- px:=@x;
- py:=@y;
- pa:=@a;
- pd2a:=@d2a;
- { de gewichten van de punten worden op 1 gezet}
- for i:=1 to n+1 do
- pd^[i]:=1;
- NoodGreep;
- freemem(dinv, n1s);
- freemem(h, n*sr);
- freemem(t, ns2);
- freemem(tl, ns2);
- freemem(z, ns1);
- freemem(diagb, n1s);
- freemem(qtdinvq, 3*ns1);
- freemem(c, ns1);
- freemem(qty, ns1);
- freemem(pd, n1s);
- end; {ipffsn}
- procedure ortpol(m, n: ArbInt; var x, alfa, beta: ArbFloat);
- // this function used to use mark/release.
- var
- i, j, ms : ArbInt;
- xppn1, ppn1, ppn, p, alfaj, betaj : ArbFloat;
- px, pal, pbe, pn, pn1 : ^arfloat1;
- begin
- px:=@x; pal:=@alfa; pbe:=@beta; ms:=m*sizeof(ArbFloat);
- getmem(pn, ms); getmem(pn1, ms);
- xppn1:=0; ppn1:=m;
- for i:=1 to m do
- begin
- pn^[i]:=0; pn1^[i]:=1; xppn1:=xppn1+px^[i]
- end;
- pal^[1]:=xppn1/ppn1; pbe^[1]:=0;
- for j:=2 to n do
- begin
- alfaj:=pal^[j-1]; betaj:=pbe^[j-1];
- ppn:=ppn1; ppn1:=0; xppn1:=0;
- for i:=1 to m do
- begin
- p:=(px^[i]-alfaj)*pn1^[i]-betaj*pn^[i];
- pn^[i]:=pn1^[i]; pn1^[i]:=p; p:=p*p;
- ppn1:=ppn1+p; xppn1:=xppn1+px^[i]*p
- end; {i}
- pal^[j]:=xppn1/ppn1; pbe^[j]:=ppn1/ppn
- end; {j}
- freemem(pn); freemem(pn1);
- end; {ortpol}
- procedure ortcoe(m, n: ArbInt; var x, y, alfa, beta, a: ArbFloat);
- // this function used to use mark/release.
- var i, j, mr : ArbInt;
- fpn, ppn, p, alphaj, betaj : ArbFloat;
- px, py, pal, pbe, pa, pn, pn1 : ^arfloat1;
- begin
- mr:=m*sizeof(ArbFloat);
- px:=@x; py:=@y; pal:=@alfa; pbe:=@beta; pa:=@a;
- getmem(pn, mr); getmem(pn1, mr);
- fpn:=0;
- for i:=1 to m do
- begin
- pn^[i]:=0; pn1^[i]:=1; fpn:=fpn+py^[i]
- end; {i}
- pa^[1]:=fpn/m;
- for j:=1 to n do
- begin
- fpn:=0; ppn:=0; alphaj:=pal^[j]; betaj:=pbe^[j];
- for i:=1 to m do
- begin
- p:=(px^[i]-alphaj)*pn1^[i]-betaj*pn^[i];
- pn^[i]:=pn1^[i]; pn1^[i]:=p;
- fpn:=fpn+py^[i]*p; ppn:=ppn+p*p
- end; {i}
- pa^[j+1]:=fpn/ppn
- end; {j}
- freemem(pn); freemem(pn1);
- end; {ortcoe}
- procedure polcoe(n:ArbInt; var alfa, beta, a, b: ArbFloat);
- var k, j : ArbInt;
- pal, pbe : ^arfloat1;
- pa, pb : ^arfloat0;
- begin
- pal:=@alfa; pbe:=@beta; pa:=@a; pb:=@b;
- move(pa^[0], pb^[0], (n+1)*sizeof(ArbFloat));
- for j:=0 to n-1 do
- for k:=n-j-1 downto 0 do
- begin
- pb^[k+j]:=pb^[k+j]-pal^[k+1]*pb^[k+j+1];
- if k+j<>n-1
- then
- pb^[k+j]:=pb^[k+j]-pbe^[k+2]*pb^[k+j+2]
- end
- end; {polcoe}
- procedure ipfpol(m, n: ArbInt; var x, y, b: ArbFloat; var term: ArbInt);
- var i, ns: ArbInt;
- fsum: ArbFloat;
- py, alfa, beta: ^arfloat1;
- pb, a: ^arfloat0;
- begin
- if (n<0) or (m<1)
