cpubase.pas 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. {
  2. Copyright (c) 1998-2002 by Florian Klaempfl and Peter Vreman
  3. Contains the base types for the ARM
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the Free Software
  14. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. ****************************************************************************
  16. }
  17. {# Base unit for processor information. This unit contains
  18. enumerations of registers, opcodes, sizes, and other
  19. such things which are processor specific.
  20. }
  21. unit cpubase;
  22. {$i fpcdefs.inc}
  23. interface
  24. uses
  25. cutils,cclasses,
  26. globtype,globals,
  27. cpuinfo,
  28. aasmbase,
  29. cgbase
  30. ;
  31. {*****************************************************************************
  32. Assembler Opcodes
  33. *****************************************************************************}
  34. type
  35. TAsmOp= {$i armop.inc}
  36. { This should define the array of instructions as string }
  37. op2strtable=array[tasmop] of string[11];
  38. const
  39. { First value of opcode enumeration }
  40. firstop = low(tasmop);
  41. { Last value of opcode enumeration }
  42. lastop = high(tasmop);
  43. {*****************************************************************************
  44. Registers
  45. *****************************************************************************}
  46. type
  47. { Number of registers used for indexing in tables }
  48. tregisterindex=0..{$i rarmnor.inc}-1;
  49. const
  50. { Available Superregisters }
  51. {$i rarmsup.inc}
  52. RS_PC = RS_R15;
  53. { No Subregisters }
  54. R_SUBWHOLE = R_SUBNONE;
  55. { Available Registers }
  56. {$i rarmcon.inc}
  57. { aliases }
  58. NR_PC = NR_R15;
  59. { Integer Super registers first and last }
  60. first_int_supreg = RS_R0;
  61. first_int_imreg = $10;
  62. { Float Super register first and last }
  63. first_fpu_supreg = RS_F0;
  64. first_fpu_imreg = $08;
  65. { MM Super register first and last }
  66. first_mm_supreg = RS_S0;
  67. first_mm_imreg = $30;
  68. { TODO: Calculate bsstart}
  69. regnumber_count_bsstart = 64;
  70. regnumber_table : array[tregisterindex] of tregister = (
  71. {$i rarmnum.inc}
  72. );
  73. regstabs_table : array[tregisterindex] of shortint = (
  74. {$i rarmsta.inc}
  75. );
  76. regdwarf_table : array[tregisterindex] of shortint = (
  77. {$i rarmdwa.inc}
  78. );
  79. { registers which may be destroyed by calls }
  80. VOLATILE_INTREGISTERS = [RS_R0..RS_R3,RS_R12..RS_R14];
  81. VOLATILE_FPUREGISTERS = [RS_F0..RS_F3];
  82. VOLATILE_MMREGISTERS = [RS_D0..RS_D7,RS_D16..RS_D31,RS_S1..RS_S15];
  83. VOLATILE_INTREGISTERS_DARWIN = [RS_R0..RS_R3,RS_R9,RS_R12..RS_R14];
  84. type
  85. totherregisterset = set of tregisterindex;
  86. {*****************************************************************************
  87. Instruction post fixes
  88. *****************************************************************************}
  89. type
  90. { ARM instructions load/store and arithmetic instructions
  91. can have several instruction post fixes which are collected
  92. in this enumeration
  93. }
  94. TOpPostfix = (PF_None,
  95. { update condition flags
  96. or floating point single }
  97. PF_S,
  98. { floating point size }
  99. PF_D,PF_E,PF_P,PF_EP,
  100. { load/store }
  101. PF_B,PF_SB,PF_BT,PF_H,PF_SH,PF_T,
  102. { multiple load/store address modes }
  103. PF_IA,PF_IB,PF_DA,PF_DB,PF_FD,PF_FA,PF_ED,PF_EA,
  104. { multiple load/store vfp address modes }
  105. PF_IAD,PF_DBD,PF_FDD,PF_EAD,
  106. PF_IAS,PF_DBS,PF_FDS,PF_EAS,
  107. PF_IAX,PF_DBX,PF_FDX,PF_EAX
  108. );
  109. TOpPostfixes = set of TOpPostfix;
  110. TRoundingMode = (RM_None,RM_P,RM_M,RM_Z);
  111. const
  112. cgsize2fpuoppostfix : array[OS_NO..OS_F128] of toppostfix = (
  113. PF_None,
  114. PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,PF_None,
  115. PF_S,PF_D,PF_E,PF_None,PF_None);
  116. oppostfix2str : array[TOpPostfix] of string[3] = ('',
  117. 's',
  118. 'd','e','p','ep',
  119. 'b','sb','bt','h','sh','t',
  120. 'ia','ib','da','db','fd','fa','ed','ea',
  121. 'iad','dbd','fdd','ead',
  122. 'ias','dbs','fds','eas',
  123. 'iax','dbx','fdx','eax');
  124. roundingmode2str : array[TRoundingMode] of string[1] = ('',
  125. 'p','m','z');
  126. {*****************************************************************************
  127. Conditions
  128. *****************************************************************************}
  129. type
  130. TAsmCond=(C_None,
  131. C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  132. C_GE,C_LT,C_GT,C_LE,C_AL,C_NV
  133. );
  134. TAsmConds = set of TAsmCond;
  135. const
  136. cond2str : array[TAsmCond] of string[2]=('',
  137. 'eq','ne','cs','cc','mi','pl','vs','vc','hi','ls',
