types.pas 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. {
  2. $Id$
  3. Copyright (C) 1998-2000 by Florian Klaempfl
  4. This unit provides some help routines for type handling
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************
  17. }
  18. unit types;
  19. interface
  20. uses
  21. cobjects,symtable
  22. {$IFDEF NEWST}
  23. ,defs
  24. {$ENDIF NEWST};
  25. type
  26. tmmxtype = (mmxno,mmxu8bit,mmxs8bit,mmxu16bit,mmxs16bit,
  27. mmxu32bit,mmxs32bit,mmxfixed16,mmxsingle);
  28. const
  29. { true if we must never copy this parameter }
  30. never_copy_const_param : boolean = false;
  31. {*****************************************************************************
  32. Basic type functions
  33. *****************************************************************************}
  34. { returns true, if def defines an ordinal type }
  35. function is_ordinal(def : pdef) : boolean;
  36. { returns the min. value of the type }
  37. function get_min_value(def : pdef) : longint;
  38. { returns true, if def defines an ordinal type }
  39. function is_integer(def : pdef) : boolean;
  40. { true if p is a boolean }
  41. function is_boolean(def : pdef) : boolean;
  42. { true if p is a char }
  43. function is_char(def : pdef) : boolean;
  44. { true if p is a void}
  45. function is_void(def : pdef) : boolean;
  46. { true if p is a smallset def }
  47. function is_smallset(p : pdef) : boolean;
  48. { returns true, if def defines a signed data type (only for ordinal types) }
  49. function is_signed(def : pdef) : boolean;
  50. {*****************************************************************************
  51. Array helper functions
  52. *****************************************************************************}
  53. { true, if p points to a zero based (non special like open or
  54. dynamic array def, mainly this is used to see if the array
  55. is convertable to a pointer }
  56. function is_zero_based_array(p : pdef) : boolean;
  57. { true if p points to an open array def }
  58. function is_open_array(p : pdef) : boolean;
  59. { true, if p points to an array of const def }
  60. function is_array_constructor(p : pdef) : boolean;
  61. { true, if p points to a variant array }
  62. function is_variant_array(p : pdef) : boolean;
  63. { true, if p points to an array of const }
  64. function is_array_of_const(p : pdef) : boolean;
  65. { true, if p points any kind of special array }
  66. function is_special_array(p : pdef) : boolean;
  67. { true if p is a char array def }
  68. function is_chararray(p : pdef) : boolean;
  69. {*****************************************************************************
  70. String helper functions
  71. *****************************************************************************}
  72. { true if p points to an open string def }
  73. function is_open_string(p : pdef) : boolean;
  74. { true if p is an ansi string def }
  75. function is_ansistring(p : pdef) : boolean;
  76. { true if p is a long string def }
  77. function is_longstring(p : pdef) : boolean;
  78. { true if p is a wide string def }
  79. function is_widestring(p : pdef) : boolean;
  80. { true if p is a short string def }
  81. function is_shortstring(p : pdef) : boolean;
  82. { true if p is a pchar def }
  83. function is_pchar(p : pdef) : boolean;
  84. { true if p is a voidpointer def }
  85. function is_voidpointer(p : pdef) : boolean;
  86. { returns true, if def uses FPU }
  87. function is_fpu(def : pdef) : boolean;
  88. { true if the return value is in EAX }
  89. function ret_in_acc(def : pdef) : boolean;
  90. { true if uses a parameter as return value }
  91. function ret_in_param(def : pdef) : boolean;
  92. { true, if def is a 64 bit int type }
  93. function is_64bitint(def : pdef) : boolean;
  94. function push_high_param(def : pdef) : boolean;
  95. { true if a parameter is too large to copy and only the address is pushed }
  96. function push_addr_param(def : pdef) : boolean;
  97. { true, if def1 and def2 are semantical the same }
  98. function is_equal(def1,def2 : pdef) : boolean;