- then
- begin
- term:=3; exit
- end;
- term:=1;
- if n = 0
- then
- begin
- py:=@y; pb:=@b;
- fsum:=0;
- for i:=1 to m do
- fsum:=fsum+py^[i];
- pb^[0]:=fsum/m
- end
- else
- begin
- if n>m-1
- then
- begin
- pb:=@b;
- fillchar(pb^[m], (n-m+1)*sizeof(ArbFloat), 0);
- n:=m-1
- end;
- ns:=n*sizeof(ArbFloat);
- getmem(alfa, ns); getmem(beta, ns);
- getmem(a, (n+1)*sizeof(ArbFloat));
- ortpol(m, n, x, alfa^[1], beta^[1]);
- ortcoe(m, n, x, y, alfa^[1], beta^[1], a^[0]);
- polcoe(n, alfa^[1], beta^[1], a^[0], b);
- freemem(alfa, ns); freemem(beta, ns);
- freemem(a, (n+1)*sizeof(ArbFloat));
- end
- end; {ipfpol}
- procedure ipfisn(n: ArbInt; var x, y, d2s: ArbFloat; var term: ArbInt);
- var
- s, i, L : ArbInt;
- p, q : ArbFloat;
- px, py, h, b, t : ^arfloat0;
- pd2s : ^arfloat1;
- ca : ArbFloat = 0.0;
- begin
- term:=1;
- if n < 1
- then
- begin
- term:=3; exit
- end; {n<1}
- if n = 1 then
- exit;
- px:=@x; py:=@y; pd2s:=@d2s;
- s:=sizeof(ArbFloat);
- getmem(h, n*s);
- getmem(b, (n-1)*s);
- getmem(t, 2*(n-1)*s);
- for i:=0 to n-1 do
- h^[i]:=px^[i+1]-px^[i];
- q:=1/6; p:=2*q;
- t^[1]:=p*(h^[0]+h^[1]);
- for i:=2 to n-1 do
- begin
- t^[2*i-1]:=p*(h^[i-1]+h^[i]); t^[2*i-2]:=q*h^[i-1]
- end; {i}
- p:=1/h^[0];
- for i:=2 to n do
- begin
- q:=1/h^[i-1]; b^[i-2]:=py^[i]*q-py^[i-1]*(p+q)+py^[i-2]*p; p:=q
- end;
- if n > 2 then L := 1 else L := 0;
- slegpb(n-1, L, {2,} t^[1], b^[0], pd2s^[1], ca, term);
- freemem(h, n*s);
- freemem(b, (n-1)*s);
- freemem(t, 2*(n-1)*s);
- end; {ipfisn}
- function ipfspn(n: ArbInt; var x, y, d2s: ArbFloat; t:ArbFloat;
- var term: ArbInt): ArbFloat;
- var
- px, py : ^arfloat0;
- pd2s : ^arfloat1;
- i, j, m : ArbInt;
- d, s3, h, dy : ArbFloat;
- begin
- term:=1;
- if n<1
- then
- begin
- term:=3; exit
- end; {n<1}
- px:=@x; py:=@y; pd2s:=@d2s;
- if n = 1
- then
- begin
- h:=px^[1]-px^[0];
- dy:=(py^[1]-py^[0])/h;
- ipfspn:=py^[0]+(t-px^[0])*dy
- end { n = 1 }
- else
- if t <= px^[0]
- then
- begin
- h:=px^[1]-px^[0];
- dy:=(py^[1]-py^[0])/h-h*pd2s^[1]/6;
- ipfspn:=py^[0]+(t-px^[0])*dy
- end { t <= x[0] }
- else
- if t >= px^[n]
- then
- begin
- h:=px^[n]-px^[n-1];
- dy:=(py^[n]-py^[n-1])/h+h*pd2s^[n-1]/6;
- ipfspn:=py^[n]+(t-px^[n])*dy
- end { t >= x[n] }
- else
- begin
- i:=0; j:=n;
- while j <> i+1 do
- begin
- m:=(i+j) div 2;
- if t>=px^[m]
- then
- i:=m
- else
- j:=m
- end; {j}
- h:=px^[i+1]-px^[i];
- d:=t-px^[i];
- if i=0
- then
- begin
- s3:=pd2s^[1]/h;
- dy:=(py^[1]-py^[0])/h-h*pd2s^[1]/6;
- ipfspn:=py^[0]+d*(dy+d*d*s3/6)
- end
- else
- if i=n-1
