cpubase.pas 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. {******************************************************************************
  2. $Id$
  3. Copyright (c) 1998-2000 by Florian Klaempfl and Peter Vreman
  4. Contains the base types for the Scalable Processor ARChitecture (SPARC)
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. ****************************************************************************}
  17. UNIT cpuBase;
  18. {$INCLUDE fpcdefs.inc}
  19. INTERFACE
  20. USES globals,cutils,cclasses,aasmbase,cpuinfo,cginfo;
  21. CONST
  22. {Size of the instruction table converted by nasmconv.pas}
  23. maxinfolen=8;
  24. {Defines the default address size for a processor}
  25. OS_ADDR=OS_32;
  26. {the natural int size for a processor}
  27. OS_INT=OS_32;
  28. {the maximum float size for a processor}
  29. OS_FLOAT=OS_F64;
  30. {the size of a vector register for a processor}
  31. OS_VECTOR=OS_M64;{$WARNING "OS_VECTOR" was set to "OS_M64" but not verified!}
  32. CONST
  33. {Operand types}
  34. OT_NONE = $00000000;
  35. OT_BITS8 = $00000001; { size, and other attributes, of the operand }
  36. OT_BITS16 = $00000002;
  37. OT_BITS32 = $00000004;
  38. OT_BITS64 = $00000008; { FPU only }
  39. OT_BITS80 = $00000010;
  40. OT_FAR = $00000020; { this means 16:16 or 16:32, like in CALL/JMP }
  41. OT_NEAR = $00000040;
  42. OT_SHORT = $00000080;
  43. OT_SIZE_MASK = $000000FF; { all the size attributes }
  44. OT_NON_SIZE = LongInt(not OT_SIZE_MASK);
  45. OT_SIGNED = $00000100; { the operand need to be signed -128-127 }
  46. OT_TO = $00000200; { operand is followed by a colon }
  47. { reverse effect in FADD, FSUB &c }
  48. OT_COLON = $00000400;
  49. OT_REGISTER = $00001000;
  50. OT_IMMEDIATE = $00002000;
  51. OT_IMM8 = $00002001;
  52. OT_IMM16 = $00002002;
  53. OT_IMM32 = $00002004;
  54. OT_IMM64 = $00002008;
  55. OT_IMM80 = $00002010;
  56. OT_REGMEM = $00200000; { for r/m, ie EA, operands }
  57. OT_REGNORM = $00201000; { 'normal' reg, qualifies as EA }
  58. OT_REG8 = $00201001;
  59. OT_REG16 = $00201002;
  60. OT_REG32 = $00201004;
  61. OT_MMXREG = $00201008; { MMX registers }
  62. OT_XMMREG = $00201010; { Katmai registers }
  63. OT_MEMORY = $00204000; { register number in 'basereg' }
  64. OT_MEM8 = $00204001;
  65. OT_MEM16 = $00204002;
  66. OT_MEM32 = $00204004;
  67. OT_MEM64 = $00204008;
  68. OT_MEM80 = $00204010;
  69. OT_FPUREG = $01000000; { floating point stack registers }
  70. OT_FPU0 = $01000800; { FPU stack register zero }
  71. OT_REG_SMASK = $00070000; { special register operands: these may be treated differently }
  72. { a mask for the following }
  73. OT_REG_ACCUM = $00211000; { accumulator: AL, AX or EAX }
  74. OT_REG_AL = $00211001; { REG_ACCUM | BITSxx }
  75. OT_REG_AX = $00211002; { ditto }
  76. OT_REG_EAX = $00211004; { and again }
  77. OT_REG_COUNT = $00221000; { counter: CL, CX or ECX }
  78. OT_REG_CL = $00221001; { REG_COUNT | BITSxx }
  79. OT_REG_CX = $00221002; { ditto }
  80. OT_REG_ECX = $00221004; { another one }
  81. OT_REG_DX = $00241002;
  82. OT_REG_SREG = $00081002; { any segment register }
  83. OT_REG_CS = $01081002; { CS }
  84. OT_REG_DESS = $02081002; { DS, ES, SS (non-CS 86 registers) }
  85. OT_REG_FSGS = $04081002; { FS, GS (386 extENDed registers) }
  86. OT_REG_CDT = $00101004; { CRn, DRn and TRn }
  87. OT_REG_CREG = $08101004; { CRn }
  88. OT_REG_CR4 = $08101404; { CR4 (Pentium only) }
  89. OT_REG_DREG = $10101004; { DRn }
  90. OT_REG_TREG = $20101004; { TRn }
  91. OT_MEM_OFFS = $00604000; { special type of EA }
  92. { simple [address] offset }
  93. OT_ONENESS = $00800000; { special type of immediate operand }
  94. { so UNITY == IMMEDIATE | ONENESS }
  95. OT_UNITY = $00802000; { for shift/rotate instructions }
  96. {Instruction flags }
  97. IF_NONE = $00000000;
