123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- Unit JIDctFlt;
- {$N+}
- { This file contains a floating-point implementation of the
- inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- must also perform dequantization of the input coefficients.
- This implementation should be more accurate than either of the integer
- IDCT implementations. However, it may not give the same results on all
- machines because of differences in roundoff behavior. Speed will depend
- on the hardware's floating point capacity.
- A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- on each row (or vice versa, but it's more convenient to emit a row at
- a time). Direct algorithms are also available, but they are much more
- complex and seem not to be any faster when reduced to code.
- This implementation is based on Arai, Agui, and Nakajima's algorithm for
- scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- Japanese, but the algorithm is described in the Pennebaker & Mitchell
- JPEG textbook (see REFERENCES section in file README). The following code
- is based directly on figure 4-8 in P&M.
- While an 8-point DCT cannot be done in less than 11 multiplies, it is
- possible to arrange the computation so that many of the multiplies are
- simple scalings of the final outputs. These multiplies can then be
- folded into the multiplications or divisions by the JPEG quantization
- table entries. The AA&N method leaves only 5 multiplies and 29 adds
- to be done in the DCT itself.
- The primary disadvantage of this method is that with a fixed-point
- implementation, accuracy is lost due to imprecise representation of the
- scaled quantization values. However, that problem does not arise if
- we use floating point arithmetic. }
- { Original: jidctflt.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
- interface
- {$I jconfig.inc}
- uses
- jmorecfg,
- jinclude,
- jpeglib,
- jdct; { Private declarations for DCT subsystem }
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_float (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- implementation
- { This module is specialized to the case DCTSIZE = 8. }
- {$ifndef DCTSIZE_IS_8}
- Sorry, this code only copes with 8x8 DCTs. { deliberate syntax err }
- {$endif}
- { Dequantize a coefficient by multiplying it by the multiplier-table
- entry; produce a float result. }
- function DEQUANTIZE(coef : int; quantval : FAST_FLOAT) : FAST_FLOAT;
- begin
- Dequantize := ( (coef) * quantval);
- end;
- { Descale and correctly round an INT32 value that's scaled by N bits.
- We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- the fudge factor is correct for either sign of X. }
- function DESCALE(x : INT32; n : int) : INT32;
- var
- shift_temp : INT32;
- begin
- {$ifdef RIGHT_SHIFT_IS_UNSIGNED}
- shift_temp := x + (INT32(1) shl (n-1));
- if shift_temp < 0 then
- Descale := (shift_temp shr n) or ((not INT32(0)) shl (32-n))
- else
- Descale := (shift_temp shr n);
- {$else}
- Descale := (x + (INT32(1) shl (n-1)) shr n;
- {$endif}
- end;
- { Perform dequantization and inverse DCT on one block of coefficients. }
- {GLOBAL}
- procedure jpeg_idct_float (cinfo : j_decompress_ptr;
- compptr : jpeg_component_info_ptr;
- coef_block : JCOEFPTR;
- output_buf : JSAMPARRAY;
- output_col : JDIMENSION);
- type
- PWorkspace = ^TWorkspace;
- TWorkspace = array[0..DCTSIZE2-1] of FAST_FLOAT;
- var
- tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7 : FAST_FLOAT;
- tmp10, tmp11, tmp12, tmp13 : FAST_FLOAT;
- z5, z10, z11, z12, z13 : FAST_FLOAT;
- inptr : JCOEFPTR;
- quantptr : FLOAT_MULT_TYPE_FIELD_PTR;
- wsptr : PWorkSpace;
- outptr : JSAMPROW;
- range_limit : JSAMPROW;
- ctr : int;
- workspace : TWorkspace; { buffers data between passes }
- {SHIFT_TEMPS}
- var
- dcval : FAST_FLOAT;
- begin
- { Each IDCT routine is responsible for range-limiting its results and
- converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- be quite far out of range if the input data is corrupt, so a bulletproof
- range-limiting step is required. We use a mask-and-table-lookup method
- to do the combined operations quickly. See the comments with
- prepare_range_limit_table (in jdmaster.c) for more info. }
- range_limit := JSAMPROW(@(cinfo^.sample_range_limit^[CENTERJSAMPLE]));
- { Pass 1: process columns from input, store into work array. }
- inptr := coef_block;
- quantptr := FLOAT_MULT_TYPE_FIELD_PTR (compptr^.dct_table);
- wsptr := @workspace;
- for ctr := pred(DCTSIZE) downto 0 do
- begin
- { Due to quantization, we will usually find that many of the input
- coefficients are zero, especially the AC terms. We can exploit this
- by short-circuiting the IDCT calculation for any column in which all
- the AC terms are zero. In that case each output is equal to the
- DC coefficient (with scale factor as needed).