- then
- begin
- s3:=-pd2s^[n-1]/h;
- dy:=(py^[n]-py^[n-1])/h-h*pd2s^[n-1]/3;
- ipfspn:=py^[n-1]+d*(dy+d*(pd2s^[n-1]/2+d*s3/6))
- end
- else
- begin
- s3:=(pd2s^[i+1]-pd2s^[i])/h;
- dy:=(py^[i+1]-py^[i])/h-h*(2*pd2s^[i]+pd2s^[i+1])/6;
- ipfspn:=py^[i]+d*(dy+d*(pd2s^[i]/2+d*s3/6))
- end
- end { x[0] < t < x[n] }
- end; {ipfspn}
- procedure ipfsmm(
- n: ArbInt; var x, y, d2s, minv, maxv: ArbFloat; var term: ArbInt);
- var
- i: ArbInt;
- h: ArbFloat;
- px, py: ^arfloat0;
- pd2s: ^arfloat1;
- procedure UpdateMinMax(v: ArbFloat);
- begin
- if (0 >= v) or (v >= h) then exit;
- v := ipfspn(n, x, y, d2s, px^[i]+v, term);
- if v < minv then
- minv := v;
- if v > maxv then
- maxv := v;
- end;
- procedure MinMaxOnSegment;
- var
- a, b, c: ArbFloat;
- d: ArbFloat;
- begin
- h:=px^[i+1]-px^[i];
- if i=0
- then
- begin
- a:=pd2s^[1]/h/2;
- b:=0;
- c:=(py^[1]-py^[0])/h-h*pd2s^[1]/6;
- end
- else
- if i=n-1
- then
- begin
- a:=-pd2s^[n-1]/h/2;
- b:=pd2s^[n-1];
- c:=(py^[n]-py^[n-1])/h-h*pd2s^[n-1]/3;
- end
- else
- begin
- a:=(pd2s^[i+1]-pd2s^[i])/h/2;
- b:=pd2s^[i];
- c:=(py^[i+1]-py^[i])/h-h*(2*pd2s^[i]+pd2s^[i+1])/6;
- end;
- if a=0 then exit;
- d := b*b-4*a*c;
- if d<0 then exit;
- d:=Sqrt(d);
- UpdateMinMax((-b+d)/(2*a));
- UpdateMinMax((-b-d)/(2*a));
- end;
- begin
- term:=1;
- if n<1 then begin
- term:=3;
- exit;
- end;
- if n = 1 then
- exit;
- px:=@x; py:=@y; pd2s:=@d2s;
- for i:=0 to n-1 do
- MinMaxOnSegment;
- end;
- procedure ipfish(hst: THermiteSplineType; n: ArbInt; var x, y, d1s: ArbFloat; var term: ArbInt);
- var
- px, py, pd1s : ^arfloat0;
- i : ArbInt;
- dks : array of ArbFloat;
- begin
- term:=1;
- if n < 1 then
- begin
- term:=3;
- exit;
- end;
- px:=@x;
- py:=@y;
- pd1s:=@d1s;
- {Monotone cubic Hermite interpolation}
- {See: https://en.wikipedia.org/wiki/Monotone_cubic_interpolation
- and: https://en.wikipedia.org/wiki/Cubic_Hermite_spline}
- {For each two adjacent data points, calculate tangent of the segment between them}
- SetLength(dks,n);
- for i:=0 to n-1 do
- dks[i]:=(py^[i+1]-py^[i])/(px^[i+1]-px^[i]);
- {As proposed by Fritsch and Carlson: For each data point - except the first and
- the last one - assign point's tangent (stored in a "d1s" array) as an average
- of tangents of the two adjacent segments (this is called 3PD, three-point
- difference) - but only if both tangents are either positive (segments are
- raising) or negative (segments are falling); in all other cases there is a local
- extremum at the data point, or a non-monotonic range begins/continues/ends there,