  99. { checks for type compatibility (subgroups of type) }
  100. { used for case statements... probably missing stuff }
  101. { to use on other types }
  102. function is_subequal(def1, def2: pdef): boolean;
  103. { same as is_equal, but with error message if failed }
  104. function CheckTypes(def1,def2 : pdef) : boolean;
  105. { true, if two parameter lists are equal }
  106. { if acp is cp_none, all have to match exactly }
  107. { if acp is cp_value_equal_const call by value }
  108. { and call by const parameter are assumed as }
  109. { equal }
  110. { if acp is cp_all the var const or nothing are considered equal }
  111. type
  112. compare_type = ( cp_none, cp_value_equal_const, cp_all);
  113. function equal_paras(paralist1,paralist2 : plinkedlist; acp : compare_type) : boolean;
  114. { true if a type can be allowed for another one
  115. in a func var }
  116. function convertable_paras(paralist1,paralist2 : plinkedlist; acp : compare_type) : boolean;
  117. { true if a function can be assigned to a procvar }
  118. function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean;
  119. { if l isn't in the range of def a range check error is generated and
  120. the value is placed within the range }
  121. procedure testrange(def : pdef;var l : longint);
  122. { returns the range of def }
  123. procedure getrange(def : pdef;var l : longint;var h : longint);
  124. { some type helper routines for MMX support }
  125. function is_mmx_able_array(p : pdef) : boolean;
  126. { returns the mmx type }
  127. function mmx_type(p : pdef) : tmmxtype;
  128. { returns true, if sym needs an entry in the proplist of a class rtti }
  129. function needs_prop_entry(sym : psym) : boolean;
  130. { returns true, if p contains data which needs init/final code }
  131. function needs_init_final(p : psymtable) : boolean;
  132. implementation
  133. uses
  134. strings,globtype,globals,htypechk,
  135. tree,verbose,symconst;
  136. var
  137. b_needs_init_final : boolean;
  138. procedure _needs_init_final(p : pnamedindexobject);{$ifndef FPC}far;{$endif}
  139. begin
  140. if (psym(p)^.typ=varsym) and
  141. assigned(pvarsym(p)^.vartype.def) and
  142. not((pvarsym(p)^.vartype.def^.deftype=objectdef) and
  143. pobjectdef(pvarsym(p)^.vartype.def)^.is_class) and
  144. pvarsym(p)^.vartype.def^.needs_inittable then
  145. b_needs_init_final:=true;
  146. end;
  147. { returns true, if p contains data which needs init/final code }
  148. function needs_init_final(p : psymtable) : boolean;
  149. begin
  150. b_needs_init_final:=false;
  151. p^.foreach({$ifndef TP}@{$endif}_needs_init_final);
  152. needs_init_final:=b_needs_init_final;
  153. end;
  154. function needs_prop_entry(sym : psym) : boolean;
  155. begin
  156. needs_prop_entry:=(sp_published in psym(sym)^.symoptions) and
  157. (sym^.typ in [propertysym,varsym]);
  158. end;
  159. { compare_type = ( cp_none, cp_value_equal_const, cp_all); }
  160. function equal_paras(paralist1,paralist2 : plinkedlist; acp : compare_type) : boolean;
  161. var
  162. def1,def2 : pparaitem;
  163. begin
  164. def1:=pparaitem(paralist1^.first);
  165. def2:=pparaitem(paralist2^.first);
  166. while (assigned(def1)) and (assigned(def2)) do
  167. begin
  168. case acp of
  169. cp_value_equal_const :
  170. begin
  171. if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or
  172. ((def1^.paratyp<>def2^.paratyp) and
  173. ((def1^.paratyp in [vs_var,vs_out]) or
  174. (def2^.paratyp in [vs_var,vs_out])
  175. )
  176. ) then
  177. begin
  178. equal_paras:=false;
  179. exit;
  180. end;
  181. end;
  182. cp_all :
  183. begin
  184. if not(is_equal(def1^.paratype.def,def2^.paratype.def)) or
  185. (def1^.paratyp<>def2^.paratyp) then
  186. begin
  187. equal_paras:=false;
  188. exit;
  189. end;
  190. end;
  191. cp_none :
  192. begin
  193. if not(is_equal(def1^.paratype.def,def2^.paratype.def)) then
  194. begin
  195. equal_paras:=false;
  196. exit;
  197. end;
  198. end;
  199. end;
  200. def1:=pparaitem(def1^.next);
  201. def2:=pparaitem(def2^.next);
  202. end;
  203. if (def1=nil) and (def2=nil) then
  204. equal_paras:=true