  98. IF_SM = $00000001; { size match first two operands }
  99. IF_SM2 = $00000002;
  100. IF_SB = $00000004; { unsized operands can't be non-byte }
  101. IF_SW = $00000008; { unsized operands can't be non-word }
  102. IF_SD = $00000010; { unsized operands can't be nondword }
  103. IF_AR0 = $00000020; { SB, SW, SD applies to argument 0 }
  104. IF_AR1 = $00000040; { SB, SW, SD applies to argument 1 }
  105. IF_AR2 = $00000060; { SB, SW, SD applies to argument 2 }
  106. IF_ARMASK = $00000060; { mask for unsized argument spec }
  107. IF_PRIV = $00000100; { it's a privileged instruction }
  108. IF_SMM = $00000200; { it's only valid in SMM }
  109. IF_PROT = $00000400; { it's protected mode only }
  110. IF_UNDOC = $00001000; { it's an undocumented instruction }
  111. IF_FPU = $00002000; { it's an FPU instruction }
  112. IF_MMX = $00004000; { it's an MMX instruction }
  113. IF_3DNOW = $00008000; { it's a 3DNow! instruction }
  114. IF_SSE = $00010000; { it's a SSE (KNI, MMX2) instruction }
  115. IF_PMASK = LongInt($FF000000); { the mask for processor types }
  116. IF_PFMASK = LongInt($F001FF00); { the mask for disassembly "prefer" }
  117. IF_V7 = $00000000; { SPARC V7 instruction only (not supported)}
  118. IF_V8 = $01000000; { SPARC V8 instruction (the default)}
  119. IF_V9 = $02000000; { SPARC V9 instruction (not yet supported)}
  120. { added flags }
  121. IF_PRE = $40000000; { it's a prefix instruction }
  122. IF_PASS2 = LongInt($80000000);{instruction can change in a second pass?}
  123. TYPE
  124. {$WARNING CPU32 opcodes do not fully include the Ultra SPRAC instruction set.}
  125. { don't change the order of these opcodes! }
  126. TAsmOp=({$INCLUDE opcode.inc});
  127. op2strtable=ARRAY[TAsmOp]OF STRING[11];
  128. CONST
  129. FirstOp=Low(TAsmOp);
  130. LastOp=High(TAsmOp);
  131. std_op2str:op2strtable=({$INCLUDE strinst.inc});
  132. {*****************************************************************************
  133. Operand Sizes
  134. *****************************************************************************}
  135. TYPE
  136. TOpSize=(S_NO,
  137. S_B,{Byte}
  138. S_H,{Half word}
  139. S_W,{Word}
  140. S_L:=S_W,
  141. S_D,{Double Word}
  142. S_Q,{Quad word}
  143. S_IQ:=S_Q,
  144. S_SB,{Signed byte}
  145. S_SH,{Signed half word}
  146. S_SW,{Signed word}
  147. S_SD,{Signed double word}
  148. S_SQ,{Signed quad word}
  149. S_FS,{Float single word}
  150. S_FX:=S_FS,
  151. S_FD,{Float double word}
  152. S_FQ,{Float quad word}
  153. S_NEAR,
  154. S_FAR,
  155. S_SHORT);
  156. {*****************************************************************************}
  157. { Conditions }
  158. {*****************************************************************************}
  159. TYPE
  160. TAsmCond=(C_None,
  161. C_A,C_AE,C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_NA,C_NAE,
  162. C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_NO,C_NP,
  163. C_NS,C_NZ,C_O,C_P,C_PE,C_PO,C_S,C_Z
  164. );
  165. CONST
  166. cond2str:ARRAY[TAsmCond] of string[3]=('',
  167. 'a','ae','b','be','c','e','g','ge','l','le','na','nae',
  168. 'nb','nbe','nc','ne','ng','nge','nl','nle','no','np',
  169. 'ns','nz','o','p','pe','po','s','z'
  170. );
  171. inverse_cond:ARRAY[TAsmCond] of TAsmCond=(C_None,
  172. C_NA,C_NAE,C_NB,C_NBE,C_NC,C_NE,C_NG,C_NGE,C_NL,C_NLE,C_A,C_AE,
  173. C_B,C_BE,C_C,C_E,C_G,C_GE,C_L,C_LE,C_O,C_P,
  174. C_S,C_Z,C_NO,C_NP,C_NP,C_P,C_NS,C_NZ
  175. );
  176. CONST
  177. CondAsmOps=3;
  178. CondAsmOp:ARRAY[0..CondAsmOps-1] of TAsmOp=(A_FCMPd, A_JMPL, A_FCMPs);
  179. CondAsmOpStr:ARRAY[0..CondAsmOps-1] of string[4]=('FCMPd','JMPL','FCMPs');
  180. {*****************************************************************************}
  181. { Registers }
  182. {*****************************************************************************}
