123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- Unit JFDctFst;
- { This file contains a fast, not so accurate integer implementation of the
- forward DCT (Discrete Cosine Transform).
- A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- on each column. Direct algorithms are also available, but they are
- much more complex and seem not to be any faster when reduced to code.
- This implementation is based on Arai, Agui, and Nakajima's algorithm for
- scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- Japanese, but the algorithm is described in the Pennebaker & Mitchell
- JPEG textbook (see REFERENCES section in file README). The following code
- is based directly on figure 4-8 in P&M.
- While an 8-point DCT cannot be done in less than 11 multiplies, it is
- possible to arrange the computation so that many of the multiplies are
- simple scalings of the final outputs. These multiplies can then be
- folded into the multiplications or divisions by the JPEG quantization
- table entries. The AA&N method leaves only 5 multiplies and 29 adds
- to be done in the DCT itself.
- The primary disadvantage of this method is that with fixed-point math,
- accuracy is lost due to imprecise representation of the scaled
- quantization values. The smaller the quantization table entry, the less
- precise the scaled value, so this implementation does worse with high-
- quality-setting files than with low-quality ones. }
- { Original: jfdctfst.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform the forward DCT on one block of samples. }
- {GLOBAL}
- procedure jpeg_fdct_ifast (var data : array of DCTELEM);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { Scaling decisions are generally the same as in the LL&M algorithm;
- see jfdctint.c for more details. However, we choose to descale
- (right shift) multiplication products as soon as they are formed,
- rather than carrying additional fractional bits into subsequent additions.
- This compromises accuracy slightly, but it lets us save a few shifts.
- More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
- everywhere except in the multiplications proper; this saves a good deal
- of work on 16-bit-int machines.
- Again to save a few shifts, the intermediate results between pass 1 and
- pass 2 are not upscaled, but are represented only to integral precision.
- A final compromise is to represent the multiplicative constants to only
- 8 fractional bits, rather than 13. This saves some shifting work on some
- machines, and may also reduce the cost of multiplication (since there
- are fewer one-bits in the constants). }
- const
- CONST_BITS = 8;
- const
- CONST_SCALE = (INT32(1) shl CONST_BITS);
- const
- FIX_0_382683433 = INT32(Round(CONST_SCALE * 0.382683433)); {98}
- FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {139}
- FIX_0_707106781 = INT32(Round(CONST_SCALE * 0.707106781)); {181}
- FIX_1_306562965 = INT32(Round(CONST_SCALE * 1.306562965)); {334}
- { Descale and correctly round an INT32 value that's scaled by N bits.
- We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- the fudge factor is correct for either sign of X. }
- function DESCALE(x : INT32; n : int) : INT32;
- var
- shift_temp : INT32;
- begin
- { We can gain a little more speed, with a further compromise in accuracy,
- by omitting the addition in a descaling shift. This yields an incorrectly
- rounded result half the time... }
- {$ifndef USE_ACCURATE_ROUNDING}
- shift_temp := x;
- {$else}
- shift_temp := x + (INT32(1) shl (n-1));
- {$endif}
- {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
- if shift_temp < 0 then
- Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
