cpuelf.pas 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. {
  2. Copyright (c) 2012 by Sergei Gorelkin
  3. Includes ELF-related code specific to ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. unit cpuelf;
  18. interface
  19. {$i fpcdefs.inc}
  20. implementation
  21. uses
  22. globtype,cutils,cclasses,
  23. verbose, elfbase,
  24. systems,aasmbase,ogbase,ogelf,assemble;
  25. type
  26. TElfExeOutputARM=class(TElfExeOutput)
  27. private
  28. procedure MaybeWriteGOTEntry(reltyp:byte;relocval:aint;objsym:TObjSymbol);
  29. protected
  30. procedure WriteFirstPLTEntry;override;
  31. procedure WritePLTEntry(exesym:TExeSymbol);override;
  32. procedure WriteIndirectPLTEntry(exesym:TExeSymbol);override;
  33. procedure GOTRelocPass1(objsec:TObjSection;var idx:longint);override;
  34. procedure DoRelocationFixup(objsec:TObjSection);override;
  35. end;
  36. const
  37. { Relocation types }
  38. R_ARM_NONE = 0;
  39. R_ARM_PC24 = 1; // deprecated
  40. R_ARM_ABS32 = 2;
  41. R_ARM_REL32 = 3;
  42. R_ARM_LDR_PC_G0 = 4;
  43. R_ARM_ABS16 = 5;
  44. R_ARM_ABS12 = 6;
  45. R_ARM_THM_ABS5 = 7;
  46. R_ARM_ABS8 = 8;
  47. R_ARM_SBREL32 = 9;
  48. R_ARM_THM_CALL = 10;
  49. R_ARM_THM_PC8 = 11;
  50. R_ARM_BREL_ADJ = 12;
  51. R_ARM_TLS_DESC = 13;
  52. { 14,15,16 are obsolete }
  53. R_ARM_TLS_DTPMOD32 = 17;
  54. R_ARM_TLS_DTPOFF32 = 18;
  55. R_ARM_TLS_TPOFF32 = 19;
  56. R_ARM_COPY = 20;
  57. R_ARM_GLOB_DAT = 21;
  58. R_ARM_JUMP_SLOT = 22;
  59. R_ARM_RELATIVE = 23;
  60. R_ARM_GOTOFF32 = 24;
  61. R_ARM_BASE_PREL = 25;
  62. R_ARM_GOT_BREL = 26;
  63. R_ARM_PLT32 = 27; // deprecated
  64. R_ARM_CALL = 28;
  65. R_ARM_JUMP24 = 29;
  66. R_ARM_THM_JUMP24 = 30;
  67. R_ARM_BASE_ABS = 31;
  68. { 32,33,34 are obsolete }
  69. R_ARM_LDR_SBREL_11_0 = 35; // deprecated
  70. R_ARM_ALU_SBREL_19_12 = 36; // deprecated
  71. R_ARM_ALU_SBREL_27_20 = 37; // deprecated
  72. R_ARM_TARGET1 = 38;
  73. R_ARM_SBREL31 = 39; // deprecated
  74. R_ARM_V4BX = 40;
  75. R_ARM_TARGET2 = 41;
  76. R_ARM_PREL31 = 42;
  77. R_ARM_MOVW_ABS_NC = 43;
  78. R_ARM_MOVT_ABS = 44;
  79. R_ARM_MOVW_PREL_NC = 45;
  80. R_ARM_MOVT_PREL = 46;
  81. R_ARM_THM_MOVW_ABS_NC = 47;
  82. R_ARM_THM_MOVT_ABS = 48;
  83. R_ARM_THM_MOVW_PREL_NC = 49;
  84. R_ARM_THM_MOVT_PREL = 50;
  85. R_ARM_THM_JUMP19 = 51;
  86. R_ARM_THM_JUMP6 = 52;
  87. R_ARM_THM_ALU_PREL_11_0 = 53;
  88. R_ARM_THM_PC12 = 54;
  89. R_ARM_ABS32_NOI = 55;
  90. R_ARM_REL32_NOI = 56;
  91. R_ARM_ALU_PC_G0_NC = 57;
  92. R_ARM_ALU_PC_G0 = 58;
  93. R_ARM_ALU_PC_G1_NC = 59;
  94. R_ARM_ALU_PC_G1 = 60;
  95. R_ARM_ALU_PC_G2 = 61;
  96. R_ARM_LDR_PC_G1 = 62;
  97. R_ARM_LDR_PC_G2 = 63;
  98. R_ARM_LDRS_PC_G0 = 64;
  99. R_ARM_LDRS_PC_G1 = 65;
  100. R_ARM_LDRS_PC_G2 = 66;
  101. R_ARM_LDC_PC_G0 = 67;
  102. R_ARM_LDC_PC_G1 = 68;
  103. R_ARM_LDC_PC_G2 = 69;
  104. R_ARM_ALU_SB_G0_NC = 70;
  105. R_ARM_ALU_SB_G0 = 71;
  106. R_ARM_ALU_SB_G1_NC = 72;
  107. R_ARM_ALU_SB_G1 = 73;
  108. R_ARM_ALU_SB_G2 = 74;
  109. R_ARM_LDR_SB_G0 = 75;
  110. R_ARM_LDR_SB_G1 = 76;
  111. R_ARM_LDR_SB_G2 = 77;
  112. R_ARM_LDRS_SB_G0 = 78;
  113. R_ARM_LDRS_SB_G1 = 79;
  114. R_ARM_LDRS_SB_G2 = 80;
  115. R_ARM_LDC_SB_G0 = 81;
  116. R_ARM_LDC_SB_G1 = 82;
  117. R_ARM_LDC_SB_G2 = 83;
  118. R_ARM_MOVW_BREL_NC = 84;
  119. R_ARM_MOVT_BREL = 85;
  120. R_ARM_MOVW_BREL = 86;
  121. R_ARM_THM_MOVW_BREL_NC = 87;
  122. R_ARM_THM_MOVT_BREL = 88;
  123. R_ARM_THM_MOVW_BREL = 89;
  124. R_ARM_TLS_GOTDESC = 90;
  125. R_ARM_TLS_CALL = 91;
