123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960 |
- Unit JcpHuff;
- { This file contains Huffman entropy encoding routines for progressive JPEG.
- We do not support output suspension in this module, since the library
- currently does not allow multiple-scan files to be written with output
- suspension. }
- { Original: jcphuff.c; Copyright (C) 1995-1997, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdeferr,
- jerror,
- jutils,
- jcomapi,
- jchuff; { Declarations shared with jchuff.c }
- { Module initialization routine for progressive Huffman entropy encoding. }
- {GLOBAL}
- procedure jinit_phuff_encoder (cinfo : j_compress_ptr);
- implementation
- { Expanded entropy encoder object for progressive Huffman encoding. }
- type
- phuff_entropy_ptr = ^phuff_entropy_encoder;
- phuff_entropy_encoder = record
- pub : jpeg_entropy_encoder; { public fields }
- { Mode flag: TRUE for optimization, FALSE for actual data output }
- gather_statistics : boolean;
- { Bit-level coding status.
- next_output_byte/free_in_buffer are local copies of cinfo^.dest fields.}
- next_output_byte : JOCTETptr; { => next byte to write in buffer }
- free_in_buffer : size_t; { # of byte spaces remaining in buffer }
- put_buffer : INT32; { current bit-accumulation buffer }
- put_bits : int; { # of bits now in it }
- cinfo : j_compress_ptr; { link to cinfo (needed for dump_buffer) }
- { Coding status for DC components }
- last_dc_val : array[0..MAX_COMPS_IN_SCAN-1] of int;
- { last DC coef for each component }
- { Coding status for AC components }
- ac_tbl_no : int; { the table number of the single component }
- EOBRUN : uInt; { run length of EOBs }
- BE : uInt; { # of buffered correction bits before MCU }
- bit_buffer : JBytePtr; { buffer for correction bits (1 per char) }
- { packing correction bits tightly would save some space but cost time... }
- restarts_to_go : uInt; { MCUs left in this restart interval }
- next_restart_num : int; { next restart number to write (0-7) }
- { Pointers to derived tables (these workspaces have image lifespan).
- Since any one scan codes only DC or only AC, we only need one set
- of tables, not one for DC and one for AC. }
- derived_tbls : array[0..NUM_HUFF_TBLS-1] of c_derived_tbl_ptr;
- { Statistics tables for optimization; again, one set is enough }
- count_ptrs : array[0..NUM_HUFF_TBLS-1] of TLongTablePtr;
- end;
- { MAX_CORR_BITS is the number of bits the AC refinement correction-bit
- buffer can hold. Larger sizes may slightly improve compression, but
- 1000 is already well into the realm of overkill.
- The minimum safe size is 64 bits. }
- const
- MAX_CORR_BITS = 1000; { Max # of correction bits I can buffer }
- { Forward declarations }
- {METHODDEF}
- function encode_mcu_DC_first (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- far; forward;
- {METHODDEF}
- function encode_mcu_AC_first (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- far; forward;
- {METHODDEF}
- function encode_mcu_DC_refine (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- far; forward;
- {METHODDEF}
- function encode_mcu_AC_refine (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- far; forward;
- {METHODDEF}
- procedure finish_pass_phuff (cinfo : j_compress_ptr); far; forward;
- {METHODDEF}
- procedure finish_pass_gather_phuff (cinfo : j_compress_ptr); far; forward;
- { Initialize for a Huffman-compressed scan using progressive JPEG. }
- {METHODDEF}
- procedure start_pass_phuff (cinfo : j_compress_ptr;
- gather_statistics : boolean); far;
- var
- entropy : phuff_entropy_ptr;
- is_DC_band : boolean;
- ci, tbl : int;
- compptr : jpeg_component_info_ptr;
- begin
- entropy := phuff_entropy_ptr (cinfo^.entropy);
- entropy^.cinfo := cinfo;
- entropy^.gather_statistics := gather_statistics;
- is_DC_band := (cinfo^.Ss = 0);
- { We assume jcmaster.c already validated the scan parameters. }
- { Select execution routines }
- if (cinfo^.Ah = 0) then
- begin
- if (is_DC_band) then
- entropy^.pub.encode_mcu := encode_mcu_DC_first
- else
- entropy^.pub.encode_mcu := encode_mcu_AC_first;