  205. else
  206. equal_paras:=false;
  207. end;
  208. function convertable_paras(paralist1,paralist2 : plinkedlist;acp : compare_type) : boolean;
  209. var
  210. def1,def2 : pparaitem;
  211. doconv : tconverttype;
  212. begin
  213. def1:=pparaitem(paralist1^.first);
  214. def2:=pparaitem(paralist2^.first);
  215. while (assigned(def1)) and (assigned(def2)) do
  216. begin
  217. case acp of
  218. cp_value_equal_const :
  219. begin
  220. if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or
  221. ((def1^.paratyp<>def2^.paratyp) and
  222. ((def1^.paratyp in [vs_out,vs_var]) or
  223. (def2^.paratyp in [vs_out,vs_var])
  224. )
  225. ) then
  226. begin
  227. convertable_paras:=false;
  228. exit;
  229. end;
  230. end;
  231. cp_all :
  232. begin
  233. if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) or
  234. (def1^.paratyp<>def2^.paratyp) then
  235. begin
  236. convertable_paras:=false;
  237. exit;
  238. end;
  239. end;
  240. cp_none :
  241. begin
  242. if (isconvertable(def1^.paratype.def,def2^.paratype.def,doconv,callparan,false)=0) then
  243. begin
  244. convertable_paras:=false;
  245. exit;
  246. end;
  247. end;
  248. end;
  249. def1:=pparaitem(def1^.next);
  250. def2:=pparaitem(def2^.next);
  251. end;
  252. if (def1=nil) and (def2=nil) then
  253. convertable_paras:=true
  254. else
  255. convertable_paras:=false;
  256. end;
  257. { true if a function can be assigned to a procvar }
  258. function proc_to_procvar_equal(def1:pprocdef;def2:pprocvardef) : boolean;
  259. const
  260. po_comp = po_compatibility_options-[po_methodpointer,po_classmethod];
  261. var
  262. ismethod : boolean;
  263. begin
  264. proc_to_procvar_equal:=false;
  265. if not(assigned(def1)) or not(assigned(def2)) then
  266. exit;
  267. { check for method pointer }
  268. ismethod:=assigned(def1^.owner) and
  269. (def1^.owner^.symtabletype=objectsymtable);
  270. { I think methods of objects are also not compatible }
  271. { with procedure variables! (FK)
  272. and
  273. assigned(def1^.owner^.defowner) and
  274. (pobjectdef(def1^.owner^.defowner)^.is_class); }
  275. if (ismethod and not (po_methodpointer in def2^.procoptions)) or
  276. (not(ismethod) and (po_methodpointer in def2^.procoptions)) then
  277. begin
  278. Message(type_e_no_method_and_procedure_not_compatible);
  279. exit;
  280. end;
  281. { check return value and para's and options, methodpointer is already checked
  282. parameters may also be convertable }
  283. if is_equal(def1^.rettype.def,def2^.rettype.def) and
  284. (equal_paras(def1^.para,def2^.para,cp_all) or
  285. convertable_paras(def1^.para,def2^.para,cp_all)) and
  286. ((po_comp * def1^.procoptions)= (po_comp * def2^.procoptions)) then
  287. proc_to_procvar_equal:=true
  288. else
  289. proc_to_procvar_equal:=false;
  290. end;
  291. { returns true, if def uses FPU }
  292. function is_fpu(def : pdef) : boolean;
  293. begin
  294. is_fpu:=(def^.deftype=floatdef) and (pfloatdef(def)^.typ<>f32bit);
  295. end;
  296. { true if p is an ordinal }
  297. function is_ordinal(def : pdef) : boolean;
  298. var
  299. dt : tbasetype;
  300. begin
  301. case def^.deftype of
  302. orddef :
  303. begin
  304. dt:=porddef(def)^.typ;
  305. is_ordinal:=dt in [uchar,
  306. u8bit,u16bit,u32bit,u64bit,
  307. s8bit,s16bit,s32bit,s64bit,
  308. bool8bit,bool16bit,bool32bit];
  309. end;
  310. enumdef :
  311. is_ordinal:=true;
  312. else
  313. is_ordinal:=false;
  314. end;
  315. end;
  316. { returns the min. value of the type }
  317. function get_min_value(def : pdef) : longint;
  318. begin
  319. case def^.deftype of
  320. orddef:
  321. get_min_value:=porddef(def)^.low;
  322. enumdef:
  323. get_min_value:=penumdef(def)^.min;
  324. else
  325. get_min_value:=0;
  326. end;
  327. end;
  328. { true if p is an integer }
  329. function is_integer(def : pdef) : boolean;
  330. begin
  331. is_integer:=(def^.deftype=orddef) and
  332. (porddef(def)^.typ in [uauto,u8bit,u16bit,u32bit,u64bit,
  333. s8bit,s16bit,s32bit,s64bit]);
  334. end;
  335. { true if p is a boolean }