  183. TYPE
  184. { enumeration for registers, don't change the order }
  185. { it's used by the register size conversions }
  186. ToldRegister=({$INCLUDE registers.inc});
  187. Tregister=record
  188. enum:Toldregister;
  189. number:word;
  190. end;
  191. TRegister64=PACKED RECORD
  192. {A type to store register locations for 64 Bit values.}
  193. RegLo,RegHi:TRegister;
  194. END;
  195. treg64=tregister64;{alias for compact code}
  196. TRegisterSet=SET OF ToldRegister;
  197. CONST
  198. R_NO=R_NONE;
  199. firstreg = low(Toldregister);
  200. lastreg = high(R_ASR31);
  201. type
  202. reg2strtable=ARRAY[firstreg..lastreg] OF STRING[6];
  203. const
  204. std_reg2str:reg2strtable=({$INCLUDE strregs.inc});
  205. {*****************************************************************************
  206. Flags
  207. *****************************************************************************}
  208. TYPE
  209. TResFlags=(
  210. F_E, {Equal}
  211. F_NE, {Not Equal}
  212. F_G, {Greater}
  213. F_L, {Less}
  214. F_GE, {Greater or Equal}
  215. F_LE, {Less or Equal}
  216. F_C, {Carry}
  217. F_NC, {Not Carry}
  218. F_A, {Above}
  219. F_AE, {Above or Equal}
  220. F_B, {Below}
  221. F_BE {Below or Equal}
  222. );
  223. {*****************************************************************************
  224. Reference
  225. *****************************************************************************}
  226. TYPE
  227. trefoptions=(ref_none,ref_parafixup,ref_localfixup,ref_selffixup);
  228. { immediate/reference record }
  229. poperreference = ^treference;
  230. Preference=^Treference;
  231. treference = packed record
  232. segment,
  233. base,
  234. index : tregister;
  235. scalefactor : byte;
  236. offset : LongInt;
  237. symbol : tasmsymbol;
  238. offsetfixup : LongInt;
  239. options : trefoptions;
  240. alignment : byte;
  241. END;
  242. { reference record }
  243. PParaReference=^TParaReference;
  244. TParaReference=PACKED RECORD
  245. Index:TRegister;
  246. Offset:longint;
  247. END;
  248. {*****************************************************************************
  249. Operands
  250. *****************************************************************************}
  251. { Types of operand }
  252. toptype=(top_none,top_reg,top_ref,top_const,top_symbol,top_raddr,top_caddr);
  253. toper=record
  254. ot:LongInt;
  255. case typ:toptype of
  256. top_none:();
  257. top_reg:(reg:tregister);
  258. top_ref:(ref:poperreference);
  259. top_const:(val:aword);
  260. top_symbol:(sym:tasmsymbol;symofs:LongInt);
  261. top_raddr:(reg1,reg2:TRegister);
  262. top_caddr:(regb:TRegister;const13:Integer);
  263. end;
  264. {*****************************************************************************
  265. Argument Classification
  266. *****************************************************************************}
  267. TYPE
  268. TArgClass = (
  269. { the following classes should be defined by all processor implemnations }
  270. AC_NOCLASS,
  271. AC_MEMORY,
  272. AC_INTEGER,
  273. AC_FPU,
  274. { the following argument classes are i386 specific }
  275. AC_FPUUP,
  276. AC_SSE,
  277. AC_SSEUP);
  278. {*****************************************************************************
  279. Generic Location
  280. *****************************************************************************}
  281. TYPE
  282. TLoc=( {information about the location of an operand}
  283. LOC_INVALID, { added for tracking problems}
  284. LOC_CONSTANT, { CONSTant value }
  285. LOC_JUMP, { boolean results only, jump to false or true label }
  286. LOC_FLAGS, { boolean results only, flags are set }
  287. LOC_CREFERENCE, { in memory CONSTant value }
  288. LOC_REFERENCE, { in memory value }
  289. LOC_REGISTER, { in a processor register }