  126. R_ARM_TLS_DESCSEQ = 92;
  127. R_ARM_THM_TLS_CALL = 93;
  128. R_ARM_PLT32_ABS = 94;
  129. R_ARM_GOT_ABS = 95;
  130. R_ARM_GOT_PREL = 96;
  131. R_ARM_GOT_BREL12 = 97;
  132. R_ARM_GOTOFF12 = 98;
  133. R_ARM_GOTRELAX = 99;
  134. R_ARM_GNU_VTENTRY = 100; // deprecated - old C++ abi
  135. R_ARM_GNU_VTINHERIT = 101; // deprecated - old C++ abi
  136. R_ARM_THM_JUMP11 = 102;
  137. R_ARM_THM_JUMP8 = 103;
  138. R_ARM_TLS_GD32 = 104;
  139. R_ARM_TLS_LDM32 = 105;
  140. R_ARM_TLS_LDO32 = 106;
  141. R_ARM_TLS_IE32 = 107;
  142. R_ARM_TLS_LE32 = 108;
  143. R_ARM_TLS_LDO12 = 109;
  144. R_ARM_TLS_LE12 = 110;
  145. R_ARM_TLS_IE12GP = 111;
  146. { 112-127 are for private experiments }
  147. { 128 is obsolete }
  148. R_ARM_THM_TLS_DESCSEQ = 129;
  149. R_ARM_IRELATIVE = 160;
  150. { Section types }
  151. SHT_ARM_EXIDX = $70000001;
  152. SHT_ARM_PREEMPTMAP = $70000002;
  153. SHT_ARM_ATTRIBUTES = $70000003;
  154. SHT_ARM_DEBUGOVERLAY = $70000004;
  155. SHT_ARM_OVERLAYSECTION = $70000005;
  156. TCB_SIZE = 8;
  157. { ELF header e_flags }
  158. EF_ARM_BE8 = $00800000;
  159. EF_ARM_EABIMASK = $FF000000;
  160. EF_ARM_EABI_UNKNOWN = $00000000;
  161. EF_ARM_EABI_VER1 = $01000000;
  162. EF_ARM_EABI_VER2 = $02000000;
  163. EF_ARM_EABI_VER3 = $03000000;
  164. EF_ARM_EABI_VER4 = $04000000;
  165. EF_ARM_EABI_VER5 = $05000000;
  166. { Using short identifiers to save typing. This ARM thing has more relocations
  167. than it has instructions... }
  168. const
  169. g0=1;
  170. g1=2;
  171. g2=3;
  172. gpmask=3;
  173. pc=4;
  174. nc=8;
  175. thm=16;
  176. type
  177. TArmRelocProp=record
  178. name: PChar;
  179. flags: byte; // bits 0,1: group, bit 2: PC-relative, bit 3: unchecked,
  180. // bit 4: THUMB
  181. end;
  182. const
  183. relocprops: array[0..111] of TArmRelocProp = (
  184. (name: 'R_ARM_NONE'; flags: 0), //
  185. (name: 'R_ARM_PC24'; flags: pc), //
  186. (name: 'R_ARM_ABS32'; flags: 0), //
  187. (name: 'R_ARM_REL32'; flags: pc), //
  188. (name: 'R_ARM_LDR_PC_G0'; flags: g0+pc), //
  189. (name: 'R_ARM_ABS16'; flags: 0),
  190. (name: 'R_ARM_ABS12'; flags: 0),
  191. (name: 'R_ARM_THM_ABS5'; flags: thm),
  192. (name: 'R_ARM_ABS8'; flags: 0),
  193. (name: 'R_ARM_SBREL32'; flags: 0),
  194. (name: 'R_ARM_THM_CALL'; flags: thm),
  195. (name: 'R_ARM_THM_PC8'; flags: pc+thm),
  196. (name: 'R_ARM_BREL_ADJ'; flags: 0),
  197. (name: 'R_ARM_TLS_DESC'; flags: 0),
  198. (name: 'obsolete(14)'; flags: 0),
  199. (name: 'obsolete(15)'; flags: 0),
  200. (name: 'obsolete(16)'; flags: 0),
  201. (name: 'R_ARM_TLS_DTPMOD32'; flags: 0),
  202. (name: 'R_ARM_TLS_DTPOFF32'; flags: 0),
  203. (name: 'R_ARM_TLS_TPOFF32'; flags: 0),
  204. (name: 'R_ARM_COPY'; flags: 0),
  205. (name: 'R_ARM_GLOB_DAT'; flags: 0),
  206. (name: 'R_ARM_JUMP_SLOT'; flags: 0),
  207. (name: 'R_ARM_RELATIVE'; flags: 0),
  208. (name: 'R_ARM_GOTOFF32'; flags: 0),
  209. (name: 'R_ARM_BASE_PREL'; flags: pc), //
  210. (name: 'R_ARM_GOT_BREL'; flags: 0), //
  211. (name: 'R_ARM_PLT32'; flags: pc), //
  212. (name: 'R_ARM_CALL'; flags: pc), //
  213. (name: 'R_ARM_JUMP24'; flags: pc), //
  214. (name: 'R_ARM_THM_JUMP24'; flags: thm),
  215. (name: 'R_ARM_BASE_ABS'; flags: 0),
  216. (name: 'obsolete(32)'; flags: 0),
  217. (name: 'obsolete(33)'; flags: 0),
  218. (name: 'obsolete(34)'; flags: 0),
  219. (name: 'R_ARM_LDR_SBREL_11_0'; flags: g0),
  220. (name: 'R_ARM_ALU_SBREL_19_12'; flags: g1),
  221. (name: 'R_ARM_ALU_SBREL_27_20'; flags: g2),
  222. (name: 'R_ARM_TARGET1'; flags: 0),
