123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793 |
- Unit JIDctAsm;
- { This file contains a slow-but-accurate integer implementation of the
- inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- must also perform dequantization of the input coefficients.
- A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- on each row (or vice versa, but it's more convenient to emit a row at
- a time). Direct algorithms are also available, but they are much more
- complex and seem not to be any faster when reduced to code.
- This implementation is based on an algorithm described in
- C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
- Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
- Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
- The primary algorithm described there uses 11 multiplies and 29 adds.
- We use their alternate method with 12 multiplies and 32 adds.
- The advantage of this method is that no data path contains more than one
- multiplication; this allows a very simple and accurate implementation in
- scaled fixed-point arithmetic, with a minimal number of shifts. }
- { Original : jidctint.c ; Copyright (C) 1991-1996, Thomas G. Lane. }
- { ;-------------------------------------------------------------------------
- ; JIDCTINT.ASM
- ; 80386 protected mode assembly translation of JIDCTINT.C
- ; **** Optimized to all hell by Jason M. Felice ([email protected]) ****
- ; **** E-mail welcome ****
- ;
- ; ** This code does not make O/S calls -- use it for OS/2, Win95, WinNT,
- ; ** DOS prot. mode., Linux, whatever... have fun.
- ;
- ; ** Note, this code is dependant on the structure member order in the .h
- ; ** files for the following structures:
- ; -- amazingly NOT j_decompress_struct... cool.
- ; -- jpeg_component_info (dependant on position of dct_table element)
- ;
- ; Originally created with the /Fa option of MSVC 4.0 (why work when you
- ; don't have to?)
- ;
- ; (this code, when compiled is 1K bytes smaller than the optimized MSVC
- ; release build, not to mention 120-130 ms faster in my profile test with 1
- ; small color and and 1 medium black-and-white jpeg: stats using TASM 4.0
- ; and MSVC 4.0 to create a non-console app; jpeg_idct_islow accumulated
- ; 5,760 hits on all trials)
- ;
- ; TASM -t -ml -os jidctint.asm, jidctint.obj
- ;-------------------------------------------------------------------------
- Converted to Delphi 2.0 BASM for PasJPEG
- by Jacques NOMSSI NZALI <[email protected]>
- October 13th 1996
- * assumes Delphi "register" calling convention
- first 3 parameter are in EAX,EDX,ECX
- * register allocation revised
- }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { The poop on this scaling stuff is as follows:
- Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
- larger than the true IDCT outputs. The final outputs are therefore
- a factor of N larger than desired; since N=8 this can be cured by
- a simple right shift at the end of the algorithm. The advantage of
- this arrangement is that we save two multiplications per 1-D IDCT,
- because the y0 and y4 inputs need not be divided by sqrt(N).
- We have to do addition and subtraction of the integer inputs, which
- is no problem, and multiplication by fractional constants, which is
- a problem to do in integer arithmetic. We multiply all the constants
- by CONST_SCALE and convert them to integer constants (thus retaining
- CONST_BITS bits of precision in the constants). After doing a
- multiplication we have to divide the product by CONST_SCALE, with proper
- rounding, to produce the correct output. This division can be done
- cheaply as a right shift of CONST_BITS bits. We postpone shifting
- as long as possible so that partial sums can be added together with
- full fractional precision.
- The outputs of the first pass are scaled up by PASS1_BITS bits so that
- they are represented to better-than-integral precision. These outputs
- require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
- with the recommended scaling. (To scale up 12-bit sample data further, an
- intermediate INT32 array would be needed.)