  336. function is_boolean(def : pdef) : boolean;
  337. begin
  338. is_boolean:=(def^.deftype=orddef) and
  339. (porddef(def)^.typ in [bool8bit,bool16bit,bool32bit]);
  340. end;
  341. { true if p is a void }
  342. function is_void(def : pdef) : boolean;
  343. begin
  344. is_void:=(def^.deftype=orddef) and
  345. (porddef(def)^.typ=uvoid);
  346. end;
  347. { true if p is a char }
  348. function is_char(def : pdef) : boolean;
  349. begin
  350. is_char:=(def^.deftype=orddef) and
  351. (porddef(def)^.typ=uchar);
  352. end;
  353. { true if p is signed (integer) }
  354. function is_signed(def : pdef) : boolean;
  355. var
  356. dt : tbasetype;
  357. begin
  358. case def^.deftype of
  359. orddef :
  360. begin
  361. dt:=porddef(def)^.typ;
  362. is_signed:=(dt in [s8bit,s16bit,s32bit,s64bit]);
  363. end;
  364. enumdef :
  365. is_signed:=false;
  366. else
  367. is_signed:=false;
  368. end;
  369. end;
  370. { true, if p points to an open array def }
  371. function is_open_string(p : pdef) : boolean;
  372. begin
  373. is_open_string:=(p^.deftype=stringdef) and
  374. (pstringdef(p)^.string_typ=st_shortstring) and
  375. (pstringdef(p)^.len=0);
  376. end;
  377. { true, if p points to a zero based array def }
  378. function is_zero_based_array(p : pdef) : boolean;
  379. begin
  380. is_zero_based_array:=(p^.deftype=arraydef) and
  381. (parraydef(p)^.lowrange=0) and
  382. not(is_special_array(p));
  383. end;
  384. { true, if p points to an open array def }
  385. function is_open_array(p : pdef) : boolean;
  386. begin
  387. { check for s32bitdef is needed, because for u32bit the high
  388. range is also -1 ! (PFV) }
  389. is_open_array:=(p^.deftype=arraydef) and
  390. (parraydef(p)^.rangetype.def=pdef(s32bitdef)) and
  391. (parraydef(p)^.lowrange=0) and
  392. (parraydef(p)^.highrange=-1) and
  393. not(parraydef(p)^.IsConstructor) and
  394. not(parraydef(p)^.IsVariant) and
  395. not(parraydef(p)^.IsArrayOfConst);
  396. end;
  397. { true, if p points to an array of const def }
  398. function is_array_constructor(p : pdef) : boolean;
  399. begin
  400. is_array_constructor:=(p^.deftype=arraydef) and
  401. (parraydef(p)^.IsConstructor);
  402. end;
  403. { true, if p points to a variant array }
  404. function is_variant_array(p : pdef) : boolean;
  405. begin
  406. is_variant_array:=(p^.deftype=arraydef) and
  407. (parraydef(p)^.IsVariant);
  408. end;
  409. { true, if p points to an array of const }
  410. function is_array_of_const(p : pdef) : boolean;
  411. begin
  412. is_array_of_const:=(p^.deftype=arraydef) and
  413. (parraydef(p)^.IsArrayOfConst);
  414. end;
  415. { true, if p points to a special array }
  416. function is_special_array(p : pdef) : boolean;
  417. begin
  418. is_special_array:=(p^.deftype=arraydef) and
  419. ((parraydef(p)^.IsVariant) or
  420. (parraydef(p)^.IsArrayOfConst) or
  421. (parraydef(p)^.IsConstructor) or
  422. is_open_array(p)
  423. );
  424. end;
  425. { true if p is an ansi string def }
  426. function is_ansistring(p : pdef) : boolean;
  427. begin
  428. is_ansistring:=(p^.deftype=stringdef) and
  429. (pstringdef(p)^.string_typ=st_ansistring);
  430. end;
  431. { true if p is an long string def }
  432. function is_longstring(p : pdef) : boolean;
  433. begin
  434. is_longstring:=(p^.deftype=stringdef) and
  435. (pstringdef(p)^.string_typ=st_longstring);
  436. end;
  437. { true if p is an wide string def }
  438. function is_widestring(p : pdef) : boolean;
  439. begin
  440. is_widestring:=(p^.deftype=stringdef) and
  441. (pstringdef(p)^.string_typ=st_widestring);
  442. end;
  443. { true if p is an short string def }
  444. function is_shortstring(p : pdef) : boolean;
  445. begin
  446. is_shortstring:=(p^.deftype=stringdef) and
  447. (pstringdef(p)^.string_typ=st_shortstring);
  448. end;
  449. { true if p is a char array def }
  450. function is_chararray(p : pdef) : boolean;
  451. begin
  452. is_chararray:=(p^.deftype=arraydef) and
  453. is_equal(parraydef(p)^.elementtype.def,cchardef) and
  454. not(is_special_array(p));
  455. end;
  456. { true if p is a pchar def }