  290. LOC_CREGISTER, { Constant register which shouldn't be modified }
  291. LOC_FPUREGISTER, { FPU stack }
  292. LOC_CFPUREGISTER, { if it is a FPU register variable on the fpu stack }
  293. LOC_MMXREGISTER, { MMX register }
  294. LOC_CMMXREGISTER, { MMX register variable }
  295. LOC_MMREGISTER,
  296. LOC_CMMREGISTER
  297. );
  298. {tparamlocation describes where a parameter for a procedure is stored.
  299. References are given from the caller's point of view. The usual TLocation isn't
  300. used, because contains a lot of unnessary fields.}
  301. TParaLocation=PACKED RECORD
  302. Size:TCGSize;
  303. Loc:TLoc;
  304. sp_fixup:LongInt;
  305. CASE TLoc OF
  306. LOC_REFERENCE:(reference:tparareference);
  307. { segment in reference at the same place as in loc_register }
  308. LOC_REGISTER,LOC_CREGISTER : (
  309. CASE LongInt OF
  310. 1 : (register,registerhigh : tregister);
  311. { overlay a registerlow }
  312. 2 : (registerlow : tregister);
  313. { overlay a 64 Bit register type }
  314. 3 : (reg64 : tregister64);
  315. 4 : (register64 : tregister64);
  316. );
  317. { it's only for better handling }
  318. LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
  319. END;
  320. TLocation=PACKED RECORD
  321. loc : TLoc;
  322. size : TCGSize;
  323. case TLoc of
  324. LOC_FLAGS : (resflags : tresflags);
  325. LOC_CONSTANT : (
  326. case longint of
  327. 1 : (value : AWord);
  328. 2 : (valuelow, valuehigh:AWord);
  329. { overlay a complete 64 Bit value }
  330. 3 : (valueqword : qword);
  331. );
  332. LOC_CREFERENCE,
  333. LOC_REFERENCE : (reference : treference);
  334. { segment in reference at the same place as in loc_register }
  335. LOC_REGISTER,LOC_CREGISTER : (
  336. case longint of
  337. 1 : (register,registerhigh,segment : tregister);
  338. { overlay a registerlow }
  339. 2 : (registerlow : tregister);
  340. { overlay a 64 Bit register type }
  341. 3 : (reg64 : tregister64);
  342. 4 : (register64 : tregister64);
  343. );
  344. { it's only for better handling }
  345. LOC_MMXREGISTER,LOC_CMMXREGISTER : (mmxreg : tregister);
  346. end;
  347. {*****************************************************************************
  348. Constants
  349. *****************************************************************************}
  350. const
  351. general_registers = [R_G0..R_I7];
  352. { legEND: }
  353. { xxxregs = set of all possibly used registers of that type in the code }
  354. { generator }
  355. { usableregsxxx = set of all 32bit components of registers that can be }
  356. { possible allocated to a regvar or using getregisterxxx (this }
  357. { excludes registers which can be only used for parameter }
  358. { passing on ABI's that define this) }
  359. { c_countusableregsxxx = amount of registers in the usableregsxxx set }
  360. IntRegs=[R_G0..R_I7];
  361. usableregsint=general_registers;
  362. c_countusableregsint = 4;
  363. fpuregs=[R_F0..R_F31];
  364. usableregsfpu=[];
  365. c_countusableregsfpu=0;
  366. mmregs=[];
  367. usableregsmm=[];
  368. c_countusableregsmm=8;
  369. firstsaveintreg = R_I0;
  370. lastsaveintreg = R_I7;
  371. firstsavefpureg = R_F0;
  372. lastsavefpureg = R_F31;
  373. firstsavemmreg = R_I0;
  374. lastsavemmreg = R_I7;
  375. lowsavereg = R_G0;
  376. highsavereg = R_I7;
  377. ALL_REGISTERS = [lowsavereg..highsavereg];
  378. lvaluelocations = [LOC_REFERENCE,LOC_CFPUREGISTER,
  379. LOC_CREGISTER,LOC_MMXREGISTER,LOC_CMMXREGISTER];
  380. {
  381. registers_saved_on_cdecl = [R_ESI,R_EDI,R_EBX];}
  382. {*****************************************************************************
  383. GDB Information
  384. *****************************************************************************}
  385. {# Register indexes for stabs information, when some
  386. parameters or variables are stored in registers.