- end
- else
- begin
- if (is_DC_band) then
- entropy^.pub.encode_mcu := encode_mcu_DC_refine
- else
- begin
- entropy^.pub.encode_mcu := encode_mcu_AC_refine;
- { AC refinement needs a correction bit buffer }
- if (entropy^.bit_buffer = NIL) then
- entropy^.bit_buffer := JBytePtr(
- cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
- MAX_CORR_BITS * SIZEOF(byte)) );
- end;
- end;
- if (gather_statistics) then
- entropy^.pub.finish_pass := finish_pass_gather_phuff
- else
- entropy^.pub.finish_pass := finish_pass_phuff;
- { Only DC coefficients may be interleaved, so cinfo^.comps_in_scan = 1
- for AC coefficients. }
- for ci := 0 to pred(cinfo^.comps_in_scan) do
- begin
- compptr := cinfo^.cur_comp_info[ci];
- { Initialize DC predictions to 0 }
- entropy^.last_dc_val[ci] := 0;
- { Get table index }
- if (is_DC_band) then
- begin
- if (cinfo^.Ah <> 0) then { DC refinement needs no table }
- continue;
- tbl := compptr^.dc_tbl_no;
- end
- else
- begin
- tbl := compptr^.ac_tbl_no;
- entropy^.ac_tbl_no := tbl;
- end;
- if (gather_statistics) then
- begin
- { Check for invalid table index }
- { (make_c_derived_tbl does this in the other path) }
- if (tbl < 0) or (tbl >= NUM_HUFF_TBLS) then
- ERREXIT1(j_common_ptr(cinfo), JERR_NO_HUFF_TABLE, tbl);
- { Allocate and zero the statistics tables }
- { Note that jpeg_gen_optimal_table expects 257 entries in each table! }
- if (entropy^.count_ptrs[tbl] = NIL) then
- entropy^.count_ptrs[tbl] := TLongTablePtr(
- cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
- 257 * SIZEOF(long)) );
- MEMZERO(entropy^.count_ptrs[tbl], 257 * SIZEOF(long));
- end else
- begin
- { Compute derived values for Huffman table }
- { We may do this more than once for a table, but it's not expensive }
- jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
- entropy^.derived_tbls[tbl]);
- end;
- end;
- { Initialize AC stuff }
- entropy^.EOBRUN := 0;
- entropy^.BE := 0;
- { Initialize bit buffer to empty }
- entropy^.put_buffer := 0;
- entropy^.put_bits := 0;
- { Initialize restart stuff }
- entropy^.restarts_to_go := cinfo^.restart_interval;
- entropy^.next_restart_num := 0;
- end;
- {LOCAL}
- procedure dump_buffer (entropy : phuff_entropy_ptr);
- { Empty the output buffer; we do not support suspension in this module. }
- var
- dest : jpeg_destination_mgr_ptr;
- begin
- dest := entropy^.cinfo^.dest;
- if (not dest^.empty_output_buffer (entropy^.cinfo)) then
- ERREXIT(j_common_ptr(entropy^.cinfo), JERR_CANT_SUSPEND);
- { After a successful buffer dump, must reset buffer pointers }
- entropy^.next_output_byte := dest^.next_output_byte;
- entropy^.free_in_buffer := dest^.free_in_buffer;
- end;
- { Outputting bits to the file }
- { Only the right 24 bits of put_buffer are used; the valid bits are
- left-justified in this part. At most 16 bits can be passed to emit_bits
- in one call, and we never retain more than 7 bits in put_buffer
- between calls, so 24 bits are sufficient. }
- {LOCAL}
- procedure emit_bits (entropy : phuff_entropy_ptr;
- code : uInt;
- size : int); {INLINE}
- { Emit some bits, unless we are in gather mode }
- var
- {register} put_buffer : INT32;
- {register} put_bits : int;
- var
- c : int;
- begin
- { This routine is heavily used, so it's worth coding tightly. }
- put_buffer := INT32 (code);
- put_bits := entropy^.put_bits;
- { if size is 0, caller used an invalid Huffman table entry }
- if (size = 0) then
- ERREXIT(j_common_ptr(entropy^.cinfo), JERR_HUFF_MISSING_CODE);
- if (entropy^.gather_statistics) then
- exit; { do nothing if we're only getting stats }
- put_buffer := put_buffer and ((INT32(1) shl size) - 1);
- { mask off any extra bits in code }
- Inc(put_bits, size); { new number of bits in buffer }
- put_buffer := put_buffer shl (24 - put_bits); { align incoming bits }
- put_buffer := put_buffer or entropy^.put_buffer;
- { and merge with old buffer contents }
- while (put_bits >= 8) do
- begin
- c := int ((put_buffer shr 16) and $FF);
- {emit_byte(entropy, c);}
- { Outputting bytes to the file.