- To avoid overflow of the 32-bit intermediate results in pass 2, we must
- have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
- shows that the values given below are the most effective. }
- const
- CONST_BITS = 13;
- {$ifdef BITS_IN_JSAMPLE_IS_8}
- const
- PASS1_BITS = 2;
- {$else}
- const
- PASS1_BITS = 1; { lose a little precision to avoid overflow }
- {$endif}
- const
- CONST_SCALE = (INT32(1) shl CONST_BITS);
- const
- FIX_0_298631336 = INT32(Round(CONST_SCALE * 0.298631336)); {2446}
- FIX_0_390180644 = INT32(Round(CONST_SCALE * 0.390180644)); {3196}
- FIX_0_541196100 = INT32(Round(CONST_SCALE * 0.541196100)); {4433}
- FIX_0_765366865 = INT32(Round(CONST_SCALE * 0.765366865)); {6270}
- FIX_0_899976223 = INT32(Round(CONST_SCALE * 0.899976223)); {7373}
- FIX_1_175875602 = INT32(Round(CONST_SCALE * 1.175875602)); {9633}
- FIX_1_501321110 = INT32(Round(CONST_SCALE * 1.501321110)); {12299}
- FIX_1_847759065 = INT32(Round(CONST_SCALE * 1.847759065)); {15137}
- FIX_1_961570560 = INT32(Round(CONST_SCALE * 1.961570560)); {16069}
- FIX_2_053119869 = INT32(Round(CONST_SCALE * 2.053119869)); {16819}
- FIX_2_562915447 = INT32(Round(CONST_SCALE * 2.562915447)); {20995}
- FIX_3_072711026 = INT32(Round(CONST_SCALE * 3.072711026)); {25172}
- { for DESCALE }
- const
- ROUND_CONST = (INT32(1) shl (CONST_BITS-PASS1_BITS-1));
- const
- ROUND_CONST_2 = (INT32(1) shl (CONST_BITS+PASS1_BITS+3-1));
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_islow (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = coef_bits_field; { buffers data between passes }
- const
- coefDCTSIZE = DCTSIZE*SizeOf(JCOEF);
- wrkDCTSIZE = DCTSIZE*SizeOf(int);
- var
- tmp0, tmp1, tmp2, tmp3 : INT32;
- tmp10, tmp11, tmp12, tmp13 : INT32;
- z1, z2, z3, z4, z5 : INT32;
- var
- inptr : JCOEFPTR;
- quantptr : ISLOW_MULT_TYPE_FIELD_PTR;
- wsptr : PWorkspace;
- outptr : JSAMPROW;
- var
- range_limit : JSAMPROW;
- ctr : int;
- workspace : TWorkspace;
- var
- dcval : int;
- var
- dcval_ : JSAMPLE;
- asm
- push edi
- push esi
- push ebx
- cld { The only direction we use, might as well set it now, as opposed }
- { to inside 2 loops. }
- { Each IDCT routine is responsible for range-limiting its results and
- converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- be quite far out of range if the input data is corrupt, so a bulletproof
- range-limiting step is required. We use a mask-and-table-lookup method
- to do the combined operations quickly. See the comments with
- prepare_range_limit_table (in jdmaster.c) for more info. }
- {range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));}
- mov eax, [eax].jpeg_decompress_struct.sample_range_limit {eax=cinfo}
- add eax, (MAXJSAMPLE+1 + CENTERJSAMPLE)*(Type JSAMPLE)
- mov range_limit, eax
- { Pass 1: process columns from input, store into work array. }
- { Note results are scaled up by sqrt(8) compared to a true IDCT; }
- { furthermore, we scale the results by 2**PASS1_BITS. }
- {inptr := coef_block;}
- mov esi, ecx { ecx=coef_block }
- {quantptr := ISLOW_MULT_TYPE_FIELD_PTR (compptr^.dct_table);}
- mov edi, [edx].jpeg_component_info.dct_table { edx=compptr }
- {wsptr := PWorkspace(@workspace);}
- lea ecx, workspace
- {for ctr := pred(DCTSIZE) downto 0 do
- begin}
- mov ctr, DCTSIZE
- @loop518:
- { Due to quantization, we will usually find that many of the input
- coefficients are zero, especially the AC terms. We can exploit this
- by short-circuiting the IDCT calculation for any column in which all
- the AC terms are zero. In that case each output is equal to the
- DC coefficient (with scale factor as needed).