  223. (name: 'R_ARM_SBREL31'; flags: 0),
  224. (name: 'R_ARM_V4BX'; flags: 0),
  225. (name: 'R_ARM_TARGET2'; flags: 0),
  226. (name: 'R_ARM_PREL31'; flags: 0),
  227. (name: 'R_ARM_MOVW_ABS_NC'; flags: nc),
  228. (name: 'R_ARM_MOVT_ABS'; flags: 0),
  229. (name: 'R_ARM_MOVW_PREL_NC'; flags: nc),
  230. (name: 'R_ARM_MOVT_PREL'; flags: 0),
  231. (name: 'R_ARM_THM_MOVW_ABS_NC'; flags: nc+thm),
  232. (name: 'R_ARM_THM_MOVT_ABS'; flags: thm),
  233. (name: 'R_ARM_THM_MOVW_PREL_NC'; flags: nc+thm),
  234. (name: 'R_ARM_THM_MOVT_PREL'; flags: thm),
  235. (name: 'R_ARM_THM_JUMP19'; flags: thm),
  236. (name: 'R_ARM_THM_JUMP6'; flags: thm),
  237. (name: 'R_ARM_THM_ALU_PREL_11_0'; flags: thm+pc),
  238. (name: 'R_ARM_THM_PC12'; flags: thm+pc),
  239. (name: 'R_ARM_ABS32_NOI'; flags: 0),
  240. (name: 'R_ARM_REL32_NOI'; flags: pc),
  241. (name: 'R_ARM_ALU_PC_G0_NC'; flags: pc+g0+nc), //
  242. (name: 'R_ARM_ALU_PC_G0'; flags: pc+g0), //
  243. (name: 'R_ARM_ALU_PC_G1_NC'; flags: pc+g1+nc), //
  244. (name: 'R_ARM_ALU_PC_G1'; flags: pc+g1), //
  245. (name: 'R_ARM_ALU_PC_G2'; flags: pc+g2), //
  246. (name: 'R_ARM_LDR_PC_G1'; flags: pc+g1), //
  247. (name: 'R_ARM_LDR_PC_G2'; flags: pc+g2), //
  248. (name: 'R_ARM_LDRS_PC_G0'; flags: pc+g0), //
  249. (name: 'R_ARM_LDRS_PC_G1'; flags: pc+g1), //
  250. (name: 'R_ARM_LDRS_PC_G2'; flags: pc+g2), //
  251. (name: 'R_ARM_LDC_PC_G0'; flags: pc+g0), //
  252. (name: 'R_ARM_LDC_PC_G1'; flags: pc+g1), //
  253. (name: 'R_ARM_LDC_PC_G2'; flags: pc+g2), //
  254. (name: 'R_ARM_ALU_SB_G0_NC'; flags: g0+nc), //
  255. (name: 'R_ARM_ALU_SB_G0'; flags: g0), //
  256. (name: 'R_ARM_ALU_SB_G1_NC'; flags: g1+nc), //
  257. (name: 'R_ARM_ALU_SB_G1'; flags: g1), //
  258. (name: 'R_ARM_ALU_SB_G2'; flags: g2), //
  259. (name: 'R_ARM_LDR_SB_G0'; flags: g0), //
  260. (name: 'R_ARM_LDR_SB_G1'; flags: g1), //
  261. (name: 'R_ARM_LDR_SB_G2'; flags: g2), //
  262. (name: 'R_ARM_LDRS_SB_G0'; flags: g0), //
  263. (name: 'R_ARM_LDRS_SB_G1'; flags: g1), //
  264. (name: 'R_ARM_LDRS_SB_G2'; flags: g2), //
  265. (name: 'R_ARM_LDC_SB_G0'; flags: g0), //
  266. (name: 'R_ARM_LDC_SB_G1'; flags: g1), //
  267. (name: 'R_ARM_LDC_SB_G2'; flags: g2), //
  268. (name: 'R_ARM_MOVW_BREL_NC'; flags: nc),
  269. (name: 'R_ARM_MOVT_BREL'; flags: 0),
  270. (name: 'R_ARM_MOVW_BREL'; flags: 0),
  271. (name: 'R_ARM_THM_MOVW_BREL_NC'; flags: nc+thm),
  272. (name: 'R_ARM_THM_MOVT_BREL'; flags: thm),
  273. (name: 'R_ARM_THM_MOVW_BREL'; flags: thm),
  274. (name: 'R_ARM_TLS_GOTDESC'; flags: 0),
  275. (name: 'R_ARM_TLS_CALL'; flags: 0),
  276. (name: 'R_ARM_TLS_DESCSEQ'; flags: 0),
  277. (name: 'R_ARM_THM_TLS_CALL'; flags: 0),
  278. (name: 'R_ARM_PLT32_ABS'; flags: 0),
  279. (name: 'R_ARM_GOT_ABS'; flags: 0),
  280. (name: 'R_ARM_GOT_PREL'; flags: pc), //
  281. (name: 'R_ARM_GOT_BREL12'; flags: 0),
  282. (name: 'R_ARM_GOTOFF12'; flags: 0),
  283. (name: 'R_ARM_GOTRELAX'; flags: 0),
  284. (name: 'R_ARM_GNU_VTENTRY'; flags: 0),
  285. (name: 'R_ARM_GNU_VTINHERIT'; flags: 0),
  286. (name: 'R_ARM_THM_JUMP11'; flags: thm),
  287. (name: 'R_ARM_THM_JUMP8'; flags: thm),
  288. (name: 'R_ARM_TLS_GD32'; flags: 0),
  289. (name: 'R_ARM_TLS_LDM32'; flags: 0),
  290. (name: 'R_ARM_TLS_LDO32'; flags: 0),
  291. (name: 'R_ARM_TLS_IE32'; flags: 0),
  292. (name: 'R_ARM_TLS_LE32'; flags: 0),
  293. (name: 'R_ARM_TLS_LDO12'; flags: 0),
  294. (name: 'R_ARM_TLS_LE12'; flags: 0),
  295. (name: 'R_ARM_TLS_IE12GP'; flags: 0)
  296. );