- NB: these must be called only when actually outputting,
- that is, entropy^.gather_statistics = FALSE. }
- { Emit a byte }
- entropy^.next_output_byte^ := JOCTET(c);
- Inc(entropy^.next_output_byte);
- Dec(entropy^.free_in_buffer);
- if (entropy^.free_in_buffer = 0) then
- dump_buffer(entropy);
- if (c = $FF) then
- begin { need to stuff a zero byte? }
- {emit_byte(entropy, 0);}
- entropy^.next_output_byte^ := JOCTET(0);
- Inc(entropy^.next_output_byte);
- Dec(entropy^.free_in_buffer);
- if (entropy^.free_in_buffer = 0) then
- dump_buffer(entropy);
- end;
- put_buffer := put_buffer shl 8;
- Dec(put_bits, 8);
- end;
- entropy^.put_buffer := put_buffer; { update variables }
- entropy^.put_bits := put_bits;
- end;
- {LOCAL}
- procedure flush_bits (entropy : phuff_entropy_ptr);
- begin
- emit_bits(entropy, $7F, 7); { fill any partial byte with ones }
- entropy^.put_buffer := 0; { and reset bit-buffer to empty }
- entropy^.put_bits := 0;
- end;
- { Emit (or just count) a Huffman symbol. }
- {LOCAL}
- procedure emit_symbol (entropy : phuff_entropy_ptr;
- tbl_no : int;
- symbol : int); {INLINE}
- var
- tbl : c_derived_tbl_ptr;
- begin
- if (entropy^.gather_statistics) then
- Inc(entropy^.count_ptrs[tbl_no]^[symbol])
- else
- begin
- tbl := entropy^.derived_tbls[tbl_no];
- emit_bits(entropy, tbl^.ehufco[symbol], tbl^.ehufsi[symbol]);
- end;
- end;
- { Emit bits from a correction bit buffer. }
- {LOCAL}
- procedure emit_buffered_bits (entropy : phuff_entropy_ptr;
- bufstart : JBytePtr;
- nbits : uInt);
- var
- bufptr : byteptr;
- begin
- if (entropy^.gather_statistics) then
- exit; { no real work }
- bufptr := byteptr(bufstart);
- while (nbits > 0) do
- begin
- emit_bits(entropy, uInt(bufptr^), 1);
- Inc(bufptr);
- Dec(nbits);
- end;
- end;
- { Emit any pending EOBRUN symbol. }
- {LOCAL}
- procedure emit_eobrun (entropy : phuff_entropy_ptr);
- var
- {register} temp, nbits : int;
- begin
- if (entropy^.EOBRUN > 0) then
- begin { if there is any pending EOBRUN }
- temp := entropy^.EOBRUN;
- nbits := 0;
- temp := temp shr 1;
- while (temp <> 0) do
- begin
- Inc(nbits);
- temp := temp shr 1;
- end;
- { safety check: shouldn't happen given limited correction-bit buffer }
- if (nbits > 14) then
- ERREXIT(j_common_ptr(entropy^.cinfo), JERR_HUFF_MISSING_CODE);
- emit_symbol(entropy, entropy^.ac_tbl_no, nbits shl 4);
- if (nbits <> 0) then
- emit_bits(entropy, entropy^.EOBRUN, nbits);
- entropy^.EOBRUN := 0;
- { Emit any buffered correction bits }
- emit_buffered_bits(entropy, entropy^.bit_buffer, entropy^.BE);
- entropy^.BE := 0;
- end;
- end;
- { Emit a restart marker & resynchronize predictions. }
- {LOCAL}
- procedure emit_restart (entropy : phuff_entropy_ptr;
- restart_num : int);
- var
- ci : int;
- begin
- emit_eobrun(entropy);
- if (not entropy^.gather_statistics) then
- begin
- flush_bits(entropy);
- {emit_byte(entropy, $FF);}
- { Outputting bytes to the file.
