cpubase.pas 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# Base unit for processor information. This unit contains
  18. enumerations of registers, opcodes, sizes, and other
  19. such things which are processor specific.
  20. }
  21. unit cpubase;
  22. {$i fpcdefs.inc}
  23. interface
  24. uses
  25. cutils,cclasses,
  26. globtype,globals,
  27. cpuinfo,
  28. aasmbase,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. TAsmOp= {$i armop.inc}
  36. { This should define the array of instructions as string }
  37. op2strtable=array[tasmop] of string[11];
  38. const
  39. { First value of opcode enumeration }
  40. firstop = low(tasmop);
  41. { Last value of opcode enumeration }
  42. lastop = high(tasmop);
  43. {*****************************************************************************
  44. Registers
  45. *****************************************************************************}
  46. type
  47. { Number of registers used for indexing in tables }
  48. tregisterindex=0..{$i rarmnor.inc}-1;
  49. const
  50. { Available Superregisters }
  51. {$i rarmsup.inc}
  52. RS_PC = RS_R15;
  53. { No Subregisters }
  54. R_SUBWHOLE = R_SUBNONE;
  55. { Available Registers }
  56. {$i rarmcon.inc}
  57. { aliases }
  58. NR_PC = NR_R15;
  59. { Integer Super registers first and last }
  60. first_int_supreg = RS_R0;
  61. first_int_imreg = $10;
  62. { Float Super register first and last }
  63. first_fpu_supreg = RS_F0;
  64. first_fpu_imreg = $08;
  65. { MM Super register first and last }
  66. first_mm_supreg = RS_S0;
  67. first_mm_imreg = $20;
  68. { TODO: Calculate bsstart}
  69. regnumber_count_bsstart = 64;
  70. regnumber_table : array[tregisterindex] of tregister = (
  71. {$i rarmnum.inc}
  72. );
  73. regstabs_table : array[tregisterindex] of shortint = (
  74. {$i rarmsta.inc}
  75. );
  76. regdwarf_table : array[tregisterindex] of shortint = (
  77. {$i rarmdwa.inc}
  78. );
  79. { registers which may be destroyed by calls }
  80. VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R14];
  81. VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
  82. VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31];
  83. VOLATILE_INTREGISTERS_DARWIN = [RS_R0..RS_R3,RS_R9,RS_R12..RS_R14];
  84. type
  85. totherregisterset = set of tregisterindex;
  86. {*****************************************************************************
  87. Instruction post fixes
  88. *****************************************************************************}
  89. type
  90. { ARM instructions load/store and arithmetic instructions
  91. can have several instruction post fixes which are collected
  92. in this enumeration
  93. }
  94. TOpPostfix = (PF_None,
  95. { update condition flags
  96. or floating point single }
  97. PF_S,
  98. { floating point size }
  99. PF_D,PF_E,PF_P,PF_EP,
  100. { load/store }
  101. PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
  102. { multiple load/store address modes }
  103. PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA,
  104. { multiple load/store vfp address modes }
  105. PF_IAD,PF_DBD,PF_FDD,PF_EAD,
  106. PF_IAS,PF_DBS,PF_FDS,PF_EAS,
  107. PF_IAX,PF_DBX,PF_FDX,PF_EAX
  108. );
  109. TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
  110. const
  111. cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
  112. PF_None,
  113. PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
  114. PF_S,PF_D,PF_E,PF_None,PF_None);
  115. oppostfix2str : array[TOpPostfix] of string[3] = ('',
  116. 's',
  117. 'd','e','p','ep',
  118. 'b','sb','bt','h','sh','t',
  119. 'ia','ib','da','db','fd','fa','ed','ea',
  120. 'iad','dbd','fdd','ead',
  121. 'ias','dbs','fds','eas',
  122. 'iax','dbx','fdx','eax');
  123. roundingmode2str : array[TRoundingMode] of string[1] = ('',
  124. 'p','m','z');
  125. {*****************************************************************************
  126. Conditions
  127. *****************************************************************************}
  128. type
  129. TAsmCond=(C_None,
  130. C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  131. C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
  132. );
  133. const
  134. cond2str : array[TAsmCond] of string[2]=('',
  135. 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