- With typical images and quantization tables, half or more of the
- column DCT calculations can be simplified this way. }
- {if ((inptr^[DCTSIZE*1]) or (inptr^[DCTSIZE*2]) or (inptr^[DCTSIZE*3]) or
- (inptr^[DCTSIZE*4]) or (inptr^[DCTSIZE*5]) or (inptr^[DCTSIZE*6]) or
- (inptr^[DCTSIZE*7]) = 0) then
- begin}
- mov eax, DWORD PTR [esi+coefDCTSIZE*1]
- or eax, DWORD PTR [esi+coefDCTSIZE*2]
- or eax, DWORD PTR [esi+coefDCTSIZE*3]
- mov edx, DWORD PTR [esi+coefDCTSIZE*4]
- or eax, edx
- or eax, DWORD PTR [esi+coefDCTSIZE*5]
- or eax, DWORD PTR [esi+coefDCTSIZE*6]
- or eax, DWORD PTR [esi+coefDCTSIZE*7]
- jne @loop520
- { AC terms all zero }
- {dcval := ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) *
- (quantptr^[DCTSIZE*0]) shl PASS1_BITS;}
- mov eax, DWORD PTR [esi+coefDCTSIZE*0]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*0]
- shl eax, PASS1_BITS
- {wsptr^[DCTSIZE*0] := dcval;
- wsptr^[DCTSIZE*1] := dcval;
- wsptr^[DCTSIZE*2] := dcval;
- wsptr^[DCTSIZE*3] := dcval;
- wsptr^[DCTSIZE*4] := dcval;
- wsptr^[DCTSIZE*5] := dcval;
- wsptr^[DCTSIZE*6] := dcval;
- wsptr^[DCTSIZE*7] := dcval;}
- mov DWORD PTR [ecx+ wrkDCTSIZE*0], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*1], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*2], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*3], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*4], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*5], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*6], eax
- mov DWORD PTR [ecx+ wrkDCTSIZE*7], eax
- {Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- {Inc(ISLOW_MULT_TYPE_PTR(quantptr));
- Inc(int_ptr(wsptr));
- continue;}
- dec ctr
- je @loop519
- add esi, Type JCOEF
- add edi, Type ISLOW_MULT_TYPE
- add ecx, Type int { int_ptr }
- jmp @loop518
- @loop520:
- {end;}
- { Even part: reverse the even part of the forward DCT. }
- { The rotator is sqrt(2)*c(-6). }
- {z2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*2]) * quantptr^[DCTSIZE*2];
- z3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*6]) * quantptr^[DCTSIZE*6];
- z1 := (z2 + z3) * INT32(FIX_0_541196100);
- tmp2 := z1 + INT32(z3) * INT32(- FIX_1_847759065);
- tmp3 := z1 + INT32(z2) * INT32(FIX_0_765366865);}
- mov edx, DWORD PTR [esi+coefDCTSIZE*2]
- imul edx, DWORD PTR [edi+wrkDCTSIZE*2] {z2}
- mov eax, DWORD PTR [esi+coefDCTSIZE*6]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*6] {z3}
- lea ebx, [eax+edx]
- imul ebx, FIX_0_541196100 {z1}
- imul eax, (-FIX_1_847759065)
- add eax, ebx
- mov tmp2, eax
- imul edx, FIX_0_765366865
- add edx, ebx
- mov tmp3, edx
- {z2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*0]) * quantptr^[DCTSIZE*0];
- z3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*4]) * quantptr^[DCTSIZE*4];}
- mov edx, DWORD PTR [esi+coefDCTSIZE*4]
- imul edx, DWORD PTR [edi+wrkDCTSIZE*4] { z3 = edx }
- mov eax, DWORD PTR [esi+coefDCTSIZE*0]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*0] { z2 = eax }
- {tmp0 := (z2 + z3) shl CONST_BITS;
- tmp1 := (z2 - z3) shl CONST_BITS;}
- lea ebx,[eax+edx]
- sub eax, edx
- shl ebx, CONST_BITS { tmp0 = ebx }
- shl eax, CONST_BITS { tmp1 = eax }