  138. 'ge','lt','gt','le','al','nv'
  139. );
  140. uppercond2str : array[TAsmCond] of string[2]=('',
  141. 'EQ','NE','CS','CC','MI','PL','VS','VC','HI','LS',
  142. 'GE','LT','GT','LE','AL','NV'
  143. );
  144. {*****************************************************************************
  145. Flags
  146. *****************************************************************************}
  147. type
  148. TResFlags = (F_EQ,F_NE,F_CS,F_CC,F_MI,F_PL,F_VS,F_VC,F_HI,F_LS,
  149. F_GE,F_LT,F_GT,F_LE);
  150. {*****************************************************************************
  151. Operands
  152. *****************************************************************************}
  153. taddressmode = (AM_OFFSET,AM_PREINDEXED,AM_POSTINDEXED);
  154. tshiftmode = (SM_None,SM_LSL,SM_LSR,SM_ASR,SM_ROR,SM_RRX);
  155. tupdatereg = (UR_None,UR_Update);
  156. pshifterop = ^tshifterop;
  157. tshifterop = record
  158. shiftmode : tshiftmode;
  159. rs : tregister;
  160. shiftimm : byte;
  161. end;
  162. tcpumodeflag = (mfA, mfI, mfF);
  163. tcpumodeflags = set of tcpumodeflag;
  164. {*****************************************************************************
  165. Constants
  166. *****************************************************************************}
  167. const
  168. max_operands = 4;
  169. maxintregs = 15;
  170. maxfpuregs = 8;
  171. maxaddrregs = 0;
  172. {*****************************************************************************
  173. Operand Sizes
  174. *****************************************************************************}
  175. type
  176. topsize = (S_NO,
  177. S_B,S_W,S_L,S_BW,S_BL,S_WL,
  178. S_IS,S_IL,S_IQ,
  179. S_FS,S_FL,S_FX,S_D,S_Q,S_FV,S_FXX
  180. );
  181. {*****************************************************************************
  182. Constants
  183. *****************************************************************************}
  184. const
  185. maxvarregs = 7;
  186. varregs : Array [1..maxvarregs] of tsuperregister =
  187. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  188. maxfpuvarregs = 4;
  189. fpuvarregs : Array [1..maxfpuvarregs] of tsuperregister =
  190. (RS_F4,RS_F5,RS_F6,RS_F7);
  191. {*****************************************************************************
  192. Default generic sizes
  193. *****************************************************************************}
  194. { Defines the default address size for a processor, }
  195. OS_ADDR = OS_32;
  196. { the natural int size for a processor, }
  197. OS_INT = OS_32;
  198. OS_SINT = OS_S32;
  199. { the maximum float size for a processor, }
  200. OS_FLOAT = OS_F64;
  201. { the size of a vector register for a processor }
  202. OS_VECTOR = OS_M32;
  203. {*****************************************************************************
  204. Generic Register names
  205. *****************************************************************************}
  206. { Stack pointer register }
  207. NR_STACK_POINTER_REG = NR_R13;
  208. RS_STACK_POINTER_REG = RS_R13;
  209. { Frame pointer register (initialized in tarmprocinfo.init_framepointer) }
  210. RS_FRAME_POINTER_REG: tsuperregister = RS_NO;
  211. NR_FRAME_POINTER_REG: tregister = NR_NO;
  212. { Register for addressing absolute data in a position independant way,
  213. such as in PIC code. The exact meaning is ABI specific. For
  214. further information look at GCC source : PIC_OFFSET_TABLE_REGNUM
  215. }
  216. NR_PIC_OFFSET_REG = NR_R9;
  217. { Results are returned in this register (32-bit values) }
  218. NR_FUNCTION_RETURN_REG = NR_R0;
  219. RS_FUNCTION_RETURN_REG = RS_R0;
  220. { The value returned from a function is available in this register }
  221. NR_FUNCTION_RESULT_REG = NR_FUNCTION_RETURN_REG;
  222. RS_FUNCTION_RESULT_REG = RS_FUNCTION_RETURN_REG;
  223. NR_FPU_RESULT_REG = NR_F0;
  224. NR_MM_RESULT_REG = NR_D0;
  225. NR_RETURN_ADDRESS_REG = NR_FUNCTION_RETURN_REG;
  226. { Offset where the parent framepointer is pushed }
  227. PARENT_FRAMEPOINTER_OFFSET = 0;
  228. { Low part of 64bit return value }
  229. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  230. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  231. { High part of 64bit return value }
  232. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  233. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  234. {*****************************************************************************
  235. GCC /ABI linking information
  236. *****************************************************************************}
  237. const
  238. { Registers which must be saved when calling a routine declared as
  239. cppdecl, cdecl, stdcall, safecall, palmossyscall. The registers
  240. saved should be the ones as defined in the target ABI and / or GCC.