- NB: these must be called only when actually outputting,
- that is, entropy^.gather_statistics = FALSE. }
- entropy^.next_output_byte^ := JOCTET($FF);
- Inc(entropy^.next_output_byte);
- Dec(entropy^.free_in_buffer);
- if (entropy^.free_in_buffer = 0) then
- dump_buffer(entropy);
- {emit_byte(entropy, JPEG_RST0 + restart_num);}
- entropy^.next_output_byte^ := JOCTET(JPEG_RST0 + restart_num);
- Inc(entropy^.next_output_byte);
- Dec(entropy^.free_in_buffer);
- if (entropy^.free_in_buffer = 0) then
- dump_buffer(entropy);
- end;
- if (entropy^.cinfo^.Ss = 0) then
- begin
- { Re-initialize DC predictions to 0 }
- for ci := 0 to pred(entropy^.cinfo^.comps_in_scan) do
- entropy^.last_dc_val[ci] := 0;
- end
- else
- begin
- { Re-initialize all AC-related fields to 0 }
- entropy^.EOBRUN := 0;
- entropy^.BE := 0;
- end;
- end;
- { MCU encoding for DC initial scan (either spectral selection,
- or first pass of successive approximation). }
- {METHODDEF}
- function encode_mcu_DC_first (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- var
- entropy : phuff_entropy_ptr;
- {register} temp, temp2 : int;
- {register} nbits : int;
- blkn, ci : int;
- Al : int;
- block : JBLOCK_PTR;
- compptr : jpeg_component_info_ptr;
- ishift_temp : int;
- begin
- entropy := phuff_entropy_ptr (cinfo^.entropy);
- Al := cinfo^.Al;
- entropy^.next_output_byte := cinfo^.dest^.next_output_byte;
- entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer;
- { Emit restart marker if needed }
- if (cinfo^.restart_interval <> 0) then
- if (entropy^.restarts_to_go = 0) then
- emit_restart(entropy, entropy^.next_restart_num);
- { Encode the MCU data blocks }
- for blkn := 0 to pred(cinfo^.blocks_in_MCU) do
- begin
- block := JBLOCK_PTR(MCU_data[blkn]);
- ci := cinfo^.MCU_membership[blkn];
- compptr := cinfo^.cur_comp_info[ci];
- { Compute the DC value after the required point transform by Al.
- This is simply an arithmetic right shift. }
- {temp2 := IRIGHT_SHIFT( int(block^[0]), Al);}
- {IRIGHT_SHIFT_IS_UNSIGNED}
- ishift_temp := int(block^[0]);
- if ishift_temp < 0 then
- temp2 := (ishift_temp shr Al) or ((not 0) shl (16-Al))
- else
- temp2 := ishift_temp shr Al;
- { DC differences are figured on the point-transformed values. }
- temp := temp2 - entropy^.last_dc_val[ci];
- entropy^.last_dc_val[ci] := temp2;
- { Encode the DC coefficient difference per section G.1.2.1 }
- temp2 := temp;
- if (temp < 0) then
- begin
- temp := -temp; { temp is abs value of input }
- { For a negative input, want temp2 := bitwise complement of abs(input) }
- { This code assumes we are on a two's complement machine }
- Dec(temp2);
- end;
- { Find the number of bits needed for the magnitude of the coefficient }
- nbits := 0;
- while (temp <> 0) do
- begin
- Inc(nbits);
- temp := temp shr 1;
- end;
- { Check for out-of-range coefficient values.