  297. {****************************************************************************
  298. ELF Target methods
  299. ****************************************************************************}
  300. function elf_arm_encodereloc(objrel:TObjRelocation):byte;
  301. begin
  302. case objrel.typ of
  303. RELOC_NONE:
  304. result:=R_ARM_NONE;
  305. RELOC_ABSOLUTE:
  306. result:=R_ARM_ABS32;
  307. RELOC_RELATIVE:
  308. result:=R_ARM_REL32;
  309. else
  310. result:=0;
  311. InternalError(2012110602);
  312. end;
  313. end;
  314. function elf_arm_relocname(reltyp:byte):string;
  315. begin
  316. if reltyp<=high(relocprops) then
  317. result:=relocprops[reltyp].name
  318. else
  319. case reltyp of
  320. 112..127:
  321. result:='R_ARM_PRIVATE_'+tostr(reltyp-112);
  322. R_ARM_THM_TLS_DESCSEQ:
  323. result:='R_ARM_THM_TLS_DESCSEQ';
  324. R_ARM_IRELATIVE:
  325. result:='R_ARM_IRELATIVE';
  326. else
  327. result:='unknown ('+tostr(reltyp)+')';
  328. end;
  329. end;
  330. procedure elf_arm_loadreloc(objrel:TObjRelocation);
  331. begin
  332. if (objrel.ftype=R_ARM_V4BX) then
  333. objrel.flags:=objrel.flags or rf_nosymbol;
  334. end;
  335. function elf_arm_loadsection(objinput:TElfObjInput;objdata:TObjData;const shdr:TElfsechdr;shindex:longint):boolean;
  336. var
  337. secname:string;
  338. begin
  339. case shdr.sh_type of
  340. SHT_ARM_EXIDX,
  341. SHT_ARM_PREEMPTMAP,
  342. SHT_ARM_ATTRIBUTES:
  343. begin
  344. objinput.CreateSection(shdr,shindex,objdata,secname);
  345. result:=true;
  346. end;
  347. else
  348. writeln(hexstr(shdr.sh_type,8));
  349. result:=false;
  350. end;
  351. end;
  352. {****************************************************************************
  353. TELFExeOutputARM
  354. ****************************************************************************}
  355. function group_reloc_mask(value:longword;n:longint;out final_residual:longword):longword;
  356. var
  357. i:longint;
  358. g_n:longword;
  359. shift:longint;
  360. begin
  361. result:=0;
  362. for i:=0 to n do
  363. begin
  364. if (value=0) then
  365. shift:=0
  366. else
  367. { MSB in the residual, aligned to a 2-bit boundary }
  368. shift:=max(0,(bsrdword(value) and (not 1))-6);
  369. { Calculate plain g_n and encode it into constant+rotation form }
  370. g_n:=value and ($ff shl shift);
  371. result:=(g_n shr shift);
  372. if (g_n>$FF) then
  373. result:=result or ((32-shift) div 2) shl 8;
  374. { Mask away the processed part of residual }
  375. value:=value and (not g_n);
  376. end;
  377. final_residual:=value;
  378. end;
  379. procedure TElfExeOutputARM.MaybeWriteGOTEntry(reltyp:byte;relocval:aint;objsym:TObjSymbol);
  380. var
  381. gotoff,tmp:aword;
  382. begin
  383. gotoff:=objsym.exesymbol.gotoffset;
  384. if gotoff=0 then
  385. InternalError(2012060902);
  386. { the GOT slot itself, and a dynamic relocation for it }
  387. { TODO: only data symbols must get here }
  388. if gotoff=gotobjsec.Data.size+sizeof(pint) then
  389. begin
  390. gotobjsec.write(relocval,sizeof(pint));
  391. tmp:=gotobjsec.mempos+gotoff-sizeof(pint);
  392. if (objsym.exesymbol.dynindex>0) then
  393. begin
  394. WriteDynRelocEntry(tmp,R_ARM_GLOB_DAT,objsym.exesymbol.dynindex,0)
  395. end
  396. else if IsSharedLibrary then
  397. WriteDynRelocEntry(tmp,R_ARM_RELATIVE,0,relocval);
  398. end;
  399. end;
  400. procedure TElfExeOutputARM.WriteFirstPLTEntry;
  401. begin
  402. pltobjsec.WriteBytes(
  403. #$04#$E0#$2D#$E5+ // str lr, [sp, #-4]!