- {tmp10 := tmp0 + tmp3;
- tmp13 := tmp0 - tmp3;}
- mov edx, tmp3
- sub ebx, edx
- mov tmp13, ebx
- add edx, edx
- add ebx, edx
- mov tmp10, ebx
- {tmp11 := tmp1 + tmp2;
- tmp12 := tmp1 - tmp2;}
- mov ebx, tmp2
- sub eax, ebx
- mov tmp12, eax
- add ebx, ebx
- add eax, ebx
- mov tmp11, eax
- { Odd part per figure 8; the matrix is unitary and hence its
- transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
- {tmp0 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*7]) * quantptr^[DCTSIZE*7];}
- mov eax, DWORD PTR [esi+coefDCTSIZE*7]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*7]
- mov edx, eax { edx = tmp0 }
- {tmp0 := (tmp0) * INT32(FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
- imul eax, FIX_0_298631336
- mov tmp0, eax
- {tmp3 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*1]) * quantptr^[DCTSIZE*1];}
- mov eax, DWORD PTR [esi+coefDCTSIZE*1]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*1]
- mov tmp3, eax
- {z1 := tmp0 + tmp3;}
- {z1 := (z1) * INT32(- FIX_0_899976223); { sqrt(2) * (c7-c3) }
- add eax, edx
- imul eax, (-FIX_0_899976223)
- mov z1, eax
- {tmp1 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*5]) * quantptr^[DCTSIZE*5];}
- mov eax, DWORD PTR [esi+coefDCTSIZE*5]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*5]
- mov ebx, eax { ebx = tmp1 }
- {tmp1 := (tmp1) * INT32(FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
- imul eax, FIX_2_053119869
- mov tmp1, eax
- {tmp2 := ISLOW_MULT_TYPE(inptr^[DCTSIZE*3]) * quantptr^[DCTSIZE*3];}
- mov eax, DWORD PTR [esi+coefDCTSIZE*3]
- imul eax, DWORD PTR [edi+wrkDCTSIZE*3]
- mov tmp2, eax
- {z3 := tmp0 + tmp2;}
- add edx, eax { edx = z3 }
- {z2 := tmp1 + tmp2;}
- {z2 := (z2) * INT32(- FIX_2_562915447); { sqrt(2) * (-c1-c3) }
- add eax, ebx
- imul eax, (-FIX_2_562915447)
- mov z2, eax
- {z4 := tmp1 + tmp3;}
- add ebx, tmp3 { ebx = z4 }
- {z5 := INT32(z3 + z4) * INT32(FIX_1_175875602); { sqrt(2) * c3 }
- lea eax, [edx+ebx]
- imul eax, FIX_1_175875602 { eax = z5 }
- {z4 := (z4) * INT32(- FIX_0_390180644); { sqrt(2) * (c5-c3) }
- {Inc(z4, z5);}
- imul ebx, (-FIX_0_390180644)
- add ebx, eax
- mov z4, ebx
- {z3 := (z3) * INT32(- FIX_1_961570560); { sqrt(2) * (-c3-c5) }
- {Inc(z3, z5);}
- imul edx, (-FIX_1_961570560)
- add eax, edx { z3 = eax }
- {Inc(tmp0, z1 + z3);}
- mov ebx, z1
- add ebx, eax
- add tmp0, ebx
- {tmp2 := (tmp2) * INT32(FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
- {Inc(tmp2, z2 + z3);}
- mov ebx, tmp2
- imul ebx, FIX_3_072711026
- mov edx, z2 { z2 = edx }
- add ebx, edx
- add eax, ebx
- mov tmp2, eax
- {Inc(tmp1, z2 + z4);}
- mov eax, z4 { z4 = eax }
- add edx, eax
- add tmp1, edx
- {tmp3 := (tmp3) * INT32(FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
- {Inc(tmp3, z1 + z4);}
- mov edx, tmp3
- imul edx, FIX_1_501321110
- add edx, eax
- add edx, z1 { tmp3 = edx }
- { Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
- {wsptr^[DCTSIZE*0] := int (DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS));}
- {wsptr^[DCTSIZE*7] := int (DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS));}
- mov eax, tmp10
- add eax, ROUND_CONST
- lea ebx, [eax+edx]