- Since we're encoding a difference, the range limit is twice as much. }
- if (nbits > MAX_COEF_BITS+1) then
- ERREXIT(j_common_ptr(cinfo), JERR_BAD_DCT_COEF);
- { Count/emit the Huffman-coded symbol for the number of bits }
- emit_symbol(entropy, compptr^.dc_tbl_no, nbits);
- { Emit that number of bits of the value, if positive, }
- { or the complement of its magnitude, if negative. }
- if (nbits <> 0) then { emit_bits rejects calls with size 0 }
- emit_bits(entropy, uInt(temp2), nbits);
- end;
- cinfo^.dest^.next_output_byte := entropy^.next_output_byte;
- cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer;
- { Update restart-interval state too }
- if (cinfo^.restart_interval <> 0) then
- begin
- if (entropy^.restarts_to_go = 0) then
- begin
- entropy^.restarts_to_go := cinfo^.restart_interval;
- Inc(entropy^.next_restart_num);
- with entropy^ do
- next_restart_num := next_restart_num and 7;
- end;
- Dec(entropy^.restarts_to_go);
- end;
- encode_mcu_DC_first := TRUE;
- end;
- { MCU encoding for AC initial scan (either spectral selection,
- or first pass of successive approximation). }
- {METHODDEF}
- function encode_mcu_AC_first (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- var
- entropy : phuff_entropy_ptr;
- {register} temp, temp2 : int;
- {register} nbits : int;
- {register} r, k : int;
- Se : int;
- Al : int;
- block : JBLOCK_PTR;
- begin
- entropy := phuff_entropy_ptr (cinfo^.entropy);
- Se := cinfo^.Se;
- Al := cinfo^.Al;
- entropy^.next_output_byte := cinfo^.dest^.next_output_byte;
- entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer;
- { Emit restart marker if needed }
- if (cinfo^.restart_interval <> 0) then
- if (entropy^.restarts_to_go = 0) then
- emit_restart(entropy, entropy^.next_restart_num);
- { Encode the MCU data block }
- block := JBLOCK_PTR(MCU_data[0]);
- { Encode the AC coefficients per section G.1.2.2, fig. G.3 }
- r := 0; { r := run length of zeros }
- for k := cinfo^.Ss to Se do
- begin
- temp := (block^[jpeg_natural_order[k]]);
- if (temp = 0) then
- begin
- Inc(r);
- continue;
- end;
- { We must apply the point transform by Al. For AC coefficients this
- is an integer division with rounding towards 0. To do this portably
- in C, we shift after obtaining the absolute value; so the code is
- interwoven with finding the abs value (temp) and output bits (temp2). }
- if (temp < 0) then
- begin
- temp := -temp; { temp is abs value of input }
- temp := temp shr Al; { apply the point transform }
- { For a negative coef, want temp2 := bitwise complement of abs(coef) }
- temp2 := not temp;
- end
- else
- begin
- temp := temp shr Al; { apply the point transform }
- temp2 := temp;
- end;
- { Watch out for case that nonzero coef is zero after point transform }
- if (temp = 0) then
- begin
- Inc(r);
- continue;
- end;
- { Emit any pending EOBRUN }
- if (entropy^.EOBRUN > 0) then
- emit_eobrun(entropy);
- { if run length > 15, must emit special run-length-16 codes ($F0) }
- while (r > 15) do
- begin
- emit_symbol(entropy, entropy^.ac_tbl_no, $F0);
- Dec(r, 16);
- end;
- { Find the number of bits needed for the magnitude of the coefficient }
- nbits := 0; { there must be at least one 1 bit }
- repeat
- Inc(nbits);