  136. 'ge','lt','gt','le','al','nv'
  137. );
  138. uppercond2str : array[TAsmCond] of string[2]=('',
  139. 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
  140. 'GE','LT','GT','LE','AL','NV'
  141. );
  142. {*****************************************************************************
  143. Flags
  144. *****************************************************************************}
  145. type
  146. TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
  147. F_GE,F_LT,F_GT,F_LE);
  148. {*****************************************************************************
  149. Operands
  150. *****************************************************************************}
  151. taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
  152. tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
  153. tupdatereg = (UR_None,UR_Update);
  154. pshifterop = ^tshifterop;
  155. tshifterop = record
  156. shiftmode : tshiftmode;
  157. rs : tregister;
  158. shiftimm : byte;
  159. end;
  160. {*****************************************************************************
  161. Constants
  162. *****************************************************************************}
  163. const
  164. max_operands = 4;
  165. {# Constant defining possibly all registers which might require saving }
  166. ALL_OTHERREGISTERS = [];
  167. general_superregisters = [RS_R0..RS_PC];
  168. {# Table of registers which can be allocated by the code generator
  169. internally, when generating the code.
  170. }
  171. { legend: }
  172. { xxxregs = set of all possibly used registers of that type in the code }
  173. { generator }
  174. { usableregsxxx = set of all 32bit components of registers that can be }
  175. { possible allocated to a regvar or using getregisterxxx (this }
  176. { excludes registers which can be only used for parameter }
  177. { passing on ABI's that define this) }
  178. { c_countusableregsxxx = amount of registers in the usableregsxxx set }
  179. maxintregs = 15;
  180. { to determine how many registers to use for regvars }
  181. maxintscratchregs = 3;
  182. usableregsint = [RS_R4..RS_R10];
  183. c_countusableregsint = 7;
  184. maxfpuregs = 8;
  185. fpuregs = [RS_F0..RS_F7];
  186. usableregsfpu = [RS_F4..RS_F7];
  187. c_countusableregsfpu = 4;
  188. mmregs = [RS_D0..RS_D15];
  189. usableregsmm = [RS_D8..RS_D15];
  190. c_countusableregsmm = 8;
  191. maxaddrregs = 0;
  192. addrregs = [];
  193. usableregsaddr = [];
  194. c_countusableregsaddr = 0;
  195. {*****************************************************************************
  196. Operand Sizes
  197. *****************************************************************************}
  198. type
  199. topsize = (S_NO,
  200. S_B,S_W,S_L,S_BW,S_BL,S_WL,
  201. S_IS,S_IL,S_IQ,
  202. S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
  203. );
  204. {*****************************************************************************
  205. Constants
  206. *****************************************************************************}
  207. const
  208. firstsaveintreg = RS_R4;
  209. lastsaveintreg = RS_R10;
  210. firstsavefpureg = RS_F4;
  211. lastsavefpureg = RS_F7;
  212. firstsavemmreg = RS_D8;
  213. lastsavemmreg = RS_D15;
  214. maxvarregs = 7;
  215. varregs : Array [1..maxvarregs] of tsuperregister =
  216. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  217. maxfpuvarregs = 4;
  218. fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
  219. (RS_F4,RS_F5,RS_F6,RS_F7);
  220. {*****************************************************************************
  221. Default generic sizes
  222. *****************************************************************************}
  223. { Defines the default address size for a processor, }
  224. OS_ADDR = OS_32;
  225. { the natural int size for a processor, }
  226. OS_INT = OS_32;
  227. OS_SINT = OS_S32;
  228. { the maximum float size for a processor, }
  229. OS_FLOAT = OS_F64;
  230. { the size of a vector register for a processor }
  231. OS_VECTOR = OS_M32;
  232. {*****************************************************************************
  233. Generic Register names
  234. *****************************************************************************}