  404. #$04#$E0#$9F#$E5+ // ldr lr, [pc, #4]
  405. #$0E#$E0#$8F#$E0+ // add lr, pc, lr
  406. #$08#$F0#$BE#$E5); // ldr pc, [lr, #8]!
  407. // .long _GLOBAL_OFFSET_TABLE-.
  408. pltobjsec.writeReloc_internal(gotpltobjsec,0,4,RELOC_RELATIVE);
  409. end;
  410. procedure TElfExeOutputARM.WritePLTEntry(exesym: TExeSymbol);
  411. var
  412. tmp: longword;
  413. sym:TObjSymbol;
  414. begin
  415. { TODO: it may be beneficial to postpone processing until after mempos pass,
  416. and calculate instructions directly, instead of messing with complex relocations. }
  417. { Group relocation to "section+offset" with REL-style is impossible, because the
  418. offset has be encoded into instructions, and it is only possible for offsets
  419. representable as shifter constants. Therefore we need to define a symbol
  420. (and risk a name conflict, to some degree) }
  421. internalobjdata.setsection(gotpltobjsec);
  422. sym:=internalobjdata.SymbolDefine(exesym.name+'_ptr',AB_LOCAL,AT_DATA);
  423. pltobjsec.WriteBytes(
  424. #$08#$C0#$4F#$E2+ // add ip,pc,#:pc_g0_nc:sym-8
  425. #$04#$C0#$4C#$E2+ // add ip,ip,#:pc_g1_nc:sym-4
  426. #$00#$F0#$BC#$E5); // ldr pc,[ip,#:pc_g2:sym]!
  427. pltobjsec.addrawReloc(pltobjsec.size-12,sym,R_ARM_ALU_PC_G0_NC);
  428. pltobjsec.addrawReloc(pltobjsec.size-8,sym,R_ARM_ALU_PC_G1_NC);
  429. pltobjsec.addrawReloc(pltobjsec.size-4,sym,R_ARM_LDR_PC_G2);
  430. { .got.plt slot initially points to the first PLT entry }
  431. gotpltobjsec.writeReloc_internal(pltobjsec,0,sizeof(pint),RELOC_ABSOLUTE);
  432. { write a .rel.plt entry (Elf32_rel record) }
  433. pltrelocsec.writeReloc_internal(gotpltobjsec,gotpltobjsec.size-sizeof(pint),sizeof(pint),RELOC_ABSOLUTE);
  434. tmp:=(exesym.dynindex shl 8) or R_ARM_JUMP_SLOT;
  435. pltrelocsec.write(tmp,sizeof(tmp));
  436. if ElfTarget.relocs_use_addend then
  437. pltrelocsec.writezeros(sizeof(pint));
  438. end;
  439. procedure TElfExeOutputARM.WriteIndirectPLTEntry(exesym: TExeSymbol);
  440. begin
  441. inherited WriteIndirectPLTEntry(exesym);
  442. end;
  443. procedure TElfExeOutputARM.GOTRelocPass1(objsec:TObjSection;var idx:longint);
  444. var
  445. objreloc:TObjRelocation;
  446. exesym:TExeSymbol;
  447. objsym:TObjSymbol;
  448. reltyp:byte;
  449. begin
  450. objreloc:=TObjRelocation(objsec.ObjRelocations[idx]);
  451. if (ObjReloc.flags and rf_raw)=0 then
  452. reltyp:=ElfTarget.encodereloc(ObjReloc)
  453. else
  454. reltyp:=ObjReloc.ftype;
  455. case reltyp of
  456. // Any call or jump can go through PLT, no x86-like segregation here.