- sar ebx, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*0], ebx
- sub eax, edx
- sar eax, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*7], eax
- {wsptr^[DCTSIZE*1] := int (DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS));}
- {wsptr^[DCTSIZE*6] := int (DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS));}
- mov eax, tmp11
- add eax, ROUND_CONST
- mov edx, tmp2
- lea ebx, [eax+edx]
- sar ebx, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*1], ebx
- sub eax, edx
- sar eax, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*6], eax
- {wsptr^[DCTSIZE*2] := int (DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS));}
- {wsptr^[DCTSIZE*5] := int (DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS));}
- mov eax, tmp12
- add eax, ROUND_CONST
- mov edx, tmp1
- lea ebx, [eax+edx]
- sar ebx, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*2], ebx
- sub eax, edx
- sar eax, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*5], eax
- {wsptr^[DCTSIZE*3] := int (DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS));}
- {wsptr^[DCTSIZE*4] := int (DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS));}
- mov eax, tmp13
- add eax, ROUND_CONST
- mov edx, tmp0
- lea ebx, [eax+edx]
- sar ebx, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*3], ebx
- sub eax, edx
- sar eax, CONST_BITS-PASS1_BITS
- mov DWORD PTR [ecx+wrkDCTSIZE*4], eax
- {Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- {Inc(ISLOW_MULT_TYPE_PTR(quantptr));
- Inc(int_ptr(wsptr));}
- dec ctr
- je @loop519
- add esi, Type JCOEF
- add edi, Type ISLOW_MULT_TYPE
- add ecx, Type int { int_ptr }
- {end;}
- jmp @loop518
- @loop519:
- { Save to memory what we've registerized for the preceding loop. }
- { Pass 2: process rows from work array, store into output array. }
- { Note that we must descale the results by a factor of 8 == 2**3, }
- { and also undo the PASS1_BITS scaling. }
- {wsptr := @workspace;}
- lea esi, workspace
- {for ctr := 0 to pred(DCTSIZE) do
- begin}
- mov ctr, 0
- @loop523:
- {outptr := output_buf^[ctr];}
- mov eax, ctr
- mov ebx, output_buf
- mov edi, DWORD PTR [ebx+eax*4] { 4 = SizeOf(pointer) }
- {Inc(JSAMPLE_PTR(outptr), output_col);}
- add edi, output_col
- { Rows of zeroes can be exploited in the same way as we did with columns.
- However, the column calculation has created many nonzero AC terms, so
- the simplification applies less often (typically 5% to 10% of the time).
- On machines with very fast multiplication, it's possible that the
- test takes more time than it's worth. In that case this section
- may be commented out. }
- {$ifndef NO_ZERO_ROW_TEST}
- {if ((wsptr^[1]) or (wsptr^[2]) or (wsptr^[3]) or (wsptr^[4]) or
- (wsptr^[5]) or (wsptr^[6]) or (wsptr^[7]) = 0) then
- begin}
- mov eax, DWORD PTR [esi+4*1]
- or eax, DWORD PTR [esi+4*2]
- or eax, DWORD PTR [esi+4*3]
- jne @loop525 { Nomssi: early exit path may help }
- or eax, DWORD PTR [esi+4*4]
- or eax, DWORD PTR [esi+4*5]
- or eax, DWORD PTR [esi+4*6]
- or eax, DWORD PTR [esi+4*7]
- jne @loop525
- { AC terms all zero }
- {JSAMPLE(dcval_) := range_limit^[int(DESCALE(INT32(wsptr^[0]),
- PASS1_BITS+3)) and RANGE_MASK];}