  235. { Stack pointer register }
  236. NR_STACK_POINTER_REG = NR_R13;
  237. RS_STACK_POINTER_REG = RS_R13;
  238. { Frame pointer register }
  239. RS_FRAME_POINTER_REG = RS_R11;
  240. NR_FRAME_POINTER_REG = NR_R11;
  241. { Register for addressing absolute data in a position independant way,
  242. such as in PIC code. The exact meaning is ABI specific. For
  243. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  244. }
  245. NR_PIC_OFFSET_REG = NR_R9;
  246. { Results are returned in this register (32-bit values) }
  247. NR_FUNCTION_RETURN_REG = NR_R0;
  248. RS_FUNCTION_RETURN_REG = RS_R0;
  249. { The value returned from a function is available in this register }
  250. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  251. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  252. NR_FPU_RESULT_REG = NR_F0;
  253. NR_MM_RESULT_REG = NR_NO;
  254. NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
  255. { Offset where the parent framepointer is pushed }
  256. PARENT_FRAMEPOINTER_OFFSET = 0;
  257. { Low part of 64bit return value }
  258. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  259. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  260. { High part of 64bit return value }
  261. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  262. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  263. {*****************************************************************************
  264. GCC /ABI linking information
  265. *****************************************************************************}
  266. const
  267. { Registers which must be saved when calling a routine declared as
  268. cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
  269. saved should be the ones as defined in the target ABI and / or GCC.
  270. This value can be deduced from the CALLED_USED_REGISTERS array in the
  271. GCC source.
  272. }
  273. saved_standard_registers : array[0..6] of tsuperregister =
  274. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  275. { this is only for the generic code which is not used for this architecture }
  276. saved_mm_registers : array[0..0] of tsuperregister = (RS_NO);
  277. { Required parameter alignment when calling a routine declared as
  278. stdcall and cdecl. The alignment value should be the one defined
  279. by GCC or the target ABI.
  280. The value of this constant is equal to the constant
  281. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  282. }
  283. std_param_align = 4;
  284. {*****************************************************************************
  285. Helpers
  286. *****************************************************************************}
  287. { Returns the tcgsize corresponding with the size of reg.}
  288. function reg_cgsize(const reg: tregister) : tcgsize;
  289. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  290. function is_calljmp(o:tasmop):boolean;
  291. procedure inverse_flags(var f: TResFlags);
  292. function flags_to_cond(const f: TResFlags) : TAsmCond;
  293. function findreg_by_number(r:Tregister):tregisterindex;
  294. function std_regnum_search(const s:string):Tregister;
  295. function std_regname(r:Tregister):string;
  296. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  297. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  298. procedure shifterop_reset(var so : tshifterop);
  299. function is_pc(const r : tregister) : boolean;
  300. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  301. function dwarf_reg(r:tregister):shortint;
  302. implementation
  303. uses
  304. systems,rgBase,verbose;
  305. const
  306. std_regname_table : array[tregisterindex] of string[7] = (
  307. {$i rarmstd.inc}
  308. );
  309. regnumber_index : array[tregisterindex] of tregisterindex = (
  310. {$i rarmrni.inc}
  311. );
  312. std_regname_index : array[tregisterindex] of tregisterindex = (
  313. {$i rarmsri.inc}
  314. );
  315. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  316. begin
  317. case regtype of
  318. R_MMREGISTER:
  319. begin
  320. case s of
  321. OS_F32:
  322. cgsize2subreg:=R_SUBFS;
  323. OS_F64:
  324. cgsize2subreg:=R_SUBFD;
  325. else
  326. internalerror(2009112701);
  327. end;
  328. end;
  329. else
  330. cgsize2subreg:=R_SUBWHOLE;
  331. end;
  332. end;