  457. function is_pchar(p : pdef) : boolean;
  458. begin
  459. is_pchar:=(p^.deftype=pointerdef) and
  460. is_equal(Ppointerdef(p)^.pointertype.def,cchardef);
  461. end;
  462. { true if p is a voidpointer def }
  463. function is_voidpointer(p : pdef) : boolean;
  464. begin
  465. is_voidpointer:=(p^.deftype=pointerdef) and
  466. is_equal(Ppointerdef(p)^.pointertype.def,voiddef);
  467. end;
  468. { true if p is a smallset def }
  469. function is_smallset(p : pdef) : boolean;
  470. begin
  471. is_smallset:=(p^.deftype=setdef) and
  472. (psetdef(p)^.settype=smallset);
  473. end;
  474. { true if the return value is in accumulator (EAX for i386), D0 for 68k }
  475. function ret_in_acc(def : pdef) : boolean;
  476. begin
  477. ret_in_acc:=(def^.deftype in [orddef,pointerdef,enumdef,classrefdef]) or
  478. ((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_ansistring,st_widestring])) or
  479. ((def^.deftype=procvardef) and not(po_methodpointer in pprocvardef(def)^.procoptions)) or
  480. ((def^.deftype=objectdef) and pobjectdef(def)^.is_class) or
  481. ((def^.deftype=setdef) and (psetdef(def)^.settype=smallset)) or
  482. ((def^.deftype=floatdef) and (pfloatdef(def)^.typ=f32bit));
  483. end;
  484. { true, if def is a 64 bit int type }
  485. function is_64bitint(def : pdef) : boolean;
  486. begin
  487. is_64bitint:=(def^.deftype=orddef) and (porddef(def)^.typ in [u64bit,s64bit])
  488. end;
  489. { true if uses a parameter as return value }
  490. function ret_in_param(def : pdef) : boolean;
  491. begin
  492. ret_in_param:=(def^.deftype in [arraydef,recorddef]) or
  493. ((def^.deftype=stringdef) and (pstringdef(def)^.string_typ in [st_shortstring,st_longstring])) or
  494. ((def^.deftype=procvardef) and (po_methodpointer in pprocvardef(def)^.procoptions)) or
  495. ((def^.deftype=objectdef) and not(pobjectdef(def)^.is_class)) or
  496. ((def^.deftype=setdef) and (psetdef(def)^.settype<>smallset));
  497. end;
  498. function push_high_param(def : pdef) : boolean;
  499. begin
  500. push_high_param:=is_open_array(def) or
  501. is_open_string(def) or
  502. is_array_of_const(def);
  503. end;
  504. { true if a parameter is too large to copy and only the address is pushed }
  505. function push_addr_param(def : pdef) : boolean;
  506. begin
  507. push_addr_param:=false;
  508. if never_copy_const_param then
  509. push_addr_param:=true
  510. else
  511. begin
  512. case def^.deftype of
  513. formaldef :
  514. push_addr_param:=true;
  515. recorddef :
  516. push_addr_param:=(def^.size>4);
  517. arraydef :
  518. push_addr_param:=((Parraydef(def)^.highrange>Parraydef(def)^.lowrange) and (def^.size>4)) or
  519. is_open_array(def) or
  520. is_array_of_const(def) or
  521. is_array_constructor(def);
  522. objectdef :
  523. push_addr_param:=not(pobjectdef(def)^.is_class);
  524. stringdef :
  525. push_addr_param:=pstringdef(def)^.string_typ in [st_shortstring,st_longstring];
  526. procvardef :
  527. push_addr_param:=(po_methodpointer in pprocvardef(def)^.procoptions);
  528. setdef :
  529. push_addr_param:=(psetdef(def)^.settype<>smallset);
  530. end;
  531. end;
  532. end;
  533. { test if l is in the range of def, outputs error if out of range }
  534. procedure testrange(def : pdef;var l : longint);
  535. var
  536. lv,hv: longint;
  537. begin
  538. { for 64 bit types we need only to check if it is less than }
  539. { zero, if def is a qword node }
  540. if is_64bitint(def) then
  541. begin
  542. if (l<0) and (porddef(def)^.typ=u64bit) then
  543. begin
  544. l:=0;
  545. if (cs_check_range in aktlocalswitches) then
  546. Message(parser_e_range_check_error)
  547. else
  548. Message(parser_w_range_check_error);
  549. end;
  550. end
  551. else
  552. begin
  553. getrange(def,lv,hv);
  554. if (def^.deftype=orddef) and
  555. (porddef(def)^.typ=u32bit) then
  556. begin
  557. if lv<=hv then
  558. begin
  559. if (l<lv) or (l>hv) then
  560. begin
  561. if (cs_check_range in aktlocalswitches) then
  562. Message(parser_e_range_check_error)
  563. else
  564. Message(parser_w_range_check_error);
  565. end;
  566. end