  387. Taken from rs6000.h (DBX_REGISTER_NUMBER)
  388. from GCC 3.x source code. PowerPC has 1:1 mapping
  389. according to the order of the registers defined
  390. in GCC
  391. }
  392. stab_regindex:ARRAY[firstreg..lastreg]OF ShortInt=({$INCLUDE stabregi.inc});
  393. {*************************** generic register names **************************}
  394. stack_pointer_reg = R_O6;
  395. frame_pointer_reg = R_I6;
  396. {the return_result_reg, is used inside the called function to store its return
  397. value when that is a scalar value otherwise a pointer to the address of the
  398. result is placed inside it}
  399. return_result_reg = R_I0;
  400. {the function_result_reg contains the function result after a call to a scalar
  401. function othewise it contains a pointer to the returned result}
  402. function_result_reg = R_O0;
  403. self_pointer_reg =R_G5;
  404. {There is no accumulator in the SPARC architecture. There are just families of
  405. registers. All registers belonging to the same family are identical except in
  406. the "global registers" family where GO is different from the others : G0 gives
  407. always 0 when it is red and thows away any value written to it.Nevertheless,
  408. scalar routine results are returned onto R_O0.}
  409. accumulator = R_O0;
  410. accumulatorhigh = R_O1;
  411. fpu_result_reg =R_F0;
  412. mmresultreg =R_G0;
  413. {*****************************************************************************}
  414. { GCC /ABI linking information }
  415. {*****************************************************************************}
  416. {# Registers which must be saved when calling a routine declared as cppdecl,
  417. cdecl, stdcall, safecall, palmossyscall. The registers saved should be the ones
  418. as defined in the target ABI and / or GCC.
  419. This value can be deduced from the CALLED_USED_REGISTERS array in the GCC
  420. source.}
  421. std_saved_registers=[R_O6];
  422. {# Required parameter alignment when calling a routine declared as stdcall and
  423. cdecl. The alignment value should be the one defined by GCC or the target ABI.