- temp := temp shr 1;
- until (temp = 0);
- { Check for out-of-range coefficient values }
- if (nbits > MAX_COEF_BITS) then
- ERREXIT(j_common_ptr(cinfo), JERR_BAD_DCT_COEF);
- { Count/emit Huffman symbol for run length / number of bits }
- emit_symbol(entropy, entropy^.ac_tbl_no, (r shl 4) + nbits);
- { Emit that number of bits of the value, if positive, }
- { or the complement of its magnitude, if negative. }
- emit_bits(entropy, uInt(temp2), nbits);
- r := 0; { reset zero run length }
- end;
- if (r > 0) then
- begin { If there are trailing zeroes, }
- Inc(entropy^.EOBRUN); { count an EOB }
- if (entropy^.EOBRUN = $7FFF) then
- emit_eobrun(entropy); { force it out to avoid overflow }
- end;
- cinfo^.dest^.next_output_byte := entropy^.next_output_byte;
- cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer;
- { Update restart-interval state too }
- if (cinfo^.restart_interval <> 0) then
- begin
- if (entropy^.restarts_to_go = 0) then
- begin
- entropy^.restarts_to_go := cinfo^.restart_interval;
- Inc(entropy^.next_restart_num);
- with entropy^ do
- next_restart_num := next_restart_num and 7;
- end;
- Dec(entropy^.restarts_to_go);
- end;
- encode_mcu_AC_first := TRUE;
- end;
- { MCU encoding for DC successive approximation refinement scan.
- Note: we assume such scans can be multi-component, although the spec
- is not very clear on the point. }
- {METHODDEF}
- function encode_mcu_DC_refine (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- var
- entropy : phuff_entropy_ptr;
- {register} temp : int;
- blkn : int;
- Al : int;
- block : JBLOCK_PTR;
- begin
- entropy := phuff_entropy_ptr (cinfo^.entropy);
- Al := cinfo^.Al;
- entropy^.next_output_byte := cinfo^.dest^.next_output_byte;
- entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer;
- { Emit restart marker if needed }
- if (cinfo^.restart_interval <> 0) then
- if (entropy^.restarts_to_go = 0) then
- emit_restart(entropy, entropy^.next_restart_num);
- { Encode the MCU data blocks }
- for blkn := 0 to pred(cinfo^.blocks_in_MCU) do
- begin
- block := JBLOCK_PTR(MCU_data[blkn]);
- { We simply emit the Al'th bit of the DC coefficient value. }
- temp := block^[0];
- emit_bits(entropy, uInt(temp shr Al), 1);
- end;
- cinfo^.dest^.next_output_byte := entropy^.next_output_byte;
- cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer;
- { Update restart-interval state too }
- if (cinfo^.restart_interval <> 0) then
- begin
- if (entropy^.restarts_to_go = 0) then
- begin
- entropy^.restarts_to_go := cinfo^.restart_interval;
- Inc(entropy^.next_restart_num);
- with entropy^ do
- next_restart_num := next_restart_num and 7;
- end;
- Dec(entropy^.restarts_to_go);
- end;
- encode_mcu_DC_refine := TRUE;
- end;
- { MCU encoding for AC successive approximation refinement scan. }
- {METHODDEF}
- function encode_mcu_AC_refine (cinfo : j_compress_ptr;
- const MCU_data: array of JBLOCKROW) : boolean;
- var
- entropy : phuff_entropy_ptr;
- {register} temp : int;
- {register} r, k : int;
- EOB : int;
- BR_buffer : JBytePtr;
- BR : uInt;
- Se : int;
- Al : int;
- block : JBLOCK_PTR;
- absvalues : array[0..DCTSIZE2-1] of int;
- begin
- entropy := phuff_entropy_ptr(cinfo^.entropy);
- Se := cinfo^.Se;