  241. This value can be deduced from the CALLED_USED_REGISTERS array in the
  242. GCC source.
  243. }
  244. saved_standard_registers : array[0..6] of tsuperregister =
  245. (RS_R4,RS_R5,RS_R6,RS_R7,RS_R8,RS_R9,RS_R10);
  246. { this is only for the generic code which is not used for this architecture }
  247. saved_mm_registers : array[0..0] of tsuperregister = (RS_NO);
  248. { Required parameter alignment when calling a routine declared as
  249. stdcall and cdecl. The alignment value should be the one defined
  250. by GCC or the target ABI.
  251. The value of this constant is equal to the constant
  252. PARM_BOUNDARY / BITS_PER_UNIT in the GCC source.
  253. }
  254. std_param_align = 4;
  255. {*****************************************************************************
  256. Helpers
  257. *****************************************************************************}
  258. { Returns the tcgsize corresponding with the size of reg.}
  259. function reg_cgsize(const reg: tregister) : tcgsize;
  260. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  261. function is_calljmp(o:tasmop):boolean;
  262. procedure inverse_flags(var f: TResFlags);
  263. function flags_to_cond(const f: TResFlags) : TAsmCond;
  264. function findreg_by_number(r:Tregister):tregisterindex;
  265. function std_regnum_search(const s:string):Tregister;
  266. function std_regname(r:Tregister):string;
  267. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  268. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  269. procedure shifterop_reset(var so : tshifterop);
  270. function is_pc(const r : tregister) : boolean;
  271. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  272. function dwarf_reg(r:tregister):shortint;
  273. implementation
  274. uses
  275. systems,rgBase,verbose;
  276. const
  277. std_regname_table : array[tregisterindex] of string[7] = (
  278. {$i rarmstd.inc}
  279. );
  280. regnumber_index : array[tregisterindex] of tregisterindex = (
  281. {$i rarmrni.inc}
  282. );
  283. std_regname_index : array[tregisterindex] of tregisterindex = (
  284. {$i rarmsri.inc}
  285. );
  286. function cgsize2subreg(regtype: tregistertype; s:Tcgsize):Tsubregister;
  287. begin
  288. case regtype of
  289. R_MMREGISTER:
  290. begin
  291. case s of
  292. OS_F32:
  293. cgsize2subreg:=R_SUBFS;
  294. OS_F64:
  295. cgsize2subreg:=R_SUBFD;
  296. else
  297. internalerror(2009112701);
  298. end;
  299. end;
  300. else
  301. cgsize2subreg:=R_SUBWHOLE;
  302. end;
  303. end;
  304. function reg_cgsize(const reg: tregister): tcgsize;
  305. begin
  306. case getregtype(reg) of
  307. R_INTREGISTER :
  308. reg_cgsize:=OS_32;
  309. R_FPUREGISTER :
  310. reg_cgsize:=OS_F80;
  311. R_MMREGISTER :
  312. begin
  313. case getsubreg(reg) of
  314. R_SUBFD,
  315. R_SUBWHOLE:
  316. result:=OS_F64;
  317. R_SUBFS:
  318. result:=OS_F32;
  319. else
  320. internalerror(2009112903);
  321. end;
  322. end;
  323. else
  324. internalerror(200303181);
  325. end;
  326. end;
  327. function is_calljmp(o:tasmop):boolean;
  328. begin
  329. { This isn't 100% perfect because the arm allows jumps also by writing to PC=R15.