  567. else
  568. { this happens with the wrap around problem }
  569. { if lv is positive and hv is over $7ffffff }
  570. { so it seems negative }
  571. begin
  572. if ((l>=0) and (l<lv)) or
  573. ((l<0) and (l>hv)) then
  574. begin
  575. if (cs_check_range in aktlocalswitches) then
  576. Message(parser_e_range_check_error)
  577. else
  578. Message(parser_w_range_check_error);
  579. end;
  580. end;
  581. end
  582. else if (l<lv) or (l>hv) then
  583. begin
  584. if (def^.deftype=enumdef) or
  585. (cs_check_range in aktlocalswitches) then
  586. Message(parser_e_range_check_error)
  587. else
  588. Message(parser_w_range_check_error);
  589. { Fix the value to fit in the allocated space for this type of variable }
  590. case def^.size of
  591. 1: l := l and $ff;
  592. 2: l := l and $ffff;
  593. end
  594. { l:=lv+(l mod (hv-lv+1));}
  595. end;
  596. end;
  597. end;
  598. { return the range from def in l and h }
  599. procedure getrange(def : pdef;var l : longint;var h : longint);
  600. begin
  601. case def^.deftype of
  602. orddef :
  603. begin
  604. l:=porddef(def)^.low;
  605. h:=porddef(def)^.high;
  606. end;
  607. enumdef :
  608. begin
  609. l:=penumdef(def)^.min;
  610. h:=penumdef(def)^.max;
  611. end;
  612. arraydef :
  613. begin
  614. l:=parraydef(def)^.lowrange;
  615. h:=parraydef(def)^.highrange;
  616. end;
  617. else
  618. internalerror(987);
  619. end;
  620. end;
  621. function mmx_type(p : pdef) : tmmxtype;
  622. begin
  623. mmx_type:=mmxno;
  624. if is_mmx_able_array(p) then
  625. begin
  626. if parraydef(p)^.elementtype.def^.deftype=floatdef then
  627. case pfloatdef(parraydef(p)^.elementtype.def)^.typ of
  628. s32real:
  629. mmx_type:=mmxsingle;
  630. f16bit:
  631. mmx_type:=mmxfixed16
  632. end
  633. else
  634. case porddef(parraydef(p)^.elementtype.def)^.typ of
  635. u8bit:
  636. mmx_type:=mmxu8bit;
  637. s8bit:
  638. mmx_type:=mmxs8bit;
  639. u16bit:
  640. mmx_type:=mmxu16bit;
  641. s16bit:
  642. mmx_type:=mmxs16bit;
  643. u32bit:
  644. mmx_type:=mmxu32bit;
  645. s32bit:
  646. mmx_type:=mmxs32bit;
  647. end;
  648. end;
  649. end;
  650. function is_mmx_able_array(p : pdef) : boolean;
  651. begin
  652. {$ifdef SUPPORT_MMX}
  653. if (cs_mmx_saturation in aktlocalswitches) then
  654. begin
  655. is_mmx_able_array:=(p^.deftype=arraydef) and
  656. not(is_special_array(p)) and
  657. (
  658. (
  659. (parraydef(p)^.elementtype.def^.deftype=orddef) and
  660. (
  661. (
  662. (parraydef(p)^.lowrange=0) and
  663. (parraydef(p)^.highrange=1) and
  664. (porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit])
  665. )
  666. or
  667. (
  668. (parraydef(p)^.lowrange=0) and
  669. (parraydef(p)^.highrange=3) and
  670. (porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit])
  671. )
  672. )
  673. )
  674. or
  675. (
  676. (
  677. (parraydef(p)^.elementtype.def^.deftype=floatdef) and
  678. (
  679. (parraydef(p)^.lowrange=0) and
  680. (parraydef(p)^.highrange=3) and
  681. (pfloatdef(parraydef(p)^.elementtype.def)^.typ=f16bit)
  682. ) or
  683. (
  684. (parraydef(p)^.lowrange=0) and
  685. (parraydef(p)^.highrange=1) and
  686. (pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real)
  687. )
  688. )
  689. )
  690. );
  691. end
  692. else
  693. begin
  694. is_mmx_able_array:=(p^.deftype=arraydef) and
  695. (
  696. (
  697. (parraydef(p)^.elementtype.def^.deftype=orddef) and
  698. (
  699. (
  700. (parraydef(p)^.lowrange=0) and
  701. (parraydef(p)^.highrange=1) and
  702. (porddef(parraydef(p)^.elementtype.def)^.typ in [u32bit,s32bit])
  703. )
  704. or
  705. (
  706. (parraydef(p)^.lowrange=0) and
  707. (parraydef(p)^.highrange=3) and
  708. (porddef(parraydef(p)^.elementtype.def)^.typ in [u16bit,s16bit])
  709. )
  710. or
  711. (
  712. (parraydef(p)^.lowrange=0) and
  713. (parraydef(p)^.highrange=7) and
  714. (porddef(parraydef(p)^.elementtype.def)^.typ in [u8bit,s8bit])
  715. )
  716. )
  717. )
  718. or
  719. (
  720. (parraydef(p)^.elementtype.def^.deftype=floatdef) and
  721. (
  722. (
  723. (parraydef(p)^.lowrange=0) and