- With typical images and quantization tables, half or more of the
- column DCT calculations can be simplified this way. }
- if (inptr^[DCTSIZE*1]=0) and (inptr^[DCTSIZE*2]=0) and
- (inptr^[DCTSIZE*3]=0) and (inptr^[DCTSIZE*4]=0) and
- (inptr^[DCTSIZE*5]=0) and (inptr^[DCTSIZE*6]=0) and
- (inptr^[DCTSIZE*7]=0) then
- begin
- { AC terms all zero }
- FAST_FLOAT(dcval) := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
- wsptr^[DCTSIZE*0] := dcval;
- wsptr^[DCTSIZE*1] := dcval;
- wsptr^[DCTSIZE*2] := dcval;
- wsptr^[DCTSIZE*3] := dcval;
- wsptr^[DCTSIZE*4] := dcval;
- wsptr^[DCTSIZE*5] := dcval;
- wsptr^[DCTSIZE*6] := dcval;
- wsptr^[DCTSIZE*7] := dcval;
- Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- Inc(FLOAT_MULT_TYPE_PTR(quantptr));
- Inc(FAST_FLOAT_PTR(wsptr));
- continue;
- end;
- { Even part }
- tmp0 := DEQUANTIZE(inptr^[DCTSIZE*0], quantptr^[DCTSIZE*0]);
- tmp1 := DEQUANTIZE(inptr^[DCTSIZE*2], quantptr^[DCTSIZE*2]);
- tmp2 := DEQUANTIZE(inptr^[DCTSIZE*4], quantptr^[DCTSIZE*4]);
- tmp3 := DEQUANTIZE(inptr^[DCTSIZE*6], quantptr^[DCTSIZE*6]);
- tmp10 := tmp0 + tmp2; { phase 3 }
- tmp11 := tmp0 - tmp2;
- tmp13 := tmp1 + tmp3; { phases 5-3 }
- tmp12 := (tmp1 - tmp3) * ({FAST_FLOAT}(1.414213562)) - tmp13; { 2*c4 }
- tmp0 := tmp10 + tmp13; { phase 2 }
- tmp3 := tmp10 - tmp13;
- tmp1 := tmp11 + tmp12;
- tmp2 := tmp11 - tmp12;
- { Odd part }
- tmp4 := DEQUANTIZE(inptr^[DCTSIZE*1], quantptr^[DCTSIZE*1]);
- tmp5 := DEQUANTIZE(inptr^[DCTSIZE*3], quantptr^[DCTSIZE*3]);
- tmp6 := DEQUANTIZE(inptr^[DCTSIZE*5], quantptr^[DCTSIZE*5]);
- tmp7 := DEQUANTIZE(inptr^[DCTSIZE*7], quantptr^[DCTSIZE*7]);
- z13 := tmp6 + tmp5; { phase 6 }
- z10 := tmp6 - tmp5;
- z11 := tmp4 + tmp7;
- z12 := tmp4 - tmp7;
- tmp7 := z11 + z13; { phase 5 }
- tmp11 := (z11 - z13) * ({FAST_FLOAT}(1.414213562)); { 2*c4 }
- z5 := (z10 + z12) * ({FAST_FLOAT}(1.847759065)); { 2*c2 }
- tmp10 := ({FAST_FLOAT}(1.082392200)) * z12 - z5; { 2*(c2-c6) }
- tmp12 := ({FAST_FLOAT}(-2.613125930)) * z10 + z5; { -2*(c2+c6) }
- tmp6 := tmp12 - tmp7; { phase 2 }
- tmp5 := tmp11 - tmp6;
- tmp4 := tmp10 + tmp5;
- wsptr^[DCTSIZE*0] := tmp0 + tmp7;
- wsptr^[DCTSIZE*7] := tmp0 - tmp7;
- wsptr^[DCTSIZE*1] := tmp1 + tmp6;
- wsptr^[DCTSIZE*6] := tmp1 - tmp6;
- wsptr^[DCTSIZE*2] := tmp2 + tmp5;
- wsptr^[DCTSIZE*5] := tmp2 - tmp5;
- wsptr^[DCTSIZE*4] := tmp3 + tmp4;
- wsptr^[DCTSIZE*3] := tmp3 - tmp4;
- Inc(JCOEF_PTR(inptr)); { advance pointers to next column }
- Inc(FLOAT_MULT_TYPE_PTR(quantptr));
- Inc(FAST_FLOAT_PTR(wsptr));
- end;
- { Pass 2: process rows from work array, store into output array. }
- { Note that we must descale the results by a factor of 8 = 2**3. }
- wsptr := @workspace;
- for ctr := 0 to pred(DCTSIZE) do
- begin
- outptr := JSAMPROW(@(output_buf^[ctr]^[output_col]));
- { Rows of zeroes can be exploited in the same way as we did with columns.
