123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297 |
- Unit JFDctInt;
- { This file contains a slow-but-accurate integer implementation of the
- forward DCT (Discrete Cosine Transform).
- A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- on each column. Direct algorithms are also available, but they are
- much more complex and seem not to be any faster when reduced to code.
- This implementation is based on an algorithm described in
- C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- The primary algorithm described there uses 11 multiplies and 29 adds.
- We use their alternate method with 12 multiplies and 32 adds.
- The advantage of this method is that no data path contains more than one
- multiplication; this allows a very simple and accurate implementation in
- scaled fixed-point arithmetic, with a minimal number of shifts. }
- { Original : jfdctint.c ; Copyright (C) 1991-1996, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jutils,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform the forward DCT on one block of samples. }
- {GLOBAL}
- procedure jpeg_fdct_islow (var data : array of DCTELEM);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { The poop on this scaling stuff is as follows:
- Each 1-D DCT step produces outputs which are a factor of sqrt(N)
- larger than the true DCT outputs. The final outputs are therefore
- a factor of N larger than desired; since N=8 this can be cured by
- a simple right shift at the end of the algorithm. The advantage of
- this arrangement is that we save two multiplications per 1-D DCT,
- because the y0 and y4 outputs need not be divided by sqrt(N).
- In the IJG code, this factor of 8 is removed by the quantization step
- (in jcdctmgr.c), NOT in this module.
- We have to do addition and subtraction of the integer inputs, which
- is no problem, and multiplication by fractional constants, which is
- a problem to do in integer arithmetic. We multiply all the constants
- by CONST_SCALE and convert them to integer constants (thus retaining
- CONST_BITS bits of precision in the constants). After doing a
- multiplication we have to divide the product by CONST_SCALE, with proper
- rounding, to produce the correct output. This division can be done
- cheaply as a right shift of CONST_BITS bits. We postpone shifting
- as long as possible so that partial sums can be added together with
- full fractional precision.
- The outputs of the first pass are scaled up by PASS1_BITS bits so that
- they are represented to better-than-integral precision. These outputs
- require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- with the recommended scaling. (For 12-bit sample data, the intermediate
- array is INT32 anyway.)
- To avoid overflow of the 32-bit intermediate results in pass 2, we must
- have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- shows that the values given below are the most effective. }
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- const
- CONST_BITS = 13;
- PASS1_BITS = 2;
- {$else}
- const
- CONST_BITS = 13;
- PASS1_BITS = 1; { lose a little precision to avoid overflow }
- {$endif}
- const
- CONST_SCALE = (INT32(1) shl CONST_BITS);
- const
- FIX_0_298631336 = INT32(Round(CONST_SCALE * 0.298631336)); {2446}
- FIX_0_390180644 = INT32(Round(CONST_SCALE * 0.390180644)); {3196}
- FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {4433}
- FIX_0_765366865 = INT32(Round(CONST_SCALE * 0.765366865)); {6270}
- FIX_0_899976223 = INT32(Round(CONST_SCALE * 0.899976223)); {7373}
- FIX_1_175875602 = INT32(Round(CONST_SCALE * 1.175875602)); {9633}
- FIX_1_501321110 = INT32(Round(CONST_SCALE * 1.501321110)); {12299}
- FIX_1_847759065 = INT32(Round(CONST_SCALE * 1.847759065)); {15137}
- FIX_1_961570560 = INT32(Round(CONST_SCALE * 1.961570560)); {16069}
- FIX_2_053119869 = INT32(Round(CONST_SCALE * 2.053119869)); {16819}
- FIX_2_562915447 = INT32(Round(CONST_SCALE * 2.562915447)); {20995}
- FIX_3_072711026 = INT32(Round(CONST_SCALE * 3.072711026)); {25172}
- { Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- For 8-bit samples with the recommended scaling, all the variable
- and constant values involved are no more than 16 bits wide, so a
- 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
- For 12-bit samples, a full 32-bit multiplication will be needed. }
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- {MULTIPLY16C16(var,const)}
- function Multiply(X, Y: int): INT32;
- begin
- Multiply := int(X) * INT32(Y);
- end;
- {$else}
- function Multiply(X, Y: INT32): INT32;
- begin
- Multiply := X * Y;
- end;
- {$endif}
- { Descale and correctly round an INT32 value that's scaled by N bits.
- We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- the fudge factor is correct for either sign of X. }
- function DESCALE(x : INT32; n : int) : INT32;
- var
- shift_temp : INT32;
- begin
- {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
- shift_temp := x + (INT32(1) shl (n-1));
- if shift_temp < 0 then
- Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
- else
- Descale := (shift_temp shr n);
- {$else}
- Descale := (x + (INT32(1) shl (n-1)) shr n;
- {$endif}
- end;
- { Perform the forward DCT on one block of samples. }
- {GLOBAL}
- procedure jpeg_fdct_islow (var data : array of DCTELEM);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = array [0..DCTSIZE2-1] of DCTELEM;
- var
- tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : INT32;
- tmp10, tmp11, tmp12, tmp13 : INT32;
- z1, z2, z3, z4, z5 : INT32;
- dataptr : PWorkspace;
- ctr : int;
- {SHIFT_TEMPS}
- begin
- { Pass 1: process rows. }
- { Note results are scaled up by sqrt(8) compared to a true DCT; }
- { furthermore, we scale the results by 2**PASS1_BITS. }
- dataptr := PWorkspace(@data);
- for ctr := DCTSIZE-1 downto 0 do
- begin
- tmp0 := dataptr^[0] + dataptr^[7];
- tmp7 := dataptr^[0] - dataptr^[7];
- tmp1 := dataptr^[1] + dataptr^[6];
- tmp6 := dataptr^[1] - dataptr^[6];
- tmp2 := dataptr^[2] + dataptr^[5];
- tmp5 := dataptr^[2] - dataptr^[5];
- tmp3 := dataptr^[3] + dataptr^[4];
- tmp4 := dataptr^[3] - dataptr^[4];
- { Even part per LL&M figure 1 --- note that published figure is faulty;
- rotator "sqrt(2)*c1" should be "sqrt(2)*c6". }
- tmp10 := tmp0 + tmp3;
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- dataptr^[0] := DCTELEM ((tmp10 + tmp11) shl PASS1_BITS);
- dataptr^[4] := DCTELEM ((tmp10 - tmp11) shl PASS1_BITS);
- z1 := MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr^[2] := DCTELEM (DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
- CONST_BITS-PASS1_BITS));
- dataptr^[6] := DCTELEM (DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
- CONST_BITS-PASS1_BITS));
- { Odd part per figure 8 --- note paper omits factor of sqrt(2).
