123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- Unit JFDctFlt;
- {$N+}
- { This file contains a floating-point implementation of the
- forward DCT (Discrete Cosine Transform).
- This implementation should be more accurate than either of the integer
- DCT implementations. However, it may not give the same results on all
- machines because of differences in roundoff behavior. Speed will depend
- on the hardware's floating point capacity.
- A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- on each column. Direct algorithms are also available, but they are
- much more complex and seem not to be any faster when reduced to code.
- This implementation is based on Arai, Agui, and Nakajima's algorithm for
- scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- Japanese, but the algorithm is described in the Pennebaker & Mitchell
- JPEG textbook (see REFERENCES section in file README). The following code
- is based directly on figure 4-8 in P&M.
- While an 8-point DCT cannot be done in less than 11 multiplies, it is
- possible to arrange the computation so that many of the multiplies are
- simple scalings of the final outputs. These multiplies can then be
- folded into the multiplications or divisions by the JPEG quantization
- table entries. The AA&N method leaves only 5 multiplies and 29 adds
- to be done in the DCT itself.
- The primary disadvantage of this method is that with a fixed-point
- implementation, accuracy is lost due to imprecise representation of the
- scaled quantization values. However, that problem does not arise if
- we use floating point arithmetic. }
- { Original : jfdctflt.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform the forward DCT on one block of samples.}
- {GLOBAL}
- procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { Perform the forward DCT on one block of samples.}
- {GLOBAL}
- procedure jpeg_fdct_float (var data : array of FAST_FLOAT);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = array [0..DCTSIZE2-1] of FAST_FLOAT;
- var
- tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : FAST_FLOAT;
- tmp10, tmp11, tmp12, tmp13 : FAST_FLOAT;
- z1, z2, z3, z4, z5, z11, z13 : FAST_FLOAT;
- dataptr : PWorkspace;
- ctr : int;
- begin
- { Pass 1: process rows. }
- dataptr := PWorkspace(@data);
- for ctr := DCTSIZE-1 downto 0 do
- begin
- tmp0 := dataptr^[0] + dataptr^[7];
- tmp7 := dataptr^[0] - dataptr^[7];
- tmp1 := dataptr^[1] + dataptr^[6];
- tmp6 := dataptr^[1] - dataptr^[6];
- tmp2 := dataptr^[2] + dataptr^[5];
- tmp5 := dataptr^[2] - dataptr^[5];
- tmp3 := dataptr^[3] + dataptr^[4];
- tmp4 := dataptr^[3] - dataptr^[4];
- { Even part }
- tmp10 := tmp0 + tmp3; { phase 2 }
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- dataptr^[0] := tmp10 + tmp11; { phase 3 }
- dataptr^[4] := tmp10 - tmp11;
- z1 := (tmp12 + tmp13) * ({FAST_FLOAT}(0.707106781)); { c4 }
- dataptr^[2] := tmp13 + z1; { phase 5 }
- dataptr^[6] := tmp13 - z1;
- { Odd part }
- tmp10 := tmp4 + tmp5; { phase 2 }
- tmp11 := tmp5 + tmp6;
- tmp12 := tmp6 + tmp7;
- { The rotator is modified from fig 4-8 to avoid extra negations. }
- z5 := (tmp10 - tmp12) * ( {FAST_FLOAT}(0.382683433)); { c6 }
- z2 := {FAST_FLOAT}(0.541196100) * tmp10 + z5; { c2-c6 }
- z4 := {FAST_FLOAT}(1.306562965) * tmp12 + z5; { c2+c6 }
- z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
- z11 := tmp7 + z3; { phase 5 }
- z13 := tmp7 - z3;
- dataptr^[5] := z13 + z2; { phase 6 }
- dataptr^[3] := z13 - z2;
- dataptr^[1] := z11 + z4;
- dataptr^[7] := z11 - z4;
- Inc(FAST_FLOAT_PTR(dataptr), DCTSIZE); { advance pointer to next row }
- end;
- { Pass 2: process columns. }
- dataptr := PWorkspace(@data);
- for ctr := DCTSIZE-1 downto 0 do
- begin
- tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
- tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
- tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
- tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
- tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
- tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
- tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
- tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
- { Even part }
- tmp10 := tmp0 + tmp3; { phase 2 }
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
- dataptr^[DCTSIZE*4] := tmp10 - tmp11;
- z1 := (tmp12 + tmp13) * {FAST_FLOAT} (0.707106781); { c4 }
- dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
- dataptr^[DCTSIZE*6] := tmp13 - z1;
- { Odd part }
- tmp10 := tmp4 + tmp5; { phase 2 }
- tmp11 := tmp5 + tmp6;
- tmp12 := tmp6 + tmp7;
- { The rotator is modified from fig 4-8 to avoid extra negations. }
- z5 := (tmp10 - tmp12) * {FAST_FLOAT} (0.382683433); { c6 }
- z2 := {FAST_FLOAT} (0.541196100) * tmp10 + z5; { c2-c6 }
- z4 := {FAST_FLOAT} (1.306562965) * tmp12 + z5; { c2+c6 }
- z3 := tmp11 * {FAST_FLOAT} (0.707106781); { c4 }
- z11 := tmp7 + z3; { phase 5 }
- z13 := tmp7 - z3;
- dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
- dataptr^[DCTSIZE*3] := z13 - z2;
- dataptr^[DCTSIZE*1] := z11 + z4;
- dataptr^[DCTSIZE*7] := z11 - z4;
- Inc(FAST_FLOAT_PTR(dataptr)); { advance pointer to next column }
- end;
- end;
- end.
|