- so spline at this point must be flat to preserve monotonicity - so assign point's
- tangent as zero}
- for i:=0 to n-2 do
- if ((dks[i] > 0) and (dks[i+1] > 0)) or ((dks[i] < 0) and (dks[i+1] < 0)) then
- pd1s^[i+1]:=0.5*(dks[i]+dks[i+1])
- else
- pd1s^[i+1]:=0;
- {For the first and the last data point, assign point's tangent as a tangent of
- the adjacent segment (this is called one-sided difference)}
- pd1s^[0]:=dks[0];
- pd1s^[n]:=dks[n-1];
- {As proposed by Fritsch and Carlson: Reduce point's tangent if needed, to prevent
- overshoot}
- for i:=0 to n-1 do
- if dks[i] <> 0 then
- try
- if pd1s^[i]/dks[i] > 3 then
- pd1s^[i]:=3*dks[i];
- if pd1s^[i+1]/dks[i] > 3 then
- pd1s^[i+1]:=3*dks[i];
- except
- {There may be an exception for dks[i] values that are very close to zero}
- pd1s^[i]:=0;
- pd1s^[i+1]:=0;
- end;
- {Addition to the original algorithm: For the first and the last data point,
- modify point's tangent in such a way that the cubic Hermite interpolation
- polynomial has its inflection point exactly at the data point - so there
- will be a smooth transition to the extrapolated part of the graph}
- pd1s^[0]:=1.5*dks[0]-0.5*pd1s^[1];
- pd1s^[n]:=1.5*dks[n-1]-0.5*pd1s^[n-1];
- end; {ipfish}
- function ipfsph(n: ArbInt; var x, y, d1s: ArbFloat; t: ArbFloat; var term: ArbInt): ArbFloat;
- var
- px, py, pd1s : ^arfloat0;
- i, j, m : ArbInt;
- h : ArbFloat;
- begin
- term:=1;
- if n < 1 then
- begin
- term:=3;
- exit;
- end;
- px:=@x;
- py:=@y;
- pd1s:=@d1s;
- if t <= px^[0] then
- ipfsph:=py^[0]+(t-px^[0])*pd1s^[0]
- else
- if t >= px^[n] then
- ipfsph:=py^[n]+(t-px^[n])*pd1s^[n]
- else
- begin
- i:=0;
- j:=n;
- while j <> i+1 do
- begin
- m:=(i+j) div 2;
- if t>=px^[m] then
- i:=m
- else
- j:=m;
- end; {j}
- h:=px^[i+1]-px^[i];
- t:=(t-px^[i])/h;
- ipfsph:= py^[i]*(1+2*t)*Sqr(1-t) + h*pd1s^[i]*t*Sqr(1-t) + py^[i+1]*Sqr(t)*(3-2*t) + h*pd1s^[i+1]*Sqr(t)*(t-1);
- end;
- end; {ipfsph}
- function p(x, a, z:complex): ArbFloat;
- begin
- x.sub(a);
- p:=x.Inp(z)
- end;
- function e(x, y: complex): ArbFloat;
- const c1: ArbFloat = 0.01989436788646;
- var s: ArbFloat;
- begin x.sub(y);
- s := x.norm;
- if s=0 then e:=0 else e:=c1*s*ln(s)
- end;
- function spline( n : ArbInt;
- x : complex;
- var ac : complex;
- var gammar: ArbFloat;
- u1 : ArbFloat;
- pf : complex): ArbFloat;
- var i : ArbInt;
- s : ArbFloat;
- a : arcomp0 absolute ac;
- gamma : arfloat0 absolute gammar;
- begin
- s := u1 + p(x, a[n-2], pf);
- for i:=0 to n do s := s + gamma[i]*e(x,a[i]);