- cK represents cos(K*pi/16).
- i0..i3 in the paper are tmp4..tmp7 here. }
- z1 := tmp4 + tmp7;
- z2 := tmp5 + tmp6;
- z3 := tmp4 + tmp6;
- z4 := tmp5 + tmp7;
- z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
- tmp4 := MULTIPLY(tmp4, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
- tmp5 := MULTIPLY(tmp5, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
- tmp6 := MULTIPLY(tmp6, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
- tmp7 := MULTIPLY(tmp7, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
- z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
- z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
- z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
- z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
- Inc(z3, z5);
- Inc(z4, z5);
- dataptr^[7] := DCTELEM(DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS));
- dataptr^[5] := DCTELEM(DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS));
- dataptr^[3] := DCTELEM(DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS));
- dataptr^[1] := DCTELEM(DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS));
- Inc(DCTELEMPTR(dataptr), DCTSIZE); { advance pointer to next row }
- end;
- { Pass 2: process columns.
- We remove the PASS1_BITS scaling, but leave the results scaled up
- by an overall factor of 8. }
- dataptr := PWorkspace(@data);
- for ctr := DCTSIZE-1 downto 0 do
- begin
- tmp0 := dataptr^[DCTSIZE*0] + dataptr^[DCTSIZE*7];
- tmp7 := dataptr^[DCTSIZE*0] - dataptr^[DCTSIZE*7];
- tmp1 := dataptr^[DCTSIZE*1] + dataptr^[DCTSIZE*6];
- tmp6 := dataptr^[DCTSIZE*1] - dataptr^[DCTSIZE*6];
- tmp2 := dataptr^[DCTSIZE*2] + dataptr^[DCTSIZE*5];
- tmp5 := dataptr^[DCTSIZE*2] - dataptr^[DCTSIZE*5];
- tmp3 := dataptr^[DCTSIZE*3] + dataptr^[DCTSIZE*4];
- tmp4 := dataptr^[DCTSIZE*3] - dataptr^[DCTSIZE*4];
- { Even part per LL&M figure 1 --- note that published figure is faulty;
- rotator "sqrt(2)*c1" should be "sqrt(2)*c6". }
- tmp10 := tmp0 + tmp3;
- tmp13 := tmp0 - tmp3;
- tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;
- dataptr^[DCTSIZE*0] := DCTELEM (DESCALE(tmp10 + tmp11, PASS1_BITS));
- dataptr^[DCTSIZE*4] := DCTELEM (DESCALE(tmp10 - tmp11, PASS1_BITS));
- z1 := MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
- dataptr^[DCTSIZE*2] := DCTELEM (DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
- CONST_BITS+PASS1_BITS));
- dataptr^[DCTSIZE*6] := DCTELEM (DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
- CONST_BITS+PASS1_BITS));
- { Odd part per figure 8 --- note paper omits factor of sqrt(2).
- cK represents cos(K*pi/16).
- i0..i3 in the paper are tmp4..tmp7 here. }
- z1 := tmp4 + tmp7;
- z2 := tmp5 + tmp6;
- z3 := tmp4 + tmp6;
- z4 := tmp5 + tmp7;
- z5 := MULTIPLY(z3 + z4, FIX_1_175875602); { sqrt(2) * c3 }
- tmp4 := MULTIPLY(tmp4, FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
- tmp5 := MULTIPLY(tmp5, FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
- tmp6 := MULTIPLY(tmp6, FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
- tmp7 := MULTIPLY(tmp7, FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
- z1 := MULTIPLY(z1, - FIX_0_899976223); { sqrt(2) * (c7-c3) }
- z2 := MULTIPLY(z2, - FIX_2_562915447); { sqrt(2) * (-c1-c3) }
- z3 := MULTIPLY(z3, - FIX_1_961570560); { sqrt(2) * (-c3-c5) }
- z4 := MULTIPLY(z4, - FIX_0_390180644); { sqrt(2) * (c5-c3) }
- Inc(z3, z5);
- Inc(z4, z5);
- dataptr^[DCTSIZE*7] := DCTELEM (DESCALE(tmp4 + z1 + z3,
- CONST_BITS+PASS1_BITS));
- dataptr^[DCTSIZE*5] := DCTELEM (DESCALE(tmp5 + z2 + z4,
- CONST_BITS+PASS1_BITS));
- dataptr^[DCTSIZE*3] := DCTELEM (DESCALE(tmp6 + z2 + z3,
- CONST_BITS+PASS1_BITS));
- dataptr^[DCTSIZE*1] := DCTELEM (DESCALE(tmp7 + z1 + z4,
- CONST_BITS+PASS1_BITS));
- Inc(DCTELEMPTR(dataptr)); { advance pointer to next column }
- end;
- end;
- end.
|