- Al := cinfo^.Al;
- entropy^.next_output_byte := cinfo^.dest^.next_output_byte;
- entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer;
- { Emit restart marker if needed }
- if (cinfo^.restart_interval <> 0) then
- if (entropy^.restarts_to_go = 0) then
- emit_restart(entropy, entropy^.next_restart_num);
- { Encode the MCU data block }
- block := JBLOCK_PTR(MCU_data[0]);
- { It is convenient to make a pre-pass to determine the transformed
- coefficients' absolute values and the EOB position. }
- EOB := 0;
- for k := cinfo^.Ss to Se do
- begin
- temp := block^[jpeg_natural_order[k]];
- { We must apply the point transform by Al. For AC coefficients this
- is an integer division with rounding towards 0. To do this portably
- in C, we shift after obtaining the absolute value. }
- if (temp < 0) then
- temp := -temp; { temp is abs value of input }
- temp := temp shr Al; { apply the point transform }
- absvalues[k] := temp; { save abs value for main pass }
- if (temp = 1) then
- EOB := k; { EOB := index of last newly-nonzero coef }
- end;
- { Encode the AC coefficients per section G.1.2.3, fig. G.7 }
- r := 0; { r := run length of zeros }
- BR := 0; { BR := count of buffered bits added now }
- BR_buffer := JBytePtr(@(entropy^.bit_buffer^[entropy^.BE]));
- { Append bits to buffer }
- for k := cinfo^.Ss to Se do
- begin
- temp := absvalues[k];
- if (temp = 0) then
- begin
- Inc(r);
- continue;
- end;
- { Emit any required ZRLs, but not if they can be folded into EOB }
- while (r > 15) and (k <= EOB) do
- begin
- { emit any pending EOBRUN and the BE correction bits }
- emit_eobrun(entropy);
- { Emit ZRL }
- emit_symbol(entropy, entropy^.ac_tbl_no, $F0);
- Dec(r, 16);
- { Emit buffered correction bits that must be associated with ZRL }
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer := entropy^.bit_buffer; { BE bits are gone now }
- BR := 0;
- end;
- { If the coef was previously nonzero, it only needs a correction bit.
- NOTE: a straight translation of the spec's figure G.7 would suggest
- that we also need to test r > 15. But if r > 15, we can only get here
- if k > EOB, which implies that this coefficient is not 1. }
- if (temp > 1) then
- begin
- { The correction bit is the next bit of the absolute value. }
- BR_buffer^[BR] := byte (temp and 1);
- Inc(BR);
- continue;
- end;
- { Emit any pending EOBRUN and the BE correction bits }
- emit_eobrun(entropy);
- { Count/emit Huffman symbol for run length / number of bits }
- emit_symbol(entropy, entropy^.ac_tbl_no, (r shl 4) + 1);
- { Emit output bit for newly-nonzero coef }
- if (block^[jpeg_natural_order[k]] < 0) then
- temp := 0
- else
- temp := 1;
- emit_bits(entropy, uInt(temp), 1);
- { Emit buffered correction bits that must be associated with this code }
- emit_buffered_bits(entropy, BR_buffer, BR);
- BR_buffer := entropy^.bit_buffer; { BE bits are gone now }
- BR := 0;
- r := 0; { reset zero run length }
- end;
- if (r > 0) or (BR > 0) then
- begin { If there are trailing zeroes, }
- Inc(entropy^.EOBRUN); { count an EOB }
- Inc(entropy^.BE, BR); { concat my correction bits to older ones }
- { We force out the EOB if we risk either:
- 1. overflow of the EOB counter;