  424. The value of this constant is equal to the constant
  425. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.}
  426. std_param_align=4;
  427. {# Registers which are defined as scratch and no need to save across routine
  428. calls or in assembler blocks.}
  429. ScratchRegsCount=3;
  430. scratch_regs:ARRAY[1..ScratchRegsCount]OF ToldRegister=(R_O4,R_O5,R_I7);
  431. {$WARNING FIXME : Scratch registers list has to be verified}
  432. { low and high of the available maximum width integer general purpose }
  433. { registers }
  434. LoGPReg = R_G0;
  435. HiGPReg = R_I7;
  436. { low and high of every possible width general purpose register (same as }
  437. { above on most architctures apart from the 80x86) }
  438. LoReg = R_G0;
  439. HiReg = R_I7;
  440. cpuflags = [];
  441. { sizes }
  442. pointersize = 4;
  443. extENDed_size = 8;{SPARC architecture uses IEEE floating point numbers}
  444. mmreg_size = 8;
  445. SizePostfix_pointer = S_SW;
  446. {*****************************************************************************
  447. Instruction table
  448. *****************************************************************************}
  449. {$ifndef NOAG386BIN}
  450. TYPE
  451. tinsentry=packed record
  452. opcode : tasmop;
  453. ops : byte;
  454. optypes : ARRAY[0..2] of LongInt;
  455. code : ARRAY[0..maxinfolen] of char;
  456. flags : LongInt;
  457. END;
  458. pinsentry=^tinsentry;
  459. TInsTabCache=ARRAY[TasmOp] of LongInt;
  460. PInsTabCache=^TInsTabCache;
  461. VAR
  462. InsTabCache : PInsTabCache;
  463. {$ENDif NOAG386BIN}
  464. {*****************************************************************************
  465. Helpers
  466. *****************************************************************************}
  467. const
  468. maxvarregs=30;
  469. VarRegs:ARRAY[1..maxvarregs]OF ToldRegister=(
  470. R_G0,R_G1,R_G2,R_G3,R_G4,R_G5,R_G6,R_G7,
  471. R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,{R_R14=R_SP}R_O7,
  472. R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
  473. R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,{R_R30=R_FP}R_I7
  474. );
  475. maxfpuvarregs = 8;
  476. max_operands = 3;
  477. maxintregs = maxvarregs;
  478. maxfpuregs = maxfpuvarregs;
  479. FUNCTION is_calljmp(o:tasmop):boolean;
  480. FUNCTION flags_to_cond(CONST f:TResFlags):TAsmCond;
  481. procedure convert_register_to_enum(var r:Tregister);
  482. IMPLEMENTATION
  483. uses verbose;
  484. const
  485. CallJmpOp=[A_JMPL..A_CBccc];
  486. function is_calljmp(o:tasmop):boolean;
  487. begin
  488. if o in CallJmpOp
  489. then
  490. is_calljmp:=true
  491. else
  492. is_calljmp:=false;
  493. end;
  494. function flags_to_cond(const f:TResFlags):TAsmCond;
  495. CONST
  496. flags_2_cond:ARRAY[TResFlags]OF TAsmCond=
  497. (C_E,C_NE,C_G,C_L,C_GE,C_LE,C_C,C_NC,C_A,C_AE,C_B,C_BE);
  498. BEGIN
  499. result:=flags_2_cond[f];
  500. END;
  501. procedure convert_register_to_enum(var r:Tregister);
  502. begin
  503. {$warning Convert_register_to_enum implementation is missing!}
  504. internalerror(200301082);
  505. end;
  506. END.
  507. {
  508. $Log$
  509. Revision 1.20 2003-01-09 20:41:00 daniel
  510. * Converted some code in cgx86.pas to new register numbering
  511. Revision 1.19 2003/01/09 15:49:56 daniel
  512. * Added register conversion
  513. Revision 1.18 2003/01/08 18:43:58 daniel
  514. * Tregister changed into a record
  515. Revision 1.17 2003/01/05 20:39:53 mazen
  516. * warnings about FreeTemp already free fixed with appropriate registers handling
  517. Revision 1.16 2002/10/28 20:59:17 mazen
  518. * TOpSize values changed S_L --> S_SW
  519. Revision 1.15 2002/10/28 20:37:44 mazen
  520. * TOpSize values changed S_L --> S_SW
  521. Revision 1.14 2002/10/20 19:01:38 mazen
  522. + op_raddr_reg and op_caddr_reg added to fix functions prologue
  523. Revision 1.13 2002/10/19 20:35:07 mazen
  524. * carl's patch applied
  525. Revision 1.12 2002/10/11 13:35:14 mazen
  526. *** empty log message ***
  527. Revision 1.11 2002/10/10 19:57:51 mazen
  528. * Just to update repsitory
  529. Revision 1.10 2002/10/02 22:20:28 mazen
  530. + out registers allocator for the first 6 scalar parameters which must be passed into %o0..%o5
  531. Revision 1.9 2002/10/01 21:06:29 mazen
  532. attinst.inc --> strinst.inc
  533. Revision 1.8 2002/09/30 19:12:14 mazen
  534. * function prologue fixed
  535. Revision 1.7 2002/09/27 04:30:53 mazen
  536. * cleanup made
  537. Revision 1.6 2002/09/24 03:57:53 mazen
  538. * some cleanup was made
  539. }