- mov eax, DWORD PTR [esi+4*0]
- add eax, (INT32(1) shl (PASS1_BITS+3-1))
- sar eax, PASS1_BITS+3
- and eax, RANGE_MASK
- mov ebx, range_limit
- mov al, BYTE PTR [ebx+eax]
- mov ah, al
- {outptr^[0] := dcval_;
- outptr^[1] := dcval_;
- outptr^[2] := dcval_;
- outptr^[3] := dcval_;
- outptr^[4] := dcval_;
- outptr^[5] := dcval_;
- outptr^[6] := dcval_;
- outptr^[7] := dcval_;}
- stosw
- stosw
- stosw
- stosw
- {Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
- {continue;}
- add esi, wrkDCTSIZE
- inc ctr
- cmp ctr, DCTSIZE
- jl @loop523
- jmp @loop524
- {end;}
- @loop525:
- {$endif}
- { Even part: reverse the even part of the forward DCT. }
- { The rotator is sqrt(2)*c(-6). }
- {z2 := INT32 (wsptr^[2]);}
- mov edx, DWORD PTR [esi+4*2] { z2 = edx }
- {z3 := INT32 (wsptr^[6]);}
- mov ecx, DWORD PTR [esi+4*6] { z3 = ecx }
- {z1 := (z2 + z3) * INT32(FIX_0_541196100);}
- lea eax, [edx+ecx]
- imul eax, FIX_0_541196100
- mov ebx, eax { z1 = ebx }
- {tmp2 := z1 + (z3) * INT32(- FIX_1_847759065);}
- imul ecx, (-FIX_1_847759065)
- add ecx, ebx { tmp2 = ecx }
- {tmp3 := z1 + (z2) * INT32(FIX_0_765366865);}
- imul edx, FIX_0_765366865
- add ebx, edx { tmp3 = ebx }
- {tmp0 := (INT32(wsptr^[0]) + INT32(wsptr^[4])) shl CONST_BITS;}
- {tmp1 := (INT32(wsptr^[0]) - INT32(wsptr^[4])) shl CONST_BITS;}
- mov edx, DWORD PTR [esi+4*4]
- mov eax, DWORD PTR [esi+4*0]
- sub eax, edx
- add edx, edx
- add edx, eax
- shl edx, CONST_BITS { tmp0 = edx }
- shl eax, CONST_BITS { tmp1 = eax }
- {tmp10 := tmp0 + tmp3;}
- {tmp13 := tmp0 - tmp3;}
- sub edx, ebx
- mov tmp13, edx
- add ebx, ebx
- add edx, ebx
- mov tmp10, edx
- {tmp11 := tmp1 + tmp2;}
- {tmp12 := tmp1 - tmp2;}
- lea ebx, [ecx+eax]
- mov tmp11, ebx
- sub eax, ecx
- mov tmp12, eax
- { Odd part per figure 8; the matrix is unitary and hence its
- transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. }
- { The following lines no longer produce code, since wsptr has been
- optimized to esi, it is more efficient to access these values
- directly.
- tmp0 := INT32(wsptr^[7]);
- tmp1 := INT32(wsptr^[5]);
- tmp2 := INT32(wsptr^[3]);
- tmp3 := INT32(wsptr^[1]); }
- {z2 := tmp1 + tmp2;}
- {z2 := (z2) * INT32(- FIX_2_562915447); { sqrt(2) * (-c1-c3) }
- mov ebx, DWORD PTR [esi+4*3] { tmp2 }
- mov ecx, DWORD PTR [esi+4*5] { tmp1 }
- lea eax, [ebx+ecx]
- imul eax, (-FIX_2_562915447)
- mov z2, eax
- {z3 := tmp0 + tmp2;}
- mov edx, DWORD PTR [esi+4*7] { tmp0 }
- add ebx, edx { old z3 = ebx }
- mov eax, ebx
- {z3 := (z3) * INT32(- FIX_1_961570560); { sqrt(2) * (-c3-c5) }
- imul eax, (-FIX_1_961570560)
- mov z3, eax
- {z1 := tmp0 + tmp3;}
- {z1 := (z1) * INT32(- FIX_0_899976223); { sqrt(2) * (c7-c3) }
- mov eax, DWORD PTR [esi+4*1] { tmp3 }
- add edx, eax
- imul edx, (-FIX_0_899976223) { z1 = edx }
- {z4 := tmp1 + tmp3;}
- add eax, ecx { +tmp1 }
- add ebx, eax { z3 + z4 = ebx }
- {z4 := (z4) * INT32(- FIX_0_390180644); { sqrt(2) * (c5-c3) }
- imul eax, (-FIX_0_390180644) { z4 = eax }
- {z5 := (z3 + z4) * INT32(FIX_1_175875602); { sqrt(2) * c3 }
- {Inc(z3, z5);}
- imul ebx, FIX_1_175875602
- mov ecx, z3
- add ecx, ebx { ecx = z3 }
- {Inc(z4, z5);}
- add ebx, eax { z4 = ebx }