- 2. overflow of the correction bit buffer during the next MCU. }
- if (entropy^.EOBRUN = $7FFF) or
- (entropy^.BE > (MAX_CORR_BITS-DCTSIZE2+1)) then
- emit_eobrun(entropy);
- end;
- cinfo^.dest^.next_output_byte := entropy^.next_output_byte;
- cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer;
- { Update restart-interval state too }
- if (cinfo^.restart_interval <> 0) then
- begin
- if (entropy^.restarts_to_go = 0) then
- begin
- entropy^.restarts_to_go := cinfo^.restart_interval;
- Inc(entropy^.next_restart_num);
- with entropy^ do
- next_restart_num := next_restart_num and 7;
- end;
- Dec(entropy^.restarts_to_go);
- end;
- encode_mcu_AC_refine := TRUE;
- end;
- { Finish up at the end of a Huffman-compressed progressive scan. }
- {METHODDEF}
- procedure finish_pass_phuff (cinfo : j_compress_ptr);
- var
- entropy : phuff_entropy_ptr;
- begin
- entropy := phuff_entropy_ptr (cinfo^.entropy);
- entropy^.next_output_byte := cinfo^.dest^.next_output_byte;
- entropy^.free_in_buffer := cinfo^.dest^.free_in_buffer;
- { Flush out any buffered data }
- emit_eobrun(entropy);
- flush_bits(entropy);
- cinfo^.dest^.next_output_byte := entropy^.next_output_byte;
- cinfo^.dest^.free_in_buffer := entropy^.free_in_buffer;
- end;
- { Finish up a statistics-gathering pass and create the new Huffman tables. }
- {METHODDEF}
- procedure finish_pass_gather_phuff (cinfo : j_compress_ptr);
- var
- entropy : phuff_entropy_ptr;
- is_DC_band : boolean;
- ci, tbl : int;
- compptr : jpeg_component_info_ptr;
- htblptr : ^JHUFF_TBL_PTR;
- did : array[0..NUM_HUFF_TBLS-1] of boolean;
- begin
- entropy := phuff_entropy_ptr (cinfo^.entropy);
- { Flush out buffered data (all we care about is counting the EOB symbol) }
- emit_eobrun(entropy);
- is_DC_band := (cinfo^.Ss = 0);
- { It's important not to apply jpeg_gen_optimal_table more than once
- per table, because it clobbers the input frequency counts! }
- MEMZERO(@did, SIZEOF(did));
- for ci := 0 to pred(cinfo^.comps_in_scan) do
- begin
- compptr := cinfo^.cur_comp_info[ci];
- if (is_DC_band) then
- begin
- if (cinfo^.Ah <> 0) then { DC refinement needs no table }
- continue;
- tbl := compptr^.dc_tbl_no;
- end
- else
- begin
- tbl := compptr^.ac_tbl_no;
- end;
- if (not did[tbl]) then
- begin
- if (is_DC_band) then
- htblptr := @(cinfo^.dc_huff_tbl_ptrs[tbl])
- else
- htblptr := @(cinfo^.ac_huff_tbl_ptrs[tbl]);
- if (htblptr^ = NIL) then
- htblptr^ := jpeg_alloc_huff_table(j_common_ptr(cinfo));
- jpeg_gen_optimal_table(cinfo, htblptr^, entropy^.count_ptrs[tbl]^);
- did[tbl] := TRUE;
- end;
- end;
- end;
- { Module initialization routine for progressive Huffman entropy encoding. }
- {GLOBAL}
- procedure jinit_phuff_encoder (cinfo : j_compress_ptr);
- var
- entropy : phuff_entropy_ptr;
- i : int;
- begin
- entropy := phuff_entropy_ptr(
- cinfo^.mem^.alloc_small (j_common_ptr(cinfo), JPOOL_IMAGE,
- SIZEOF(phuff_entropy_encoder)) );
- cinfo^.entropy := jpeg_entropy_encoder_ptr(entropy);
- entropy^.pub.start_pass := start_pass_phuff;
- { Mark tables unallocated }
- for i := 0 to pred(NUM_HUFF_TBLS) do
- begin
- entropy^.derived_tbls[i] := NIL;
- entropy^.count_ptrs[i] := NIL;
- end;
- entropy^.bit_buffer := NIL; { needed only in AC refinement scan }
- end;
- end.
|