- spline := s
- end;
- procedure splineparameters
- ( n : ArbInt;
- var ac, alfadc : complex;
- var lambda,
- gammar, u1,
- kwsom, energie : ArbFloat;
- var pf : complex);
- procedure SwapC(var v, w: complex);
- var x: complex;
- begin
- x := v; v := w; w := x
- end;
- procedure pxpy(a, b, c: complex; var p:complex);
- var det: ArbFloat;
- begin
- b.sub(a); c.sub(a); det := b.xreal*c.imag-b.imag*c.xreal;
- b.sub(c); p.Init(b.imag/det, -b.xreal/det)
- end;
- procedure pfxpfy(a, b, c: complex; f: vector; var pf: complex);
- begin
- b.sub(a); c.sub(a);
- f.j := f.j-f.i; f.k := f.k-f.i;
- pf.init(f.j*c.imag - f.k*b.imag, -f.j*c.xreal + f.k*b.xreal);
- pf.scale(1/(b.xreal*c.imag - b.imag*c.xreal))
- end;
- function InpV(n: ArbInt; var v1, v2: ArbFloat): ArbFloat;
- var i: ArbInt;
- a1: arfloat0 absolute v1;
- a2: arfloat0 absolute v2;
- s : ArbFloat;
- begin
- s := 0;
- for i:=0 to n-1 do s := s + a1[i]*a2[i];
- InpV := s
- end;
- PROCEDURE SPDSOL( N : INTEGER;
- VAR AP : pointer;
- VAR B : ArbFloat);
- VAR I, J, K : INTEGER;
- H : ArbFloat;
- a : ^ar2dr absolute ap;
- bx : arfloat0 absolute b;
- BEGIN
- for k:=0 to n do
- BEGIN
- h := sqrt(a^[k]^[k]-InpV(k, a^[k]^[0], a^[k]^[0]));
- a^[k]^[k] := h;
- FOR I:=K+1 TO N do a^[i]^[k] := (a^[i]^[k] - InpV(k, a^[k]^[0], a^[i]^[0]))/h;
- BX[K] := (bx[k] - InpV(k, a^[k]^[0], bx[0]))/h
- END;
- FOR I:=N DOWNTO 0 do
- BEGIN
- H := BX[I];
- FOR J:=I+1 TO N DO H := H - A^[J]^[I]*BX[J];
- BX[I] := H/A^[I]^[I]
- END
- END;
- var i, j, i1 : ArbInt;
- x, h,
- absdet,
- absdetmax,
- s, s1, ca: ArbFloat;
- alfa, dv, hulp,
- u, v, w : vector;
- e22 : array[0..2] of vector;
- e21, b : ^arvect0;
- k, c : ^ar2dr;
- gamma : arfloat0 absolute gammar;
- an2, an1, an, z,
- vz, wz : complex;
- a : arcomp0 absolute ac;
- alfad : arcomp0 absolute alfadc;
- begin
- i1:=0;
- x:=a[0].xreal;
- for i:=1 to n do
- begin
- h:=a[i].xreal;
- if h<x then begin i1:=i; x:=h end
- end;
- SwapC(a[n-2], a[i1]);
- SwapC(alfad[n-2], alfad[i1]);
- x:=a[0].xreal;
- i1 := 0;
- for i:=1 to n do
- begin
- h:=a[i].xreal;
- if h>x then begin i1:=i; x:=h end
- end;
- SwapC(a[n-1], a[i1]);
- SwapC(alfad[n-1], alfad[i1]);
- vz := a[n-2]; vz.sub(a[n-1]);
- absdetmax := -1;
- for i:=0 to n do
- begin
- wz := a[i]; wz.sub(a[n-2]);
- absdet := abs(wz.imag*vz.xreal-wz.xreal*vz.imag);
- if absdet>absdetmax then begin i1:=i; absdetmax:=absdet end
- end;
- SwapC(a[n], a[i1]);
- SwapC(alfad[n], alfad[i1]);
- an2 := a[n-2]; an1 := a[n-1]; an := a[n];
- alfa.i := alfad[n-2].xreal; dv.i := alfad[n-2].imag;