- {tmp0 := (tmp0) * INT32(FIX_0_298631336); { sqrt(2) * (-c1+c3+c5-c7) }
- {Inc(tmp0, z1 + z3);}
- mov eax, DWORD PTR [esi+4*7]
- imul eax, FIX_0_298631336
- add eax, edx
- add eax, ecx
- mov tmp0, eax
- {tmp1 := (tmp1) * INT32(FIX_2_053119869); { sqrt(2) * ( c1+c3-c5+c7) }
- {Inc(tmp1, z2 + z4);}
- mov eax, DWORD PTR [esi+4*5]
- imul eax, FIX_2_053119869
- add eax, z2
- add eax, ebx
- mov tmp1, eax
- {tmp2 := (tmp2) * INT32(FIX_3_072711026); { sqrt(2) * ( c1+c3+c5-c7) }
- {Inc(tmp2, z2 + z3);}
- mov eax, DWORD PTR [esi+4*3]
- imul eax, FIX_3_072711026
- add eax, z2
- add ecx, eax { ecx = tmp2 }
- {tmp3 := (tmp3) * INT32(FIX_1_501321110); { sqrt(2) * ( c1+c3-c5-c7) }
- {Inc(tmp3, z1 + z4);}
- mov eax, DWORD PTR [esi+4*1]
- imul eax, FIX_1_501321110
- add eax, edx
- add ebx, eax { ebx = tmp3 }
- { Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 }
- {outptr^[0] := range_limit^[ int(DESCALE(tmp10 + tmp3,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK]; }
- {outptr^[7] := range_limit^[ int(DESCALE(tmp10 - tmp3,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- mov edx, tmp10
- add edx, ROUND_CONST_2
- lea eax, [ebx+edx]
- sub edx, ebx
- shr eax, CONST_BITS+PASS1_BITS+3
- and eax, RANGE_MASK
- mov ebx, range_limit { once for all }
- mov al, BYTE PTR [ebx+eax]
- mov [edi+0], al
- shr edx, CONST_BITS+PASS1_BITS+3
- and edx, RANGE_MASK
- mov al, BYTE PTR [ebx+edx]
- mov [edi+7], al
- {outptr^[1] := range_limit^[ int(DESCALE(tmp11 + tmp2,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- mov eax, tmp11
- add eax, ROUND_CONST_2
- lea edx, [eax+ecx]
- shr edx, CONST_BITS+PASS1_BITS+3
- and edx, RANGE_MASK
- mov dl, BYTE PTR [ebx+edx]
- mov [edi+1], dl
- {outptr^[6] := range_limit^[ int(DESCALE(tmp11 - tmp2,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- sub eax, ecx
- shr eax, CONST_BITS+PASS1_BITS+3
- and eax, RANGE_MASK
- mov al, BYTE PTR [ebx+eax]
- mov [edi+6], al
- {outptr^[2] := range_limit^[ int(DESCALE(tmp12 + tmp1,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- mov eax, tmp12
- add eax, ROUND_CONST_2
- mov ecx, tmp1
- lea edx, [eax+ecx]
- shr edx, CONST_BITS+PASS1_BITS+3
- and edx, RANGE_MASK
- mov dl, BYTE PTR [ebx+edx]
- mov [edi+2], dl
- {outptr^[5] := range_limit^[ int(DESCALE(tmp12 - tmp1,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- sub eax, ecx
- shr eax, CONST_BITS+PASS1_BITS+3
- and eax, RANGE_MASK
- mov al, BYTE PTR [ebx+eax]
- mov [edi+5], al
- {outptr^[3] := range_limit^[ int(DESCALE(tmp13 + tmp0,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- mov eax, tmp13
- add eax, ROUND_CONST_2
- mov ecx, tmp0
- lea edx, [eax+ecx]
- shr edx, CONST_BITS+PASS1_BITS+3
- and edx, RANGE_MASK
- mov dl, BYTE PTR [ebx+edx]
- mov [edi+3], dl
- {outptr^[4] := range_limit^[ int(DESCALE(tmp13 - tmp0,
- CONST_BITS+PASS1_BITS+3)) and RANGE_MASK];}
- sub eax, ecx
- shr eax, CONST_BITS+PASS1_BITS+3
- and eax, RANGE_MASK
- mov al, BYTE PTR [ebx+eax]
- mov [edi+4], al
- {Inc(int_ptr(wsptr), DCTSIZE); { advance pointer to next row }
- add esi, wrkDCTSIZE
- add edi, DCTSIZE
- {end;}
- inc ctr
- cmp ctr, DCTSIZE
- jl @loop523
- @loop524:
- @loop496:
- pop ebx
- pop esi
- pop edi
- end;
- end.
|