  724. (parraydef(p)^.highrange=3) and
  725. (pfloatdef(parraydef(p)^.elementtype.def)^.typ=f32bit)
  726. )
  727. or
  728. (
  729. (parraydef(p)^.lowrange=0) and
  730. (parraydef(p)^.highrange=1) and
  731. (pfloatdef(parraydef(p)^.elementtype.def)^.typ=s32real)
  732. )
  733. )
  734. )
  735. );
  736. end;
  737. {$else SUPPORT_MMX}
  738. is_mmx_able_array:=false;
  739. {$endif SUPPORT_MMX}
  740. end;
  741. function is_equal(def1,def2 : pdef) : boolean;
  742. var
  743. b : boolean;
  744. hd : pdef;
  745. begin
  746. { both types must exists }
  747. if not (assigned(def1) and assigned(def2)) then
  748. begin
  749. is_equal:=false;
  750. exit;
  751. end;
  752. { be sure, that if there is a stringdef, that this is def1 }
  753. if def2^.deftype=stringdef then
  754. begin
  755. hd:=def1;
  756. def1:=def2;
  757. def2:=hd;
  758. end;
  759. b:=false;
  760. { both point to the same definition ? }
  761. if def1=def2 then
  762. b:=true
  763. else
  764. { pointer with an equal definition are equal }
  765. if (def1^.deftype=pointerdef) and (def2^.deftype=pointerdef) then
  766. begin
  767. { here a problem detected in tabsolutesym }
  768. { the types can be forward type !! }
  769. if assigned(def1^.typesym) and (ppointerdef(def1)^.pointertype.def^.deftype=forwarddef) then
  770. b:=(def1^.typesym=def2^.typesym)
  771. else
  772. b:=ppointerdef(def1)^.pointertype.def=ppointerdef(def2)^.pointertype.def;
  773. end
  774. else
  775. { ordinals are equal only when the ordinal type is equal }
  776. if (def1^.deftype=orddef) and (def2^.deftype=orddef) then
  777. begin
  778. case porddef(def1)^.typ of
  779. u8bit,u16bit,u32bit,
  780. s8bit,s16bit,s32bit:
  781. b:=((porddef(def1)^.typ=porddef(def2)^.typ) and
  782. (porddef(def1)^.low=porddef(def2)^.low) and
  783. (porddef(def1)^.high=porddef(def2)^.high));
  784. uvoid,uchar,
  785. bool8bit,bool16bit,bool32bit:
  786. b:=(porddef(def1)^.typ=porddef(def2)^.typ);
  787. end;
  788. end
  789. else
  790. if (def1^.deftype=floatdef) and (def2^.deftype=floatdef) then
  791. b:=pfloatdef(def1)^.typ=pfloatdef(def2)^.typ
  792. else
  793. { strings with the same length are equal }
  794. if (def1^.deftype=stringdef) and (def2^.deftype=stringdef) and
  795. (pstringdef(def1)^.string_typ=pstringdef(def2)^.string_typ) then
  796. begin
  797. b:=not(is_shortstring(def1)) or
  798. (pstringdef(def1)^.len=pstringdef(def2)^.len);
  799. end
  800. else
  801. if (def1^.deftype=formaldef) and (def2^.deftype=formaldef) then
  802. b:=true
  803. { file types with the same file element type are equal }
  804. { this is a problem for assign !! }
  805. { changed to allow if one is untyped }
  806. { all typed files are equal to the special }
  807. { typed file that has voiddef as elemnt type }
  808. { but must NOT match for text file !!! }
  809. else
  810. if (def1^.deftype=filedef) and (def2^.deftype=filedef) then
  811. b:=(pfiledef(def1)^.filetyp=pfiledef(def2)^.filetyp) and
  812. ((
  813. ((pfiledef(def1)^.typedfiletype.def=nil) and
  814. (pfiledef(def2)^.typedfiletype.def=nil)) or
  815. (
  816. (pfiledef(def1)^.typedfiletype.def<>nil) and
  817. (pfiledef(def2)^.typedfiletype.def<>nil) and
  818. is_equal(pfiledef(def1)^.typedfiletype.def,pfiledef(def2)^.typedfiletype.def)
  819. ) or
  820. ( (pfiledef(def1)^.typedfiletype.def=pdef(voiddef)) or
  821. (pfiledef(def2)^.typedfiletype.def=pdef(voiddef))
  822. )))
  823. { sets with the same element type are equal }
  824. else
  825. if (def1^.deftype=setdef) and (def2^.deftype=setdef) then
  826. begin
  827. if assigned(psetdef(def1)^.elementtype.def) and
  828. assigned(psetdef(def2)^.elementtype.def) then
  829. b:=(psetdef(def1)^.elementtype.def^.deftype=psetdef(def2)^.elementtype.def^.deftype)
  830. else
  831. b:=true;
  832. end
  833. else
  834. if (def1^.deftype=procvardef) and (def2^.deftype=procvardef) then
  835. begin
  836. { poassembler isn't important for compatibility }
  837. { if a method is assigned to a methodpointer }
  838. { is checked before }
  839. b:=(pprocvardef(def1)^.proctypeoption=pprocvardef(def2)^.proctypeoption) and