- However, the column calculation has created many nonzero AC terms, so
- the simplification applies less often (typically 5% to 10% of the time).
- And testing floats for zero is relatively expensive, so we don't bother. }
- { Even part }
- tmp10 := wsptr^[0] + wsptr^[4];
- tmp11 := wsptr^[0] - wsptr^[4];
- tmp13 := wsptr^[2] + wsptr^[6];
- tmp12 := (wsptr^[2] - wsptr^[6]) * ({FAST_FLOAT}(1.414213562)) - tmp13;
- tmp0 := tmp10 + tmp13;
- tmp3 := tmp10 - tmp13;
- tmp1 := tmp11 + tmp12;
- tmp2 := tmp11 - tmp12;
- { Odd part }
- z13 := wsptr^[5] + wsptr^[3];
- z10 := wsptr^[5] - wsptr^[3];
- z11 := wsptr^[1] + wsptr^[7];
- z12 := wsptr^[1] - wsptr^[7];
- tmp7 := z11 + z13;
- tmp11 := (z11 - z13) * ({FAST_FLOAT}(1.414213562));
- z5 := (z10 + z12) * ({FAST_FLOAT}(1.847759065)); { 2*c2 }
- tmp10 := ({FAST_FLOAT}(1.082392200)) * z12 - z5; { 2*(c2-c6) }
- tmp12 := ({FAST_FLOAT}(-2.613125930)) * z10 + z5; { -2*(c2+c6) }
- tmp6 := tmp12 - tmp7;
- tmp5 := tmp11 - tmp6;
- tmp4 := tmp10 + tmp5;
- { Final output stage: scale down by a factor of 8 and range-limit }
- outptr^[0] := range_limit^[ int(DESCALE( INT32(Round((tmp0 + tmp7))), 3))
- and RANGE_MASK];
- outptr^[7] := range_limit^[ int(DESCALE( INT32(Round((tmp0 - tmp7))), 3))
- and RANGE_MASK];
- outptr^[1] := range_limit^[ int(DESCALE( INT32(Round((tmp1 + tmp6))), 3))
- and RANGE_MASK];
- outptr^[6] := range_limit^[ int(DESCALE( INT32(Round((tmp1 - tmp6))), 3))
- and RANGE_MASK];
- outptr^[2] := range_limit^[ int(DESCALE( INT32(Round((tmp2 + tmp5))), 3))
- and RANGE_MASK];
- outptr^[5] := range_limit^[ int(DESCALE( INT32(Round((tmp2 - tmp5))), 3))
- and RANGE_MASK];
- outptr^[4] := range_limit^[ int(DESCALE( INT32(Round((tmp3 + tmp4))), 3))
- and RANGE_MASK];
- outptr^[3] := range_limit^[ int(DESCALE( INT32(Round((tmp3 - tmp4))), 3))
- and RANGE_MASK];
- Inc(FAST_FLOAT_PTR(wsptr), DCTSIZE); { advance pointer to next row }
- end;
- end;
- end.
|