- else
- {$endif}
- Descale := (shift_temp shr n);
- end;
- { Multiply a DCTELEM variable by an INT32 constant, and immediately
- descale to yield a DCTELEM result. }
- function MULTIPLY(X : DCTELEM; Y: INT32): DCTELEM;
- begin
- Multiply := DeScale((X) * (Y), CONST_BITS);
- end;
- { Perform the forward DCT on one block of samples. }
- {GLOBAL}
- procedure jpeg_fdct_ifast (var data : array of DCTELEM);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = array [0..DCTSIZE2-1] of DCTELEM;
- var
- tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : DCTELEM;
- tmp10, tmp11, tmp12, tmp13 : DCTELEM;
- z1, z2, z3, z4, z5, z11, z13 : DCTELEM;
- dataptr : PWorkspace;
- ctr : int;
- {SHIFT_TEMPS}
- begin
- { Pass 1: process rows. }
- dataptr := PWorkspace(@data);
- for ctr := DCTSIZE-1 downto 0 do
- begin
- tmp0 := dataptr^[0] + dataptr^[7];
- tmp7 := dataptr^[0] - dataptr^[7];
- tmp1 := dataptr^[1] + dataptr^[6];
- tmp6 := dataptr^[1] - dataptr^[6];
- tmp2 := dataptr^[2] + dataptr^[5];
- tmp5 := dataptr^[2] - dataptr^[5];
- tmp3 := dataptr^[3] + dataptr^[4];
- tmp4 := dataptr^[3] - dataptr^[4];
- { Even part }
- tmp10 := tmp0 + tmp3; { phase 2 }
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- dataptr^[0] := tmp10 + tmp11; { phase 3 }
- dataptr^[4] := tmp10 - tmp11;
- z1 := MULTIPLY(tmp12 + tmp13, FIX_0_707106781); { c4 }
- dataptr^[2] := tmp13 + z1; { phase 5 }
- dataptr^[6] := tmp13 - z1;
- { Odd part }
- tmp10 := tmp4 + tmp5; { phase 2 }
- tmp11 := tmp5 + tmp6;
- tmp12 := tmp6 + tmp7;
- { The rotator is modified from fig 4-8 to avoid extra negations. }
- z5 := MULTIPLY(tmp10 - tmp12, FIX_0_382683433); { c6 }
- z2 := MULTIPLY(tmp10, FIX_0_541196100) + z5; { c2-c6 }
- z4 := MULTIPLY(tmp12, FIX_1_306562965) + z5; { c2+c6 }
- z3 := MULTIPLY(tmp11, FIX_0_707106781); { c4 }
- z11 := tmp7 + z3; { phase 5 }
- z13 := tmp7 - z3;
- dataptr^[5] := z13 + z2; { phase 6 }
- dataptr^[3] := z13 - z2;
- dataptr^[1] := z11 + z4;
- dataptr^[7] := z11 - z4;
- Inc(DCTELEMPTR(dataptr), DCTSIZE); { advance pointer to next row }
- end;
- { Pass 2: process columns. }
- dataptr := PWorkspace(@data);
- for ctr := DCTSIZE-1 downto 0 do
- begin
- tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
- tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
- tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
- tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
- tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
- tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
- tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
- tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
- { Even part }
- tmp10 := tmp0 + tmp3; { phase 2 }
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- dataptr^[DCTSIZE*0] := tmp10 + tmp11; { phase 3 }
- dataptr^[DCTSIZE*4] := tmp10 - tmp11;
- z1 := MULTIPLY(tmp12 + tmp13, FIX_0_707106781); { c4 }
- dataptr^[DCTSIZE*2] := tmp13 + z1; { phase 5 }
- dataptr^[DCTSIZE*6] := tmp13 - z1;
- { Odd part }
- tmp10 := tmp4 + tmp5; { phase 2 }
- tmp11 := tmp5 + tmp6;
- tmp12 := tmp6 + tmp7;
- { The rotator is modified from fig 4-8 to avoid extra negations. }
- z5 := MULTIPLY(tmp10 - tmp12, FIX_0_382683433); { c6 }
- z2 := MULTIPLY(tmp10, FIX_0_541196100) + z5; { c2-c6 }
- z4 := MULTIPLY(tmp12, FIX_1_306562965) + z5; { c2+c6 }
- z3 := MULTIPLY(tmp11, FIX_0_707106781); { c4 }
- z11 := tmp7 + z3; { phase 5 }
- z13 := tmp7 - z3;
- dataptr^[DCTSIZE*5] := z13 + z2; { phase 6 }
- dataptr^[DCTSIZE*3] := z13 - z2;
- dataptr^[DCTSIZE*1] := z11 + z4;
- dataptr^[DCTSIZE*7] := z11 - z4;
- Inc(DCTELEMPTR(dataptr)); { advance pointer to next column }
- end;
- end;
- end.
|