  457. R_ARM_PC24,
  458. R_ARM_CALL,
  459. R_ARM_JUMP24,
  460. R_ARM_PREL31,
  461. R_ARM_THM_CALL,
  462. R_ARM_THM_JUMP24,
  463. R_ARM_THM_JUMP19,
  464. R_ARM_PLT32:
  465. begin
  466. if (objreloc.symbol=nil) or (objreloc.symbol.exesymbol=nil) then
  467. exit;
  468. exesym:=objreloc.symbol.exesymbol;
  469. exesym.objsymbol.refs:=exesym.objsymbol.refs or symref_plt;
  470. end;
  471. R_ARM_ABS32:
  472. if Assigned(ObjReloc.symbol.exesymbol) then
  473. begin
  474. objsym:=ObjReloc.symbol.exesymbol.ObjSymbol;
  475. if (oso_executable in objsec.SecOptions) or
  476. not (oso_write in objsec.SecOptions) then
  477. objsym.refs:=objsym.refs or symref_from_text;
  478. end;
  479. end;
  480. case reltyp of
  481. R_ARM_ABS32:
  482. begin
  483. if not IsSharedLibrary then
  484. exit;
  485. if (oso_executable in objsec.SecOptions) or
  486. not (oso_write in objsec.SecOptions) then
  487. hastextrelocs:=True;
  488. dynrelocsec.alloc(dynrelocsec.shentsize);
  489. objreloc.flags:=objreloc.flags or rf_dynamic;
  490. end;
  491. //R_ARM_GOT_ABS,
  492. //R_ARM_GOT_PREL,
  493. //R_ARM_GOT_BREL12,
  494. R_ARM_GOT_BREL:
  495. begin
  496. AllocGOTSlot(objreloc.symbol);
  497. end;
  498. R_ARM_TLS_IE32:
  499. AllocGOTSlot(objreloc.symbol);
  500. end;
  501. end;
  502. procedure TElfExeOutputARM.DoRelocationFixup(objsec:TObjSection);
  503. var
  504. i,zero:longint;
  505. objreloc: TObjRelocation;
  506. tmp,
  507. address,
  508. relocval : aint;
  509. relocsec : TObjSection;
  510. data: TDynamicArray;
  511. reltyp: byte;
  512. group:longint;
  513. rotation:longint;
  514. residual,g_n:longword;
  515. curloc: aword;
  516. bit_S,bit_I1,bit_I2: aint;
  517. begin
  518. data:=objsec.data;
  519. for i:=0 to objsec.ObjRelocations.Count-1 do
  520. begin
  521. objreloc:=TObjRelocation(objsec.ObjRelocations[i]);
  522. case objreloc.typ of
  523. RELOC_NONE:
  524. continue;
  525. RELOC_ZERO:
  526. begin
  527. data.Seek(objreloc.dataoffset);
  528. zero:=0;
  529. data.Write(zero,4);
  530. continue;
  531. end;
  532. end;
  533. if (objreloc.flags and rf_raw)=0 then
  534. reltyp:=ElfTarget.encodereloc(objreloc)
  535. else
  536. reltyp:=objreloc.ftype;
  537. { TODO: TARGET1 and TARGET2 are intended to be configured via commandline }
  538. if (reltyp=R_ARM_TARGET1) then
  539. reltyp:=R_ARM_ABS32; { may be ABS32 or REL32 }
  540. if (reltyp=R_ARM_TARGET2) then
  541. reltyp:=R_ARM_ABS32; { may be ABS32,REL32 or GOT_PREL }
  542. if ElfTarget.relocs_use_addend then
  543. address:=objreloc.orgsize
  544. else
  545. begin
  546. data.Seek(objreloc.dataoffset);
  547. data.Read(address,4);
  548. end;
  549. if assigned(objreloc.symbol) then
  550. begin
  551. relocsec:=objreloc.symbol.objsection;
  552. relocval:=objreloc.symbol.address;
  553. end
  554. else if assigned(objreloc.objsection) then
  555. begin
  556. relocsec:=objreloc.objsection;
  557. relocval:=objreloc.objsection.mempos
  558. end
  559. else if (reltyp=R_ARM_V4BX) then
  560. continue // ignore for now
  561. else
  562. internalerror(2012060702);
  563. { Only debug sections are allowed to have relocs pointing to unused sections }
  564. if assigned(relocsec) and not (relocsec.used and assigned(relocsec.exesection)) and
  565. not (oso_debug in objsec.secoptions) then
  566. begin
  567. writeln(objsec.fullname,' references ',relocsec.fullname);
  568. internalerror(2012060703);
  569. end;
  570. curloc:=objsec.mempos+objreloc.dataoffset;
  571. if (relocsec=nil) or (relocsec.used) then
  572. case reltyp of
  573. R_ARM_ABS32:
  574. begin
  575. if (objreloc.flags and rf_dynamic)<>0 then
  576. begin
  577. if (objreloc.symbol=nil) or
  578. (objreloc.symbol.exesymbol=nil) or
  579. (objreloc.symbol.exesymbol.dynindex=0) then
  580. begin
  581. address:=address+relocval;
  582. WriteDynRelocEntry(objreloc.dataoffset+objsec.mempos,R_ARM_RELATIVE,0,address);
  583. end
  584. else
  585. { Don't modify address in this case, as it serves as addend for RTLD }
  586. WriteDynRelocEntry(objreloc.dataoffset+objsec.mempos,R_ARM_ABS32,objreloc.symbol.exesymbol.dynindex,0);
  587. end
  588. else
  589. address:=address+relocval;
  590. end;
  591. R_ARM_REL32:
  592. begin
  593. address:=address+relocval-curloc;
  594. end;
  595. R_ARM_PC24,
  596. R_ARM_PLT32,
  597. R_ARM_JUMP24,
  598. R_ARM_CALL:
  599. begin
  600. { R_ARM_PC24 is deprecated in favour of R_ARM_JUMP24 and R_ARM_CALL,
  601. which allow to distinguish opcodes without examining them.
  602. Difference is:
  603. 1) when target is Thumb, BL can be changed to BLX, while B has
  604. to go via thunking code.