  330. To overcome this problem we simply forbid that FPC generates jumps by loading R15 }
  331. is_calljmp:= o in [A_B,A_BL,A_BX,A_BLX];
  332. end;
  333. procedure inverse_flags(var f: TResFlags);
  334. const
  335. inv_flags: array[TResFlags] of TResFlags =
  336. (F_NE,F_EQ,F_CC,F_CS,F_PL,F_MI,F_VC,F_VS,F_LS,F_HI,
  337. F_LT,F_GE,F_LE,F_GT);
  338. begin
  339. f:=inv_flags[f];
  340. end;
  341. function flags_to_cond(const f: TResFlags) : TAsmCond;
  342. const
  343. flag_2_cond: array[F_EQ..F_LE] of TAsmCond =
  344. (C_EQ,C_NE,C_CS,C_CC,C_MI,C_PL,C_VS,C_VC,C_HI,C_LS,
  345. C_GE,C_LT,C_GT,C_LE);
  346. begin
  347. if f>high(flag_2_cond) then
  348. internalerror(200112301);
  349. result:=flag_2_cond[f];
  350. end;
  351. function findreg_by_number(r:Tregister):tregisterindex;
  352. begin
  353. result:=rgBase.findreg_by_number_table(r,regnumber_index);
  354. end;
  355. function std_regnum_search(const s:string):Tregister;
  356. begin
  357. result:=regnumber_table[findreg_by_name_table(s,std_regname_table,std_regname_index)];
  358. end;
  359. function std_regname(r:Tregister):string;
  360. var
  361. p : tregisterindex;
  362. begin
  363. p:=findreg_by_number_table(r,regnumber_index);
  364. if p<>0 then
  365. result:=std_regname_table[p]
  366. else
  367. result:=generic_regname(r);
  368. end;
  369. procedure shifterop_reset(var so : tshifterop);
  370. begin
  371. FillChar(so,sizeof(so),0);
  372. end;
  373. function is_pc(const r : tregister) : boolean;
  374. begin
  375. is_pc:=(r=NR_R15);
  376. end;
  377. function inverse_cond(const c: TAsmCond): TAsmCond; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  378. const
  379. inverse: array[TAsmCond] of TAsmCond=(C_None,
  380. C_NE,C_EQ,C_CC,C_CS,C_PL,C_MI,C_VC,C_VS,C_LS,C_HI,
  381. C_LT,C_GE,C_LE,C_GT,C_None,C_None
  382. );
  383. begin
  384. result := inverse[c];
  385. end;
  386. function conditions_equal(const c1, c2: TAsmCond): boolean; {$ifdef USEINLINE}inline;{$endif USEINLINE}
  387. begin
  388. result := c1 = c2;
  389. end;
  390. function rotl(d : dword;b : byte) : dword;
  391. begin
  392. result:=(d shr (32-b)) or (d shl b);
  393. end;
  394. function is_shifter_const(d : aint;var imm_shift : byte) : boolean;
  395. var
  396. i : longint;
  397. begin
  398. if current_settings.cputype in cpu_thumb2 then
  399. begin
  400. for i:=0 to 24 do
  401. begin
  402. if (dword(d) and not($ff shl i))=0 then
  403. begin
  404. imm_shift:=i;
  405. result:=true;
  406. exit;
  407. end;
  408. end;
  409. end
  410. else
  411. begin
  412. for i:=0 to 15 do
  413. begin
  414. if (dword(d) and not(rotl($ff,i*2)))=0 then
  415. begin
  416. imm_shift:=i*2;
  417. result:=true;
  418. exit;
  419. end;
  420. end;
  421. end;
  422. result:=false;
  423. end;
  424. function dwarf_reg(r:tregister):shortint;
  425. begin
  426. result:=regdwarf_table[findreg_by_number(r)];
  427. if result=-1 then
  428. internalerror(200603251);
  429. end;
  430. { Low part of 64bit return value }
  431. function NR_FUNCTION_RESULT64_LOW_REG: tregister;
  432. begin
  433. if target_info.endian=endian_little then
  434. result:=NR_R0
  435. else
  436. result:=NR_R1;
  437. end;
  438. function RS_FUNCTION_RESULT64_LOW_REG: shortint;
  439. begin
  440. if target_info.endian=endian_little then
  441. result:=RS_R0
  442. else
  443. result:=RS_R1;
  444. end;
  445. { High part of 64bit return value }
  446. function NR_FUNCTION_RESULT64_HIGH_REG: tregister;
  447. begin
  448. if target_info.endian=endian_little then
  449. result:=NR_R1
  450. else
  451. result:=NR_R0;
  452. end;
  453. function RS_FUNCTION_RESULT64_HIGH_REG: shortint;
  454. begin
  455. if target_info.endian=endian_little then
  456. result:=RS_R1
  457. else
  458. result:=RS_R0;
  459. end;
  460. end.