  840. (pprocvardef(def1)^.proccalloptions=pprocvardef(def2)^.proccalloptions) and
  841. ((pprocvardef(def1)^.procoptions * po_compatibility_options)=
  842. (pprocvardef(def2)^.procoptions * po_compatibility_options)) and
  843. is_equal(pprocvardef(def1)^.rettype.def,pprocvardef(def2)^.rettype.def) and
  844. equal_paras(pprocvardef(def1)^.para,pprocvardef(def2)^.para,cp_all);
  845. end
  846. else
  847. if (def1^.deftype=arraydef) and (def2^.deftype=arraydef) then
  848. begin
  849. if is_open_array(def1) or is_open_array(def2) or
  850. is_array_of_const(def1) or is_array_of_const(def2) then
  851. begin
  852. if parraydef(def1)^.IsArrayOfConst or parraydef(def2)^.IsArrayOfConst then
  853. b:=true
  854. else
  855. b:=is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def);
  856. end
  857. else
  858. begin
  859. b:=not(m_tp in aktmodeswitches) and
  860. not(m_delphi in aktmodeswitches) and
  861. (parraydef(def1)^.lowrange=parraydef(def2)^.lowrange) and
  862. (parraydef(def1)^.highrange=parraydef(def2)^.highrange) and
  863. is_equal(parraydef(def1)^.elementtype.def,parraydef(def2)^.elementtype.def) and
  864. is_equal(parraydef(def1)^.rangetype.def,parraydef(def2)^.rangetype.def);
  865. end;
  866. end
  867. else
  868. if (def1^.deftype=classrefdef) and (def2^.deftype=classrefdef) then
  869. begin
  870. { similar to pointerdef: }
  871. if assigned(def1^.typesym) and (pclassrefdef(def1)^.pointertype.def^.deftype=forwarddef) then
  872. b:=(def1^.typesym=def2^.typesym)
  873. else
  874. b:=is_equal(pclassrefdef(def1)^.pointertype.def,pclassrefdef(def2)^.pointertype.def);
  875. end;
  876. is_equal:=b;
  877. end;
  878. function is_subequal(def1, def2: pdef): boolean;
  879. var
  880. basedef1,basedef2 : penumdef;
  881. Begin
  882. is_subequal := false;
  883. if assigned(def1) and assigned(def2) then
  884. Begin
  885. if (def1^.deftype = orddef) and (def2^.deftype = orddef) then
  886. Begin
  887. { see p.47 of Turbo Pascal 7.01 manual for the separation of types }
  888. { range checking for case statements is done with testrange }
  889. case porddef(def1)^.typ of
  890. u8bit,u16bit,u32bit,
  891. s8bit,s16bit,s32bit :
  892. is_subequal:=(porddef(def2)^.typ in [s32bit,u32bit,u8bit,s8bit,s16bit,u16bit]);
  893. bool8bit,bool16bit,bool32bit :
  894. is_subequal:=(porddef(def2)^.typ in [bool8bit,bool16bit,bool32bit]);
  895. uchar :
  896. is_subequal:=(porddef(def2)^.typ=uchar);
  897. end;
  898. end
  899. else
  900. Begin
  901. { I assume that both enumerations are equal when the first }
  902. { pointers are equal. }
  903. { I changed this to assume that the enums are equal }
  904. { if the basedefs are equal (FK) }
  905. if (def1^.deftype=enumdef) and (def2^.deftype=enumdef) then
  906. Begin
  907. { get both basedefs }
  908. basedef1:=penumdef(def1);
  909. while assigned(basedef1^.basedef) do
  910. basedef1:=basedef1^.basedef;
  911. basedef2:=penumdef(def2);
  912. while assigned(basedef2^.basedef) do
  913. basedef2:=basedef2^.basedef;
  914. is_subequal:=basedef1=basedef2;
  915. {
  916. if penumdef(def1)^.firstenum = penumdef(def2)^.firstenum then
  917. is_subequal := TRUE;
  918. }
  919. end;
  920. end;
  921. end; { endif assigned ... }
  922. end;
  923. function CheckTypes(def1,def2 : pdef) : boolean;
  924. var
  925. s1,s2 : string;
  926. begin
  927. if not is_equal(def1,def2) then
  928. begin
  929. { Crash prevention }
  930. if (not assigned(def1)) or (not assigned(def2)) then
  931. Message(type_e_mismatch)
  932. else
  933. begin
  934. s1:=def1^.typename;
  935. s2:=def2^.typename;
  936. if (s1<>'<unknown type>') and (s2<>'<unknown type>') then
  937. Message2(type_e_not_equal_types,def1^.typename,def2^.typename)
  938. else
  939. Message(type_e_mismatch);
  940. end;
  941. CheckTypes:=false;
  942. end
  943. else
  944. CheckTypes:=true;
  945. end;
  946. end.
  947. {
  948. $Log$
  949. Revision 1.3 2000-07-13 12:08:28 michael
  950. + patched to 1.1.0 with former 1.09patch from peter
  951. Revision 1.2 2000/07/13 11:32:53 michael
  952. + removed logs
  953. }