  605. 2) when target is unresolved weak symbol, CALL must be changed to NOP,
  606. while JUMP24 behavior is unspecified. }
  607. tmp:=sarlongint((address and $00FFFFFF) shl 8,6);
  608. tmp:=tmp+relocval;
  609. if odd(tmp) then { dest is Thumb? }
  610. begin
  611. if (reltyp=R_ARM_CALL) then
  612. { change BL to BLX, dest bit 1 goes to instruction bit 24 }
  613. address:=(address and $FE000000) or (((tmp-curloc) and 2) shl 23) or $10000000
  614. else
  615. InternalError(2014092001);
  616. end;
  617. tmp:=tmp-curloc;
  618. // TODO: check overflow
  619. address:=(address and $FF000000) or ((tmp and $3FFFFFE) shr 2);
  620. end;
  621. R_ARM_BASE_PREL: { GOTPC }
  622. address:=address+gotsymbol.address-curloc;
  623. R_ARM_GOT_BREL: { GOT32 }
  624. begin
  625. MaybeWriteGOTEntry(reltyp,relocval,objreloc.symbol);
  626. address:=address+gotobjsec.mempos+objreloc.symbol.exesymbol.gotoffset-sizeof(pint)-gotsymbol.address;
  627. end;
  628. R_ARM_GOTOFF32:
  629. address:=address+relocval-gotsymbol.address;
  630. R_ARM_ALU_PC_G0_NC,
  631. R_ARM_ALU_PC_G1_NC,
  632. R_ARM_ALU_PC_G0,
  633. R_ARM_ALU_PC_G1,
  634. R_ARM_ALU_PC_G2,
  635. R_ARM_ALU_SB_G0_NC,
  636. R_ARM_ALU_SB_G1_NC,
  637. R_ARM_ALU_SB_G0,
  638. R_ARM_ALU_SB_G1,
  639. R_ARM_ALU_SB_G2:
  640. begin
  641. group:=(relocprops[reltyp].flags and gpmask)-1;
  642. if group<0 then
  643. InternalError(2012112601);
  644. if (not ElfTarget.relocs_use_addend) then
  645. begin
  646. { initial addend must be determined by parsing the instruction }
  647. tmp:=address and $FF;
  648. rotation:=(address and $F00) shr 7; { is in multpile of 2 bits }
  649. if rotation<>0 then
  650. tmp:=RorDword(tmp,rotation);
  651. case (address and $1E00000) of
  652. 1 shl 23: ; { ADD instruction }
  653. 1 shl 22: tmp:=-tmp; { SUB instruction }
  654. else
  655. Comment(v_error,'Group ALU relocations are permitted only for ADD or SUB instructions');
  656. continue;
  657. end;
  658. end
  659. else { TODO: must read the instruction anyway!! }
  660. tmp:=address;
  661. if (relocprops[reltyp].flags and pc)<>0 then
  662. tmp:=tmp+relocval-curloc
  663. else
  664. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  665. g_n:=group_reloc_mask(abs(tmp),group,residual);
  666. {TODO: check for overflow}
  667. address:=address and $FF1FF000 or g_n;
  668. { set opcode depending on the sign of resulting value }
  669. if tmp<0 then
  670. address:=address or (1 shl 22)
  671. else
  672. address:=address or (1 shl 23);
  673. end;
  674. R_ARM_LDR_PC_G0,
  675. R_ARM_LDR_PC_G1,
  676. R_ARM_LDR_PC_G2,
  677. R_ARM_LDR_SB_G0,
  678. R_ARM_LDR_SB_G1,
  679. R_ARM_LDR_SB_G2:
  680. begin
  681. group:=(relocprops[reltyp].flags and gpmask)-1;
  682. if group<0 then
  683. InternalError(2012112602);
  684. if (not ElfTarget.relocs_use_addend) then
  685. begin
  686. tmp:=(address and $FFF);
  687. if (address and (1 shl 23))=0 then
  688. tmp:=-tmp;
  689. end
  690. else { TODO: must read the instruction anyway }
  691. tmp:=address;
  692. if (relocprops[reltyp].flags and pc)<>0 then
  693. tmp:=tmp+relocval-curloc
  694. else
  695. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  696. group_reloc_mask(abs(tmp),group-1,residual);
  697. if residual>$FFF then
  698. InternalError(2012112603); { TODO: meaningful overflow error message }
  699. address:=address and $FF7FF000 or residual;
  700. if tmp>=0 then
  701. address:=address or (1 shl 23);
  702. end;
  703. R_ARM_LDRS_PC_G0,
  704. R_ARM_LDRS_PC_G1,
  705. R_ARM_LDRS_PC_G2,
  706. R_ARM_LDRS_SB_G0,
  707. R_ARM_LDRS_SB_G1,
  708. R_ARM_LDRS_SB_G2:
  709. begin
  710. group:=(relocprops[reltyp].flags and gpmask)-1;
  711. if group<0 then
  712. InternalError(2012112606);
  713. if (not ElfTarget.relocs_use_addend) then
  714. begin
  715. tmp:=((address and $F00) shr 4) or (address and $F);
  716. if (address and (1 shl 23))=0 then
  717. tmp:=-tmp;
  718. end
  719. else { TODO: must read the instruction anyway }
  720. tmp:=address;
  721. if (relocprops[reltyp].flags and pc)<>0 then
  722. tmp:=tmp+relocval-curloc
  723. else
  724. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  725. group_reloc_mask(abs(tmp),group-1,residual);
  726. if (residual>$FF) then
  727. InternalError(2012112607); { TODO: meaningful overflow error message }