  333. function reg_cgsize(const reg: tregister): tcgsize;
  334. begin
  335. case getregtype(reg) of
  336. R_INTREGISTER :
  337. reg_cgsize:=OS_32;
  338. R_FPUREGISTER :
  339. reg_cgsize:=OS_F80;
  340. R_MMREGISTER :
  341. begin
  342. case getsubreg(reg) of
  343. R_SUBFD,
  344. R_SUBWHOLE:
  345. result:=OS_F64;
  346. R_SUBFS:
  347. result:=OS_F32;
  348. else
  349. internalerror(2009112903);
  350. end;
  351. end;
  352. else
  353. internalerror(200303181);
  354. end;
  355. end;
  356. function is_calljmp(o:tasmop):boolean;
  357. begin
  358. { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
  359. To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
  360. is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
  361. end;
  362. procedure inverse_flags(var f: TResFlags);
  363. const
  364. inv_flags: array[TResFlags] of TResFlags =
  365. (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
  366. F_LT,F_GE,F_LE,F_GT);
  367. begin
  368. f:=inv_flags[f];
  369. end;
  370. function flags_to_cond(const f: TResFlags) : TAsmCond;
  371. const
  372. flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
  373. (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  374. C_GE,C_LT,C_GT,C_LE);
  375. begin
  376. if f>high(flag_2_cond) then
  377. internalerror(200112301);
  378. result:=flag_2_cond[f];
  379. end;
  380. function findreg_by_number(r:Tregister):tregisterindex;
  381. begin
  382. result:=rgBase.findreg_by_number_table(r,regnumber_index);
  383. end;
  384. function std_regnum_search(const s:string):Tregister;
  385. begin
  386. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  387. end;
  388. function std_regname(r:Tregister):string;
  389. var
  390. p : tregisterindex;
  391. begin
  392. p:=findreg_by_number_table(r,regnumber_index);
  393. if p<>0 then
  394. result:=std_regname_table[p]
  395. else
  396. result:=generic_regname(r);
  397. end;
  398. procedure shifterop_reset(var so : tshifterop);
  399. begin
  400. FillChar(so,sizeof(so),0);
  401. end;
  402. function is_pc(const r : tregister) : boolean;
  403. begin
  404. is_pc:=(r=NR_R15);
  405. end;
  406. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  407. const
  408. inverse: array[TAsmCond] of TAsmCond=(C_None,
  409. C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
  410. C_LT,C_GE,C_LE,C_GT,C_None,C_None
  411. );
  412. begin
  413. result := inverse[c];
  414. end;
  415. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  416. begin
  417. result := c1 = c2;
  418. end;
  419. function rotl(d : dword;b : byte) : dword;
  420. begin
  421. result:=(d shr (32-b)) or (d shl b);
  422. end;
  423. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  424. var
  425. i : longint;
  426. begin
  427. if current_settings.cputype in cpu_thumb2 then
  428. begin
  429. for i:=0 to 24 do
  430. begin
  431. if (dword(d) and not($ff shl i))=0 then
  432. begin
  433. imm_shift:=i;
  434. result:=true;
  435. exit;
  436. end;
  437. end;
  438. end
  439. else
  440. begin
  441. for i:=0 to 15 do
  442. begin
  443. if (dword(d) and not(rotl($ff,i*2)))=0 then
  444. begin
  445. imm_shift:=i*2;
  446. result:=true;
  447. exit;
  448. end;
  449. end;
  450. end;
  451. result:=false;
  452. end;
  453. function dwarf_reg(r:tregister):shortint;
  454. begin
  455. result:=regdwarf_table[findreg_by_number(r)];
  456. if result=-1 then
  457. internalerror(200603251);
  458. end;
  459. { Low part of 64bit return value }
  460. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  461. begin
  462. if target_info.endian=endian_little then
  463. result:=NR_R0
  464. else
  465. result:=NR_R1;
  466. end;
  467. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  468. begin
  469. if target_info.endian=endian_little then
  470. result:=RS_R0
  471. else
  472. result:=RS_R1;
  473. end;
  474. { High part of 64bit return value }
  475. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  476. begin
  477. if target_info.endian=endian_little then
  478. result:=NR_R1
  479. else
  480. result:=NR_R0;
  481. end;
  482. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  483. begin
  484. if target_info.endian=endian_little then
  485. result:=RS_R1
  486. else
  487. result:=RS_R0;
  488. end;
  489. end.