- alfa.j := alfad[n-1].xreal; dv.j := alfad[n-1].imag;
- alfa.k := alfad[n ].xreal; dv.k := alfad[n ].imag;
- n := n - 3;
- GetMem(k, (n+1)*SizeOf(pointer));
- for j:=0 to n do GetMem(k^[j], (j+1)*SizeOf(ArbFloat));
- GetMem(e21, (n+1)*SizeOf(vector));
- GetMem(b, (n+1)*SizeOf(vector));
- pxpy(an2,an1,an,z); for i:=0 to n do b^[i].i:=1+p(a[i],an2,z);
- pxpy(an1,an,an2,z); for i:=0 to n do b^[i].j:=1+p(a[i],an1,z);
- pxpy(an,an2,an1,z); for i:=0 to n do b^[i].k:=1+p(a[i],an,z);
- e22[0].init(0,e(an1,an2),e(an,an2));
- e22[1].init(e(an1,an2),0,e(an,an1));
- e22[2].init(e(an,an2),e(an,an1),0);
- for j:=0 to n do e21^[j].init(e(an2,a[j]),e(an1,a[j]),e(an,a[j]));
- GetMem(c, (n+1)*SizeOf(pointer));
- for j:=0 to n do GetMem(c^[j], (j+1)*SizeOf(ArbFloat));
- for i:=0 to n do
- for j:=0 to i do
- begin
- if j=i then s:=0 else s:=e(a[i],a[j]);
- hulp.init(b^[j].Inprod(e22[0]), b^[j].Inprod(e22[1]), b^[j].Inprod(e22[2]));
- hulp.sub(e21^[j]);
- k^[i]^[j] := s+b^[i].InProd(hulp)-b^[j].Inprod(e21^[i]);
- if j=i then s:=1/alfad[i].imag else s:=0;
- hulp.init(b^[j].i/dv.i, b^[j].j/dv.j, b^[j].k/dv.k);
- c^[i]^[j] := k^[i]^[j] + (s + b^[i].Inprod(hulp))/lambda
- end;
- for i:=0 to n do gamma[i]:=alfad[i].xreal - b^[i].Inprod(alfa);
- SpdSol(n, pointer(c), gamma[0]);
- for j:=n downto 0 do FreeMem(c^[j], (j+1)*SizeOf(ArbFloat));
- FreeMem(c, (n+1)*SizeOf(pointer));
- s:=0; for j:=0 to n do s:=s+b^[j].i*gamma[j]; w.i:=s; gamma[n+1] := -s;
- s:=0; for j:=0 to n do s:=s+b^[j].j*gamma[j]; w.j:=s; gamma[n+2] := -s;
- s:=0; for j:=0 to n do s:=s+b^[j].k*gamma[j]; w.k:=s; gamma[n+3] := -s;
- FreeMem(b, (n+1)*SizeOf(vector));
- u.init(w.i/dv.i, w.j/dv.j, w.k/dv.k);
- u.scale(1/lambda);
- u.add(alfa);
- s:=0; for j:=0 to n do s:=s+e21^[j].i*gamma[j]; v.i := e22[0].inprod(w)-s;
- s:=0; for j:=0 to n do s:=s+e21^[j].j*gamma[j]; v.j := e22[1].inprod(w)-s;
- s:=0; for j:=0 to n do s:=s+e21^[j].k*gamma[j]; v.k := e22[2].inprod(w)-s;
- FreeMem(e21, (n+1)*SizeOf(vector));
- u.add(v);
- pfxpfy(an2, an1, an, u, pf); u1:=u.i;
- kwsom := 0; for j:=0 to n do kwsom:=kwsom+sqr(gamma[j])/alfad[j].imag;
- kwsom := kwsom+sqr(w.i)/dv.i+sqr(w.j)/dv.j+sqr(w.k)/dv.k;
- kwsom := kwsom/sqr(lambda);
- s:=0;
- for i:=0 to n do
- begin s1:=0;
- for j:=0 to i do s1:=s1+k^[i]^[j]*gamma[j];
- for j:=i+1 to n do s1:=s1+k^[j]^[i]*gamma[j];
- s := gamma[i]*s1+s
- end;
- for j:=n downto 0 do FreeMem(k^[j], (j+1)*SizeOf(ArbFloat));
- FreeMem(k, (n+1)*SizeOf(pointer));
- energie := s
- end {splineparameters};
- end.
|