  728. address:=address and $FF7FF0F0 or ((residual and $F0) shl 4) or (residual and $F);
  729. if tmp>=0 then
  730. address:=address or (1 shl 23);
  731. end;
  732. R_ARM_LDC_PC_G0,
  733. R_ARM_LDC_PC_G1,
  734. R_ARM_LDC_PC_G2,
  735. R_ARM_LDC_SB_G0,
  736. R_ARM_LDC_SB_G1,
  737. R_ARM_LDC_SB_G2:
  738. begin
  739. group:=(relocprops[reltyp].flags and gpmask)-1;
  740. if group<0 then
  741. InternalError(2012112604);
  742. if (not ElfTarget.relocs_use_addend) then
  743. begin
  744. tmp:=(address and $FF) shl 2;
  745. if (address and (1 shl 23))=0 then
  746. tmp:=-tmp;
  747. end
  748. else { TODO: must read the instruction anyway }
  749. tmp:=address;
  750. if (relocprops[reltyp].flags and pc)<>0 then
  751. tmp:=tmp+relocval-curloc
  752. else
  753. tmp:=tmp+relocval{-SB}; { assuming zero segment base }
  754. group_reloc_mask(abs(tmp),group-1,residual);
  755. { residual must be divisible by 4 and fit into 8 bits after having been divided }
  756. if ((residual and 3)<>0) or (residual>$3FF) then
  757. InternalError(2012112605); { TODO: meaningful overflow error message }
  758. address:=address and $FF7FFF00 or (residual shr 2);
  759. if tmp>=0 then
  760. address:=address or (1 shl 23);
  761. end;
  762. R_ARM_THM_CALL:
  763. begin
  764. if (not ElfTarget.relocs_use_addend) then
  765. begin
  766. address:=((address and $ffff) shl 16) or word(address shr 16);
  767. bit_S:=(address shr 26) and 1;
  768. bit_I1:=(bit_S xor ((address shr 13) and 1)) xor 1;
  769. bit_I2:=(bit_S xor ((address shr 11) and 1)) xor 1;
  770. tmp:=((-bit_S) shl 24) or (bit_I1 shl 23) or (bit_I2 shl 22) or (((address shr 16) and $3ff) shl 12) or ((address and $7ff) shl 1);
  771. end
  772. else { TODO: must read the instruction anyway }
  773. tmp:=address;
  774. tmp:=tmp+relocval; { dest address }
  775. if odd(tmp) then { if it's Thumb code, change possible BLX to BL }
  776. address:=address or $1800;
  777. tmp:=tmp-curloc; { now take PC-relative }
  778. { TODO: overflow check, different limit for Thumb and Thumb-2 }
  779. { now encode this mess back }
  780. if (address and $5000)=$4000 then
  781. tmp:=(tmp+2) and (not 3);
  782. bit_S:=(tmp shr 31) and 1;
  783. address:=(address and $F800D000) or
  784. (bit_S shl 26) or
  785. (((tmp shr 12) and $3ff) shl 16) or
  786. ((tmp shr 1) and $7FF) or
  787. ((((tmp shr 23) and 1) xor 1 xor bit_S) shl 13) or
  788. ((((tmp shr 22) and 1) xor 1 xor bit_S) shl 11);
  789. address:=((address and $ffff) shl 16) or word(address shr 16);
  790. end;
  791. R_ARM_TLS_IE32:
  792. begin
  793. relocval:=relocval-tlsseg.mempos+align_aword(TCB_SIZE,tlsseg.align);
  794. MaybeWriteGOTEntry(reltyp,relocval,objreloc.symbol);
  795. { resolves to PC-relative offset to GOT slot }
  796. relocval:=gotobjsec.mempos+objreloc.symbol.exesymbol.gotoffset-sizeof(pint);
  797. address:=address+relocval-curloc;
  798. end;
  799. R_ARM_TLS_LE32:
  800. if IsSharedLibrary then
  801. { TODO: error message saying "recompile with -Cg" isn't correct. Or is it? }
  802. ReportNonDSOReloc(reltyp,objsec,objreloc)
  803. else
  804. address:=relocval-tlsseg.mempos+align_aword(TCB_SIZE,tlsseg.align);
  805. else
  806. begin
  807. writeln(objreloc.ftype);
  808. internalerror(200604014);
  809. end;
  810. end
  811. else { not relocsec.Used }
  812. address:=0; { Relocation in debug section points to unused section, which is eliminated by linker }
  813. data.Seek(objreloc.dataoffset);
  814. data.Write(address,4);
  815. end;
  816. end;
  817. {*****************************************************************************
  818. Initialize
  819. *****************************************************************************}
  820. const
  821. elf_target_arm: TElfTarget =
  822. (
  823. max_page_size: $8000;
  824. exe_image_base: $8000;
  825. machine_code: EM_ARM;
  826. relocs_use_addend: false;
  827. dyn_reloc_codes: (
  828. R_ARM_RELATIVE,
  829. R_ARM_GLOB_DAT,
  830. R_ARM_JUMP_SLOT,
  831. R_ARM_COPY,
  832. R_ARM_IRELATIVE
  833. );
  834. relocname: @elf_arm_relocName;
  835. encodereloc: @elf_arm_encodeReloc;
  836. loadreloc: @elf_arm_loadReloc;
  837. loadsection: @elf_arm_loadSection;
  838. );
  839. initialization
  840. ElfTarget:=elf_target_arm;
  841. ElfExeOutputClass:=TElfExeOutputARM;
  842. end.